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ABSTRACT
We survey and unify the methods developed for finding over-
lapping communities in Small World graphs in the recent
years. The results have impact on graph mining; we give
some demonstration of this.
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1. INTRODUCTION
The discovery of Small World graphs has changed the direc-
tion of interest in graph theory profoundly. These graphs
are different from those that were studied before, and also
the questions that were asked about those. It is not easy to
collect the information to build such a graph, or give models
to generate it. The sheer size of the real problems prohibits
most of the time consuming algorithms, so the researcher
has to fall back on simpler heuristics, sometimes derived
from physical intuition [3, 5, 20]. Following the usual nota-
tion, a graph G has vertex set V (G), edge set E(G). If the
later one consists of ordered pairs, then G is directed, and
an edge might be also weighted.

An intriguing question is the classification of vertices of a
graph. One can consider the usual clusters and also over-
lapping sets, that we call communities. Here we concentrate
on the possible definitions, search and use of communities.
While for clustering both the top down and bottom up al-
gorithms are used for defining and finding the classes, all
known algorithms for communities are bottom up.

2. SOME ALGORITHMS
Here we consider only three algorithms. The selection is
arbitrary, although has some justification. Maybe the first
algorithm that was used for finding communities is the N++.

However, since we could get no permission to use the data set
it was designed for, it has not been published yet in English.
After that several similar algorithms were proposed; unfor-
tunately the qualities of implementations differ so it is not
easy to compare them. The k-Clique percolation method
was the first widely known algorithm, which was also ap-
plied to real world problems. Edge clustering is the third
algorithm we mention; it has mainly theoretical interest.

2.1 The N++ algorithm.
[23, 11] It is a generic algorithm, with arbitrary functions

f : 2V (G) × V (G)→ R

and c : N → R. Here f(A, x) describes the strength of a
community A with a vertex x. Then the algorithm joins x
to A if f(A, x) ≥ c(|A|). The Build routine gets the first
approximation of communities K in a bottom up way.

The pseudo-code of Build

begin(Build)

Input G, k, c (max k-size c-communities)

Let K := V (G) (nodes are communities.)

For i = 1 to k

∀A ∈ K, x ∈ V (G) if f(A, x) ≥ c(|A|) then put A∪ {x} into
K.

Remove all A ∈ K, for which A ⊂ B ∈ K, and A 6= B.

Print K, “c-communities of G up to size k.”

end(Build)

After running Build, we use Merge to glue communities
that are almost identical. Let C be a graph, where V (C) =
K, and (A,B) ∈ E(C) if A ∩ B is “big” then changes K to
(K \ {A,B}) ∪ {A ∪ B}. Then the components of C are
declared to be the communities. The practice suggested the
following set-ups. The big means the 60% of the smaller
set. The function f(A, x) depends on the number of paths
with length one and two from x to A. That is to get the
communities containing x, it is enough to search N++(x) :=
N(N(x)).



Some similar methods are listed in [13].

2.2 k-Clique percolation.
[21] Here a k ∈ N is fixed. After finding all k-size clique in
G, the graph Qk is considered such that the vertices of Qk

are these cliques, and (A,B) ∈ E(Qk) iff |A ∩ B| = k − 1.
Finally a k-community is the unions of cliques of a connected
components.

2.3 Edge clustering.
[22, 25] One chooses an arbitrary clustering on the set of
edges. Then the communities are defined as the set of end-
points of the clusters.

These methods differ in output, i. e. in the type of com-
munities, and in the computing costs. Although the edge
clustering is easy to compute, it has serious drawbacks in
use. (First of all is that the overlap among communities is
maximum one vertex.) The N++ and Clique percolation are
more promising; here the implementation issues are crucial.
For small world graphs both can perform almost in linear
time, which is a natural requirement if one wants to deal
with real problems.1

2.4 A unified view
These algorithms, and those that were mentioned but not
listed, has a common core. Their execution consists of two
steps. In the first a hypergraph F = (V,H) is defined (and
computed), where V = V (G), the original point set of the
graph G, and H ⊂ 2V . The elements of H can be consid-
ered as the building blocks of the communities. In the second
step one endows the set H with an appropriate d distance
function and thereby establishes a metric spaceM = (H, d).
Then a chosen clustering algorithm is executed onM, yield-
ing a set of clusters C. Finally, the arising clusters are associ-
ated to the subsets of V such that Ki = ∪H∈Ci∈CH, where
Ki, the ith community corresponds to Ci, the ith cluster
and Ki is just the union of those hyperedges that belong to
Ci.

