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Synonyms  
Graphs in economy, data mining and knowledge 

discovery in economic networks, prediction of credit 

default and churn. 

 

Glossary  
(Strong) Component:  maximal set of vertices that 

are reachable from each other by (directed) paths.   
Cluster: a class of a partition. 

Community: a dense part of a graph (possibly 

overlapping). 

Host graph: the vertices are companies; the edges 

represent either money transfer or other type of 

connections. 

Intersection graph: here the vertices correspond to 

sets, and edges are drawn if the sets intersect.  

Transaction graph: edges mean some transaction 

(call, money flow etc.) among vertices (clients).  

 

Definition 
There are several ways to associate graphs (host 

graphs) with economic data, and in fact this process is 

a crucial step in any application. Different types of 

effects or information can spread on an economic 

network, i.e. the bankruptcy of business partners, the 

customer’s churn, patterns of fraud and this spreading 

can be modeled by different infection models. 

Hidalgo et al. [16] introduced a classic economic 

graph model based on global export-import data to 

build up a graph on the “product space” of a country 

which turned out to be useful to understand its 

economic development: The vertices of the graph are 

economic products and an edge (x, y) represents that 

the export of product x increases the conditional 

probability of exporting product y as well. In this 

network representation, the products of a country can 

be considered as infected vertices, while the economic 

development is the spread of this disease.  

Another classic example of economic networks is 

based on data warehouses of companies or 

organizations. ; a non-exhaustive list of some 

examples follows. There are different transaction (or 

call) graphs, based on   the interactions taken by the 

customers of a bank or telephone company [5, 10] 

where the directed and weighted edges represent   

e.g., the total sum of money transfers, or the number 

of calls and messages in a certain time period. 

Similarly, graphs can be built up from economic data 

published on the web, like using WWW links, 

community pages, or blogs. Even in those cases where 

there are no obvious transactions; graphs might be 

defined to express indirect relations like the similarity 

between customers or organizations. For example, a 

usual company database has fields containing the 

name of the CEO, the shareholders, the given 

company’s address, and its economic activity that can 

be considered as discrete sets of properties. Two 

entities can then be connected based on the similarity 

of their properties – in the simplest case if they just 

have a number of common elements [7]; the latter 

network representation is called an intersection graph. 

The same approach works for individual customers in 

a bank or in an insurance company. Once the graphs 

are obtained, models can be developed that might 

provide deeper understanding.  Most of the questions 

in economics mathematically answerable in these 

models are formulated as computing (approximating) 

functions of the vertices, edges and their attributes:  

Among others, Hidalgo et al. [16] tried to predict the 

economic development of a country, given that it 

already has certain industries. The current status is 

coded in the product space graph with a function 

              on the vertices; 1 if the industry is 

present, 0 otherwise. The question is then how f 

changes in time.   

Similarly, based on transaction or similarity graphs 

the spread of events can be simulated: For telephone 

companies churn (chance of losing a costumer), for 

insurance companies fraud (of a contract or client) 

and for banks both of the above as well as the 

probability of credit default are very important. In this 

case, the weight of the edges (or the probability of the 

spread of an event through those) is a crucial issue.   

  To properly estimate these probabilities, the network 

structure has to be analyzed together with the 

information associated with the vertices and edges. In 

the study of a marketing problem by Domingos and 

Richardson [12], a simple spreading model is 

proposed which applies uniform infection 

probabilities. While this is satisfactory for a viral 

marketing problem, economic networks in general 

require a more careful approach.  A new  model 

proposed by Csizmadia et al. [11] uses a number of 

sophisticated algorithms in order to approximate the 

edge probabilities through application data (e.g., 

credit default). These algorithms were partly 

borrowed from network analysis, AI and data mining 
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or developed to meet the needs. In the next chapter we 

briefly discuss some of those. 

Before going further we must stress that the use of 

infection models does not imply that the process is 

completely analogous to an epidemic as the infection 

models predict only the probabilities of various 

events. For instance, in a bank transaction graph the 

probability of bankruptcy can be predicted by 

infection processes starting from identified defaulting 

companies. Nevertheless, the estimation of infection 

probabilities requires a sophisticated analysis, as real 

infections are frequently influenced by information 

that are not represented in the given network 

structure: for example, common ownership of 

companies can contain  significant information with 

respect to defaulting prediction in bank transaction 

graphs. Intersection graph models provide an 

alternative for the above problem; they might 

represent hidden information spread in a more 

realistic way. 

