GREEDY COLORINGS OF UNIFORM HYPERGRAPHS
ANDRAS PLUHAR

ABSTRACT. We give a very short proof of an Erdds conjecture that the number of
edges in a non-2-colorable n-uniform hypergraph is at least f(n)2", where f(n) goes
to infinity. Originally it was solved by J6zsef Beck in 1977, showing that f(n) at least
clogn. With an ingenious recoloring idea he later proved that f(n) > en!/3+o(),
Here we prove a weaker bound on f(n), namely f(n) > en'/4. Instead of recoloring a
random coloring, we take the ground set in random order and use a greedy algorithm
to color. The same technique works for getting bounds on k-colorability. It is also
possible to combine this idea with the Lovész Local Lemma, reproving some known
results for sparse hypergraphs (e.g., the n-uniform, n-regular hypergraphs are 2-
colorable if n > 8).

1. INTRODUCTION

We use the notation of [2] and partly those of [8]. A hypergraph (V,E) is k-
colorable if V' can be colored by using at most k colors such that no edge A € F
is monochromatic. Let my(n) denote the minimum possible number of edges of an
n-uniform hypergraph that is non-k-colorable. We suppress the lower index for k = 2,
that is m(n) = ma(n). We list some of the significant results concerning the values
of my(n) and other colorability issues as follows.

Erdés proved lower and upper bounds on m(n), namely 2"~' < m(n) < cn?2" in
[5] and in [6], respectively. While the upper bound is still the best known, the lower
bound on m(n) was improved in a sequence of papers. Note that all subsequent works
start with his idea, that is coloring the vertices randomly and independently of each
other.

First Schmidt showed (1 —2/n)2" < m(n) (see [11]), then Beck came up with
the idea of recoloring of a random coloring, and he proved the bounds clogn2™ <
m(n) and n/3t°M2n < m(n) [3, 4], respectively. The proof of the latter bound was
simplified by Spencer in [12].

Twenty years later Radhakrishnan and Srinivasan modified the recoloring idea of
Beck, and showed 0.74/n/Inn2" < m(n) [10]. In the same paper it was shown that a

hypergraph is 2-colorable if every edge meets at most 0.174/n/Inn2™ other edges. It
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is also worth noting that Erdés and Lovész guessed [7] that m(n) is perhaps around
n2".

The n-uniform, n-regular hypergraph is an interesting special case. The 2-colorability
easily follows from the Lovasz Local Lemma for n > 9, (see e.g., in [2]), for n = 8
it was proven by Alon and Bregman in [1], and finally Thomassen [13] showed it for
n > 4.

Kostochka obtained the following lower bound on my(n) in [8]. For every k € N,
let e(k) = exp{—4k*} and r = |log, k|. Then for every n > exp{2¢ 2}, my(n) >
e(k)k™(n/Inn)/r+1),

In this paper we use a different probability space which admits easier proof, though
it gives weaker bounds. The main idea is to use greedy colorings on a random order
of the vertices. Note that Radhakrisnan and Srinivasan [10] also used random vertex
orderings after an initial random coloring. To generate a random order we let each
vertex u pick a random real z,, uniformly and independently of each other from [0, 1],
and order the vertices according to these values. Equivalently, one can take a uni-
formly selected random element among the permutations of the vertex set, although
the first form is better suited for the proof of Theorem 4.

In the next section we give a simple proof for the statement m(n) > ¢1/n2".
The analysis of a random greedy algorithm also yields my(n) > czk‘_ln% 2", The
constructions lead to a “characterization” of k-colorable hypergraphs which might be
of interest by its own. We conclude the paper by a new proof for the 2-colorability
of n-uniform, n-regular hypergraphs for n > 8.

2. RESuLTS

2.1. 2-coloring. We define a random greedy coloring of a hypergraph H = (V, E) as
follows. Let o be a uniformly picked random order of V. At the beginning all vertices
are blue. In the i*! step we recolor the vertex o(i) to red if o(i) is the first element
of an A € F according to the order o.

Clearly, there are no completely blue edges in E at the end of the procedure. Let
the number of completely red edges be X.