In the case of the mentioned algorithms H consist of vertex
sets of the small dense subgraph, k-cliques and the edges,
respectively. The distance functions are represented by an
appropriate graph D, take the value one if there is an edge,
infinity otherwise. In the first case (Ki,Kj) ∈ D if |Ki∩Kj |
is big enough, in the second if |Ki ∩Kj | = k − 1, while we
left this as a parameter in the third case.

3. EVALUATION
Since more or less all community (or cluster) definitions are
arbitrary [18], there are several ideas to measure their good-
ness. This is a crucial point and naturally the viewpoint of
researches differ. There are direct and indirect methods to
assess the usefulness of communities, the following list is far
from being complete.

3.1 Appearance, parametrization
First of all, one has to run the algorithms, get the out-
puts and possible make mathematical predictions for certain

1This means millions of vertices. The N++ available in the
Sixtep software, while the Clique percolation in the CFinder.

graph classes. That is an important factor is the speed of
these algorithms. However, it is not easy to compare the
real speed of these algorithms since it depends strongly on
the implementations and test graphs (being real or theo-
retical). Definitely all three algorithms, and perhaps most
algorithms in that family we described in subsection 2.4 are
fast, and designed to solve huge problems. In subsection 3.4
we recur to this problem, and report some date on time and
a goodness measure (modularity) of the solutions.

The clique percolation method is appealing from both theo-
retical and practical view. For Erdős-Rényi random graphs
the clique percolation process is thoroughly studied and well
understood, [6]. It was reported to be useful also in practice,
[1]. However, it sometimes gives too large communities and
the parametrization is elusive, since one has to decide for
which value k to be chosen?

The N++ algorithm looks arbitrary, and do not yield for the-
oretical investigations. Its main advantages are the speed,
the small diameter of the communities and its robustness.
The edge clustering methods are not well studied or tested
in practice. Their inherent problem is that communities de-
rived this way may have only one common element, what is
too restrictive in real graphs.

We tested on these algorithms on some benchmark graphs,
let us illustrate our findings on the famous Zachary graph,
see [26]. This is a friendship graph of a karate club that
split into two parts, A and B. Part A is centered around
their Japanese master, while part B is led by the club ad-
ministrator. The the clique percolation method gives three
communities for k = 3 with sizes 3, 6 and 24. For k = 4
there are also three communities, the sizes are 4, 4 and 7,
while for k = 5 there is one community of size six. Here
a blend of k = 3 and k = 4 seems to be appropriate, and
the communities are on the two sides of border where the
split occurred. The N++ algorithm results in twelve com-
munities, four of size three, five of size four, one of size six,
and two of size seven. All but one communities are entirely
either in A or in B. One might argue that the club was
always one the verge of demise that happened at the end.

3.2 Graphical.
Another way is to compare the communities with some vi-
sualized form of the graph; this was the most common ap-
proach in the early publications. Indeed, the clustering
methods provide classes that conform the eye. Assessing
communities (permitting overlapping) are harder, since vi-
sualization is not an obvious task anymore. Some ideas,
like showing the intersection graph of communities can help.
However, this approach has certain limits; it works only for
small graphs and it is always subjective.2

Another possibility is to draw some derived graphs. Among
these the intersection graphH of the communities performed
best. Here the vertices are the communities of G, and an
edge is drawn if the communities associated to the vertices

2For graph visualization the so-called force directed algo-
rithms performed best. However, these usually take O(n2)
time that prohibit the use when n is several thousand or
million.



has a non-empty overlap. That is I(G) = (V (H), E(H)),
where V (H) = K and (Ci, Cj) ∈ E(H) if |Ci ∩ Cj | > 0.