 

Key Applications  
As we mentioned before, the obvious and tested 

applications of infection processes are based on 

problems in the banking sector, the insurance sector, 

and the telecommunication sector. Note that projects 

of varying subjects or objectives (acquisition, 

bankruptcy, credit default, costumer churn, fraud 

detection etc.) start with different host graphs, and the 

infection processes are also tailored to the specific 

applications.    

We will refer to the credit default model [10] several 

times, using it as an illustrative example. The 

experiences of its use originate from a case study of 

network research in one of the largest corporate banks 

in Hungary. The objective of the research was risk 

decisions (performing at the bank), especially 

bankruptcy forecasting.  

 

Introduction  
Infection models.  

There are several types of models depending on the 

speciality of the field; for a brief introduction see 

Chapter 7 of [18]. The type of events (default, churn, 

fraud, route of development) does not involve 

recovery or resistance, so simple percolation models 

suffice.  

SI models. First of all, for all the applications listed 

above, a version of SI infection models were used. In 

an SI model each vertex is either susceptible or 

infected, and the infected vertices can transmit the 

disease to the susceptible ones. The rules of the 

transmission vary in different models.   A main 

categorization differentiates between deterministic 

and probabilistic infections: 

Deterministic infections.  
1. A node will be infected once a given threshold of 

its neighbors is infected (Bootstrap percolation). This 

type of infection model has been used in the product 

space network described above; it is implemented 

such that, itself. The method is convincing, although it 

gives only qualitative predictions [16].  

2. Another infection model infects all those vertices 

that are reachable from the initially infected set. This 

simple approach works surprisingly well in fraud 

detection, when the host graph is an intersection graph 

of the contracts. 

Probabilistic infections. A very flexible random tool 

is described in [12], as the Independent Cascade 

Model. Unlike deterministic infections, in this model 

a vertex is infected by its neighbors with some 

probability. For a network G and probabilities 

assigned to the edges of G, and a set of active 

(infected) vertices A, in each step the vertices infected 

in the previous round can then independently infect 

healthy vertices connected to them with the 

corresponding probability assigned to the connecting 

edges. The process continues while there are newly 

infected vertices, and halts otherwise. For a basically 

equivalent model, see [14]. 

Generalized cascade. To suit real applications, the 

model is generalized in a way that the initial infection 

comes from a distribution (a priori infection) which is 

transformed by this process to an a posteriori 

infection. See different aspects of the above concept 

in [6, 10, 11]. In this way the a priori knowledge, e.g. 

the results of standard data mining models, can be 

integrated into a network based model. Indeed, banks 

or insurance companies have computed customer risks 

for a long period, but those models are based solely 

on individual client data, e.g. age, salary, credit 

history etc. These models performed satisfactory in a 

static environment, and they are still useful in 

predicting the a priori infection (the risk of a sole 

client).   

 
Fine tuning 
In the above mentioned models it is not trivial how to 

determine the parameters in the transmission rules. 

We call this an inverse infection problem, since our 

task is to find those possible values of edge infection 

probabilities that fit well to some given past data. 

Note that in the deterministic cases there are also 

(hidden) parameters; like in Bootstrap percolation a 

lower bound needs to be defined which determines the 

minimum number of infected neighbors necessary for 

infection transmission. Nevertheless, this lower bound 

may highly depend on the characteristics of the host 

graphs. More generally, one can say that the 

parameters of deterministic infections are encoded in 



the definition of the host graphs. Still, in that case the 

number of possible different parameters is small, and 

one can select a nearly optimal solution manually. For 

the random case, however, the parameter space of 

candidate edge probabilities is large, and a systematic 

analysis of the possible cases is not realizable. 

Therefore a more careful algorithmic methodology to 

handle this problem is necessary.  

 

Estimation of infection probabilities. The main idea 

is that the infection probability (edge weight) of an 

edge (x, y) is an unknown, but deterministic function 

of the attributes of the vertices x and y and the edge 

(x, y) itself. The above approach can be justified from 

theoretical and practical viewpoints as well. The 

estimation of edge weights in general is an 

underspecified problem, thus it is not correctly 

realizable even by a theoretical model. On the other 

hand, in practice it is reasonable to consider real 

infections as functions of attributes, and to restrict the 

edge weight function to the measurable variables. 