Claim 1. EX < 2y/me!/"n=22-2"E|(|E| — 1).

Proof of Claim 1. We say that A € E precedes B € FE if the last vertex of A
becomes red because it was the first element of B. If X4 p is the indicator variable
of the event A precedes B then X = ) X4 p, where the summation runs over all
ordered pairs of E. Hence

EX = ZEXA’B = ZPr(A precedes B) = Z M _ Z 2(n!)?

(2n —1)! n(2n)!’
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since A may precede B iff AN B = {z} and x is the last element of A and the
first element of B. Let us use the Stirling formula, i.e., n! = v/2wn(n/e)"e*, where
1/(12n + 1) < A, < 1/(12n).

2 2 n—A2n
< B8 - 2Ty < o e 0t 18] - 1),
n

since 62)‘”_>‘2" < el/(6n) O

Corollary 1. m(n) > ?W’%e’ﬁ Vn2™. That is m(n) > 0.5268/n2"™, for n > 3.

' >

Proof. Just plug in |E| = %27~ /4e~1/(120) &/nam into the formula of Claim 1. It gives
EX < 1, which means that there exists a good 2-coloring of (V, E). O

2.2. k-coloring. It is possible to get k-colorings by greedy algorithms for arbitrary
k € N. Here greedy means that we color all the vertices with color 1, and in the 7*®
step we recolor the vertex (i) if o (i) is a first element of an A € E according to the
order o. To recolor o(i) we use the smallest possible color that does not result in a
monochromatic edge, otherwise we use the color k.

For an order o of V, let {A;} | be an ordered k-chain if |A;NA; 1] =1, AinA; =0
for i —j| > 1and o7 (z) < o l(y) forall x € A; and y € Ajyq, i =1,...,k— 1.
If we have a fixed order o, let f(A) and ¢(A) be the first and the last vertices of an
edge A, respectively.

Lemma 2. The hypergraph (V, E) is k-colorable if and only if there is an order o of
V' containing no ordered k-chains. Moreover the greedy algorithm on (V, E) in this
case provides a good k-coloring.

Proof. For the “if” part let us color the vertices of V' by the greedy algorithm in order
o. By the setup of the greedy algorithm, if there is a monochromatic edge A, € F
then its color can only be k. Now ¢(Aj_1) gets the color k since there is an edge,
let us call it Ay, such that ¢(Ax_1) = f(Ag). Similarly, f(Ax_1) is colored k, since
there is an edge Aj_o such that ((Ag_2) = f(Ax_1), and all vertices of Ay_o \ Ar_1
are colored k — 1. Taking f(Ax_2), we can get an Ay_3 € E such that all vertices of
Ag_3\ Ag_o are colored k — 2. By induction there is an A; € F such that all vertices
of A; \ Ajy1 are colored i + 1 if i > 1. But then {A;}%_ | is an ordered k-chain. The
“only if” is trivial, given a good k-coloring let o be an order induced by the colors,
breaking the ties arbitrarily. 0

Claim 2. Let X be the number of k-chains in a random order of the n-uniform
hypergraph (V, E), and s =n —1> 0. Then

k ~
EX < |E|* exp {E + 1} (27s) " okt g1,
S
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Proof of Claim 2. The proof is almost the same as that of Claim 1. Let I be the
set of ordered k-tuples of A. For any H € K,

Pr(H isa k — chain) < {(n = 1)1P{(n —2)1}*2 _ slk

{(n—1)k+ 1}! (sk +1)lsk—2"

Using the Stirling formula, with the bounds e** < e#/(125) 1 < ersht1 we get

k 1
EX < ]E|kexp{ﬁ + 1}(27rs)k7k_8k_13k_1.
s

Corollary 3. If |E| < (zﬁe)il/%%kﬂ then (V, E) is k-colorable. That is
my(n) > (\/Rk)*lnl/%l/(%)kn.