Again, for the Zachary graph the clique percolation method
gives an unconnected graph H. The intersection graph H
based on the N++ algorithm is more delicate. It consist
of two dense subgraph with one common vertex x. A four
element community corresponds to vertex x, and this com-
munity contains the master (1), the administrator (33) and
the vertices labeled by 3 and 9. The community was almost
a clique, except that the master and the administrator were
not friends. When the split occurred, 3 and 9 ended up in
different parts destroying completely the only community
that connected the two parts. One might speculate that the
friendship of 3 and 9 was responsible for the cohesion of the
club, and when it could not take more pressure they took
parts which meant the end of the club, too.

3.3 Random Small World Graphs
There are several ways to generate random graphs having
similar properties that of real Small World graphs, [2, 8].
From those we tried out the Preferential Attachment (PA)
and the Vertex Copy (VC) models. In both of these mod-
els the graph is build step by step, while the neighborhood
of the newly arrived vertex x is chosen differently. In the
PA model the new vertex x brings k new edges, and the
other end of these edges are at an old vertex y with prob-
ability proportional to d(y) and taken independently from
each other. In the VC model an old vertex s is selected uni-
formly, and the new vertex x takes vertices independently
from N(s) with a prescribed probability p.

The results are far from being conclusive, and indeed tell
more about the models (PA and VC) than the community
algorithms (CPC, N++). Note, that a different approach,
using random intersection graphs, is investigated in [24].3

Here we illustrate it on two sets of graphs that approxi-
mately belong to the same category. For all these the num-
ber of vertices is 100, G1 and H1 were generated by the PA
model, |E(G1)| = 192, |E(H1)| = 358 while G2 and H2 come
from the VC model with |E(G2)| = 151 and |E(H2)| = 378.
The #C and #CO mean the number of clusters and com-
munities, while the column with head k contains the number
of communities of size k. At the case of CPM the column k
refers to the parameter of the algorithm instead, that is the
algorithm was run for k = 3, 4, . . . The number of clusters
were determined by a modularity maximization algorithm
(a version of Newman), see the next subsection.

Graph and
Method

#C #CO 3 4 5 6 7 > 7

G1 / CPM 10 7 7

G1 / N++ 10 9 5 0 0 2 1 1
G2 / CPM 9 17 13 4

G2 / N++ 9 22 8 7 2 4 1 0

H1 / CPM 6 10 7 3

H1 / N++ 6 37 5 2 3 9 7 12
H2 / CPM 6 24 4 8 6 6

H2 / N++ 6 26 8 3 2 5 1 7

3For intersection graphs the CPM gives too large commu-
nities sometimes. A possible remedy is to fix the diameter,
like in N++.

3.4 Modularity.
The Newman modularity [20] is the following function of a
graph G and its partition:

Q =
1

2m

∑
ij

[
Aij −

kikj

2m

]
δ(ci, cj),

where m = |E(G)|, Aij is the adjacency matrix of G, ki is
the degree, ci is the cluster of the ith vertex, and δ(ci, cj)
is the Kronecker symbol. The clustering algorithms may be
based on some mathematical/physical heuristics like edge-
betweenness (EB), eigenvectors (EV), label propagation (LP),
spin glass (SG), walk trap (WT), or try to maximize the
modularity function itself on the set of all partitions with a
greedy algorithm (Gr). The formula can be generalized to
communities [19]. One write sij instead of δ(ci, cj), where
sij is an arbitrary similarity measure between vertices i and
j. (In [19] the ui is a probability distribution of i over the
communities, and sij = 〈ui, uj〉, but it could be ‖ui − uj‖
form any norm.) On the other hand, it is possible to get
communities by maximizing the modularity function. The
findings of [16] show the cluster and community structure
cannot be measured on the same scale, some additional
weighting must be introduced to solve this. The algorithms
were tested for some graphs, we illustrate the results on the
already mentioned Zachary graph. The clusterings are fol-
lowed the Clique Percolation (CPM) with clique sizes k = 3
and k = 4, and N++ with its default parameters. The run-
ning time is in seconds, #C stands for the number of clusters
or communities, whatever it applies.