Then ad-hoc trial and error method gives fairly good 

results for the generalized cascade, but it is definitely 

suboptimal [10].  

 

Learning infection probabilities. For a systematic 

solution, a standard AI approach can be used. The 

past data is divided into learning and test sets. Then 

one can try to assign edge probabilities in a way that 

the model results in infection patterns similar to the 

learning set, while the overall process is evaluated by 

the test set. As noted before, not the edge probabilities 

themselves are estimated, but their dependencies on 

attributes. Mathematically, one has to solve various 

optimization problems, where the objective functions 

are known only implicitly. Furthermore, if      , 

then the value of       can be only approximated, 

since its exact computation is a #P-complete problem 

[9].To find a sub-optimal solution, variants of grid 

search and gradient methods were applied, see [6, 8, 

10]. Note that the search space Ω is not a scalar space; 

it also has discrete dimensions that describe the types 

of transformations acted on the attributes. E.g. in the 

credit default problem to estimate the edge infection 

probabilities the most important variables are the 

“amount of money sent from x to y” (continuous), and 

“whether  the edge (x, y) is between nodes in the same 

community” (discrete).    

 

Functions. The attributes of the edges/vertices are 

real (e.g. sent money) or discrete (e.g. membership in 

a community) types of functions.  A possible way to 

transform edge weights from those parameters is to 

transform them individually and aggregate the results. 

Of course, the functions acting on the parameters are 

unknown a priori. That is, one has to choose some 

reasonable functions to approximate them. The type 

of the approximating function itself is a discrete 

variable, while the constants of those are handled as 

variables of the associated optimization problem. 

Some examples:  ,       ,             
 , 

            ,       
 , and sigmoid functions are 

classical functions to test. To sum up the overall 

effect, one can a sum or product with an affine scaling 

to the       interval. That is, the parameter space   

consists of the mixture of discrete decisions (which 

function should be used for a given attribute) and the 

constant parameters in those functions.   

 

Evaluation of estimations.  The most natural 

measures for the error functions are the mean square 

error (or    norm), the mean absolute deviation 

(       ), or the     norm. However, in data mining 

another measure of goodness is also important, the so-

called gain curve. Here the vertices of the graph are 

monotonically decreasingly ordered by their infection 

probabilities computed on the training set. Let 

        be the values of the same vertices given in 

the test set. Then the function         
∏       

∑   
   
   

, and 

∫          
 

   
 should be maximized. 

 

 

Attributes  
The next step in modelling is the selection of the 

appropriate attributes. This needs a thorough study of 

the particular problem, although general observations 

can also be taken. Like in data mining in general, it is 

not necessarily true that more information is better. 

For example, in the credit default models most 

individual attributes are useless. Some exceptions are 

as follows: the age of a company, whether it is 

municipal or not, and the sector in general. One must 

emphasize that these data should be gathered and 

cleaned carefully, and also need to be transformed to 

include common sense. An example for the latter is 

the infection model for the credit default. The weight 

of an edge       is not simply the function of the 

amount of money sent on that edge, but it should be 

normalized with the amount of all money sent to y. 

We must note that because of the measurement 

problems, directed edges might cause paradox 

phenomena. Since a contractor might default months 

earlier than its procurer, the observed infection is 

spreading seemingly backwards on an edge. 

The network topology also gives rise to some 

attributes; these values are generated by graph mining 

algorithms. The principal parameters induced by the 

graph structure are, for example, generated from 

cluster and community data. 



 

Clusters and Communities. As we indicated in the 

Glossary we call the elements of a partition of the 

vertex set clusters, while communities are dense 

subsets of nodes that can overlap. Clustering is a basic 

technique in data mining, and in particular it is 

important in graph mining. There are a plethora of 

concepts and algorithms for it, see [4, 19]. So it is 

somehow surprising that it has little relevance in 

finding the best edge weights for an infection method 

[10]. One possible explanation is that some of the 

static attributes (e.g. the sector, types of activity of a 

company) already contain similar information about a 

vertex: e.g. clustering on the graph structure may 

reflect the classification of the company with respect 

to their types of activity. 