Proof of Corollary 3. If |E| < (2me)"/2s'% k* then there is an order o of V
such that (V, H) has no k-chain by Claim 2. Moreover (y/4mek) tnt/2-1/CkEn <
(2me) /25" k*, and then (V, E) is k-colorable by Lemma 2. O

Remarks. One can consider Lemma 2 from yet another point of view. Given a
hypergraph (V) E) and a fixed order o on its vertices, one may construct a directed
graph G, = (V(G,),E(G,)). Let v € V(G,) iff v = f(A) or v = {(A) for some
A€ FE, and (u,v) € E(G,) iff there is an A € A such that u = f(A) and v = ((A).
Obviously if for an order ¢ the graph G, has a good k-coloring then (V, E) is also
k-colorable, and if (V| F) is k-colorable, then there exists an order ¢ such that G, is
k-colorable. The non trivial part of Lemma 2 says that G, has a good k-coloring if
it has no directed paths of length k. This is nothing else but a special case of an old
result attributed to T. Gallai and B. Roy, that says if a directed graph G contains no
paths of length k, then G is k-colorable, see chapter 9., problem 9 in [9].

2.3. Sparse hypergraphs. If a hypergraph (V| F) is sparse, that is each edge meets
at most D other edges, then a good 2-coloring exists if D < 0.174/n/Inn2™ and n is
big enough [10]. The direct use of the random orders and the Lovasz Local Lemma
gives

Theorem 4. Let H = (V, E) be an n-uniform hypergraph in which each edge meets
at most D other edges. If 2e(2D*— D)((n—1)1)?/(2n—1)! < 1, then H is 2-colorable.

Before the proof let us recall the Lovéasz Local Lemma. To spell it out we need
a definition. If Ay, ..., A, are events of a probability space, then a dependence graph
G = (V, E) of these events is a graph having the following properties: V = {1,...,n},
and each event A; is mutually independent of the events {A4; : (i,5) € E}. Let
degq(v) be a degree of a vertex v in G. For details see [2] and [7].
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Lemma 5. (Lovdsz Local Lemma) [7] Let Ay, ..., A, be events of a probability space,
and G be a dependence graph of these events. If Pr(A;) < p and degg(A;) < d for
all1 <i<mn, and ep(d+ 1) < 1, then Pr(N_,A4;) > 0.

Proof of Theorem 4. Let us consider the uniform random orders of V. For A, B € E
let A4 be the bad event that either A precedes B or B precedes A. Clearly, the event
A 4p is mutually independent of all the other events Aggs when (AUB)N(RUS) = 0.
One checks that the number of intersecting unordered pairs (R, S) # (A, B) that also
intersects AU B is not more than 2D? — D — 1. Now the Lovész Local Lemma implies,
there is an order o containing no 2-chain, if

ePr(Aap)(2D* — D) = 2¢(2D* — D)((n — 1))?/(2n — 1)! < 1.
This inequality holds by assumption, so H is 2-colorable by Lemma 2. 0

Remark. A quick asymptotic of Theorem 4 gives that such hypergraphs are 2-
colorable if D < 0.23/n2". This result is asymptotically weaker than the former
0.174/n/Inn2" bound, but Theorem 4 has better constants and works for all n > 1.
It already implies the known results of the values for which an n-uniform, n-regular
hypergraph is 2-colorable. Note that this follows from the Lovész Local Lemma easily
if n > 9, while for the case n = 8, see the paper of Alon and Bregman, [1].

Corollary 6. FEvery n-uniform, n-regular hypergraph is 2-colorable, for n > 8.

Proof of Corollary 6. First we show a sharp bound on A,, the number of inter-
secting unordered pairs (R, S) # (A, B) that also intersects AU B. Observe that the
number of pairs intersecting with the fixed (A, B) is maximum when (V| F) is almost
disjoint, i.e., for every R, S € E we have |[RN S| < 1if R# S.

From the n-regularity we have

An§2(n—1)4—|—2(n—1)(n;1) +(”;2>+2(n—2).

Following the proof of Theorem 4, the Lovasz Local Lemma implies that if
f(n) :=2e(A, + D)((n—1)NH?/(2n — 1) < 1,

then an n-uniform, n-regular hypergraph (V, E) is 2-colorable. Since f(8) < 0.604,
Corollary 6 follows. O
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