Method Modularity Running
time

#C

EB 0.4013 0.0100 5
EV 0.3727 0.0000 3
Gr 0.3807 0.0000 3
LP 0.4020 0.0000 3
SP 0.4063 1.1500 6
WT 0.4198 0.0000 4
CPM 3 0.2438 0.012 3
CPM 4 0.2557 3

N++ 0.1947 0.6690 12

One can evaluate cluster/community algorithms in indirect
ways. That is by taking a problem in which the communi-
ties might have predictive value, and check the usefulness
of these. We have observed dependencies among functions
in some social graphs (telecommunication, friendship, Eras-
mus contracts etc.), and practically all methods provided
useful hints. However, here the use of communities greatly
outperforms the methods which use only clusters.

3.5 Refinements, time and orders.
One can conduct similar studies like the graphical method if
have some functions that are defined on the vertices or the
edges. Again, we have seen some highly subjective but still
robust phenomena that might deserve to be mentioned.

First of all, the clusters are usually much bigger than the
communities, and their number is less.



The number of communities might follow power law, al-
though even to test this is impossible.

The communities are usually within the clusters, and give a
fine structure of those larger classes. However, the reverse
direction is also detected, the clusters might give informa-
tion on communities. To be more precise, the most interest-
ing communities are those ones in which elements belong to
several clusters.

In social graphs we confirmed the role of the weak links
described in [14], and also tested the different algorithms.
The communities given by N++ are containing strong edges
almost exclusively, while most of the weak edges are among
communities. On the other type of small world graphs, the
so-called technical graphs4 there are no such effects. We
used data from [17]. (The CPM does not give good results
with any k, perhaps its performance is too sensitive to the
measurement errors, missing data.)

The social graphs might have natural vertex attribute, the
time when a vertex has been joined to the net. This or-
der may not be manifested in the clusters if one considers
the whole graph, but shows remarkable coincidence when re-
stricting the graph to the neighborhood of a fixed vertex. In
that case the clusters usually can be interpreted with some
interval of time or spatial restrain. Note, that communities
may cross the borders of clusters.

3.6 Weights.
Dealing with weighted graphs is difficult. It turns out that
for the indirect methods the numerical results are more reli-
able. While all these methods can be extended to weighted
graphs, the performance of them is little known [7].

In the rest we outline a model which is an example for indi-
rect evaluation. The infection models are central in applica-
tions of real graphs [4], but to build appropriate ones is far
from being trivial. The main points are (i) which model to
choose, (ii) what are the significant variables and (iii) how
to decide the values of the parameters. Our investigations
concentrated on two problems in corporate banking, default
(failing in paying debt) [9] and delay (in paying debt) [10].
We have to stress, although the two problems look simi-
lar, there are subtle differences. The main similarity is that
these processes can be considered as some kind of “infec-
tious disease.” However, one has to be careful since financial
difficulties may come from intrinsic reasons. (The rise or
fall of the economic might be accounted by taking a ficti-
tious node.) So the task is to devise a methodology that,
given the a priori probabilities of some problem (say the
default), estimates the a posteriori probabilities. The differ-
ence of these probabilities is recognized as network effect in
the certain problem. The characteristics of the problem (e.
g. no recovery, the probability of transmission is not con-
stant) exclude the SIR or SIS models that play central role
in Epidemiology. The best suited model is the Independent
Cascade.

4In social graphs the presence of edges (x, y) and (x, z) in-
creases the conditional probability of the the edge (y, z),
while in the technical graphs this probability is decreased in
that case.

3.7 Independent Cascade Model (IC)
This model is due to Domingos and Richardson [12], but an
equivalent is in [15]. Here an edge weighted graph G is given,
where to the edge (v, w) a probability pv,w is associated. The
process of infection goes as follows. In the 1st step the set
of infected vertices F1 considered active, that is F1 = A1.
In general for a vertex w ∈ V (G) ⊂ Fi−1 gets infected with
probability p =

∏
v∈Ai−1

pv,w, and in that case w ∈ Fi.

Note that the infected vertices may transmit the disease
only in the very next step, that is Ai = Fi \ Fi−1. If for
an i Fi = Fi−1, then the process halts.