On the other hand, attributes induced by the 

community structure of a graph have a central role in 

infection parameter optimization.  Communities might 

be defined in several ways [1, 11, 15], but if an edge 

      is identified as being within a community by 

one algorithm, than it is usually also identified to be 

within a community in general [11, 15]. The studies 

show that a community edge is about three times as 

significant (i.e. has three times more weight) than an 

edge with similar attributes that is not within a 

community. This experiment is an important 

justification of the use of (overlapping) communities 

against traditional clusters in network based data 

mining. In fact, this result experimentally confirms 

Granovetter’s classification of the graph edges into 

weak and strong ones [13].  

All these findings stress the importance of extending 

the search of communities to dynamic graphs, that is 

if the graphs     and    are given, we need to map 

their communities to each other. The problem is that 

the communities may change with time, they may 

grow, shrink, die, born, split, unite or get involved in 

even more complicated events. Those kinds of 

problems were investigated in [2, 5, 20] on different 

networks. These studies mainly concentrated on the 

survival of super structures, the connection of the size 

of the communities and their average life span, and 

the dynamical equilibrium. The latest (unpublished) 

experiences show the role of these algorithms in 

infection processes. As one can expect, fine tuning 

will assign larger weights to those edges that stay 

within communities during the whole process.  

 

 
Proposed Solution and Methodology  
A typical application consists of a cyclical execution 

of the following steps. .  

 

Step 1: Preparation.  Identify the problem; what 

questions should be answered, is  data available data 

to answer this question?. 

 

Step 2: Data retrieval.  Retrieve data (from 

warehouses, or by any other means).  

 

Step 3: Data cleaning. Clean data by unifying the 

format, handling missing data/duplication, and fix 

errors if possible.  

 

Step 4: Data selection.  Use statistical tools to select 

the significant data, create fields (attributes), keep the 

important ones and drop the others. 

 

Step 5: Network representation.  Build graph(s) 

from the preprocessed data. 

   

Step 6: Graph analysis. Process the graph(s). 

Compute the (strong) components, clusters and 

communities. Create new attributes based on these, 

and add to the ones gained in Step 4. 

 

Step 7: A priori probability distribution. Compute 

an a priori probability distribution on the vertices that 

corresponds to the examined problem.  

 

Step 8: Parameter learning.   Divide past data to 

learning and test sets, run inverse infection 

algorithms. 

 

Step 9: Quality assessment. compare the results with 

the observed data by using an appropriate metric. If 

the results are not satisfactory, identify the possible 

place of the problem and start over from there 
 
Future Directions  
In the application/project part, it is obvious to extend 

the methodology in predicting other phenomena 

(spread of success/growth, innovation). As we noted 

before, an infection model is nothing more than a 

mechanism that integrates the effects reaching a 

vertex in a network. That is, the method should be 

extended to handle more general functions (not only 

probabilities) with reasonable running time.  

  A more theoretical, but still an application driven 

idea is to correlate graphs of different origin with a 

common vertex set.  As an example, for the analysis 

of the relationships among companies, one can 

consider a www link graph based on partnerships and 

the company ownership graph etc. There are intimate 

connections among these networks; it is shown that 

the conditional probability of an (unknown) edge 

between x and y in    increases provided that their 

neighbors are well connected in a different 



network   , see [17]. Still, in order to describe these 

effects in depth, further research is needed. 

An interesting crossroad of ecology and economy is 

the theory of mutualistic networks, see [3, 21]. These 

are bipartite graphs (e.g. plant-pollinator network, the 

designers-manufacturers in garment industry, world 

trade etc.), in which the neighbourhoods of vertices 

are nested into each other. A similar theory for 

general (and noisy) transaction graphs is to be 

developed. This would lead not only to more refined 

attributes, but give rise to a new class of clustering 

algorithms. 

 
Cross-references  
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Community Detection, Current and Future Research 

Trends; Community Evolution; Data Mining; 

Extracting Social Networks from Data; Fraud 

Detection Using Social Network Analysis, Case 

Study; Game Theory in Social Networks; Learning 

Networks; Modeling of Business Processes and Crisis 

Management; Models for Community Dynamics; 

Viral Marketing/Advertising and Social Media 
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