3.8 Weighting and optimization.
First of all, one has to modify the IC model for effective
use. Since the probabilities are assesses by simulation, it
is natural to subject the a priori infection to this, too [9].
While the modified IC model provides extreme flexibility
for modeling complex system, it is also very difficult to find
appropriate transmission probabilities, or even an measure
that tells from the better from the worse. The weights are
assigned by a standard AI method, making a training set
and a test set on the past data. A possible solution for the
measurement is the use of the gain curve.

The vertices of the graph are ordered monotone decreasing
way by their infection computed on the training set. Let
w1, . . . , wn be the values of the same vertices given in the
test set. Then the function gain(x) =

∑
i≤x wi/

∑n
i=1 wi;

and
∫ n

x=1
gain(x)dx should be maximized.

An estimation for an edge probability pv,w is based on the
vertex and edge attributes that are available in the data.
To maximize the performance measured by the gain func-
tion, a systematic search was done to try out the possible
combinations of the reasonable functions of the considered
variables. This included linear, quadratic, logarithm, expo-
nential and sigmoid functions. The final aggregation of these
transformed values was also treated this way. To find the
best parameters of this function, a grid search was used.

3.9 Results.
Here we single out only one experiment out of several ones.
A thorough study was executed on the data of one of the
largest Hungarian bank (OTP), and the findings published
in [10]. Here the estimation of default probabilities of certain
clients (small and middle enterprise sector) was the goal.
The OTP Bank Corporate transaction database was used,
where the graph building period was from August 2008 to
April 2009 (6 months) and the infection period was from
February 2009 to April 2009 (the last 3 months from it).
For default event observation two periods were chosen: a
longer one from May 2009 to April 2010 (12 months), and a
shorter one from May 2009 to April 2010 (3 months).

I. It turned out that shorter periods (3 month) gave better
models than those were based on longer periods.

II. The direction of the edges counts, it should be taken as
buyer - provider, i. e. if x sends money and y receives it
than (x, y).5

5There is some effect even when the edges are taken indi-



III. The variables and findings worth considering follow.

(i) Community information. (If the edge belongs to a com-
munity?)

(ii) The edge (x, y) inherits the variables of x (but not y).

(iii) Relative traffic, that is the transfer of the edge divided
by the sum of all incoming transfer.

(iv) The age of the client. (How old is the company?)

(v) Behavioral types. (queuing on the account, overdraft
etc.)

Even though, the most significant variables are the ones
listed in (i) and (iii).

Based on this, we found an expected 3-4 to even 10-12 times
lift in the different segments [10]. The fact that a vertex
x is in a same community with an infected increases the
chance of x’s infection by a factor three. Note that there
were similar findings in [9] on different data. However, in
[9] the parameter values for the IC based model were set
by using trial and error, while in [10] a more sophisticated
search was done. The computations were carried out by the
use of Sixtep software.
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T. Tóth. Parameter optimization of infection models.
In (CS)2 - Conference of PhD Students in Computer
Science, June 2010.

[11] L. Csizmadia. Recognizing communities in social
graphs. MSc thesis, University of Szeged, Hungary,
2003.

[12] P. Domingos and M. Richardson. Mining the network
value of costumers. In 7th Intl. Conf. on Knowledge
Discovery and Data Mining, pages 57–66. ACM,
August 2010.

[13] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3-5):75–174, February 2010.

[14] M. Granovetter. The strength of weak ties. American
Journal of Sociology, 78(6):1360–1380, May 1973.

[15] M. Granovetter. Threshold models of collective
behavior. American Journal of Sociology,
83(6):1420–1443, May 1978.

[16] E. Griechisch. Comparison of clustering and
community detection algorithms, the extension of the
modularity. In (CS)2 - Conference of PhD Students in
Computer Science, June 2010.

[17] C. A. Hidalgo, B. Klinger, A. L. Barabási, and
R. Hausmann. The product space conditions the
development of nations. Science, 317(5837):482–487,
July 2007.

[18] J. Kleinberg. An impossibility theorem for clustering.
In Advances in Neural Information Processing Systems
(NIPS) 15, 2002.
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