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Abstract. We give a very short proof of an Erdős conjecture that the number of
edges in a non-2-colorable n-uniform hypergraph is at least f(n)2n, where f(n) goes
to infinity. Originally it was solved by József Beck in 1977, showing that f(n) at least
c log n. With an ingenious recoloring idea he later proved that f(n) ≥ cn1/3+o(1).
Here we prove a weaker bound on f(n), namely f(n) ≥ cn1/4. Instead of recoloring a
random coloring, we take the ground set in random order and use a greedy algorithm
to color. The same technique works for getting bounds on k-colorability. It is also
possible to combine this idea with the Lovász Local Lemma, reproving some known
results for sparse hypergraphs (e.g., the n-uniform, n-regular hypergraphs are 2-
colorable if n ≥ 8).

1. Introduction

We use the notation of [2] and partly those of [8]. A hypergraph (V,E) is k-
colorable if V can be colored by using at most k colors such that no edge A ∈ E
is monochromatic. Let mk(n) denote the minimum possible number of edges of an
n-uniform hypergraph that is non-k-colorable. We suppress the lower index for k = 2,
that is m(n) = m2(n). We list some of the significant results concerning the values
of mk(n) and other colorability issues as follows.

Erdős proved lower and upper bounds on m(n), namely 2n−1 ≤ m(n) ≤ cn22n in
[5] and in [6], respectively. While the upper bound is still the best known, the lower
bound on m(n) was improved in a sequence of papers. Note that all subsequent works
start with his idea, that is coloring the vertices randomly and independently of each
other.

First Schmidt showed (1 − 2/n)2n < m(n) (see [11]), then Beck came up with
the idea of recoloring of a random coloring, and he proved the bounds c log n2n <
m(n) and n1/3+o(1)2n < m(n) [3, 4], respectively. The proof of the latter bound was
simplified by Spencer in [12].

Twenty years later Radhakrishnan and Srinivasan modified the recoloring idea of
Beck, and showed 0.7

√
n/ lnn2n < m(n) [10]. In the same paper it was shown that a

hypergraph is 2-colorable if every edge meets at most 0.17
√
n/ lnn2n other edges. It
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is also worth noting that Erdős and Lovász guessed [7] that m(n) is perhaps around
n2n.

The n-uniform, n-regular hypergraph is an interesting special case. The 2-colorability
easily follows from the Lovász Local Lemma for n ≥ 9, (see e.g., in [2]), for n = 8
it was proven by Alon and Bregman in [1], and finally Thomassen [13] showed it for
n ≥ 4.

Kostochka obtained the following lower bound on mk(n) in [8]. For every k ∈ N,
let ε(k) = exp{−4k2} and r = blog2 kc. Then for every n > exp{2ε−2}, mk(n) ≥
ε(k)kn(n/ lnn)r/(r+1).

In this paper we use a different probability space which admits easier proof, though
it gives weaker bounds. The main idea is to use greedy colorings on a random order
of the vertices. Note that Radhakrisnan and Srinivasan [10] also used random vertex
orderings after an initial random coloring. To generate a random order we let each
vertex u pick a random real xu uniformly and independently of each other from [0, 1],
and order the vertices according to these values. Equivalently, one can take a uni-
formly selected random element among the permutations of the vertex set, although
the first form is better suited for the proof of Theorem 4.

In the next section we give a simple proof for the statement m(n) > c1 4
√
n2n.

The analysis of a random greedy algorithm also yields mk(n) > c2k
−1n

k−1
2k 2n. The

constructions lead to a “characterization” of k-colorable hypergraphs which might be
of interest by its own. We conclude the paper by a new proof for the 2-colorability
of n-uniform, n-regular hypergraphs for n ≥ 8.

2. Results

2.1. 2-coloring. We define a random greedy coloring of a hypergraph H = (V,E) as
follows. Let σ be a uniformly picked random order of V . At the beginning all vertices
are blue. In the ith step we recolor the vertex σ(i) to red if σ(i) is the first element
of an A ∈ E according to the order σ.

Clearly, there are no completely blue edges in E at the end of the procedure. Let
the number of completely red edges be X.

Claim 1. EX < 2
√
πe1/(6n)n−

1
2 2−2n|E|(|E| − 1).

Proof of Claim 1. We say that A ∈ E precedes B ∈ E if the last vertex of A
becomes red because it was the first element of B. If XA,B is the indicator variable
of the event A precedes B then X =

∑
XA,B, where the summation runs over all

ordered pairs of E. Hence

EX =
∑

EXA,B =
∑

Pr(A precedes B) =
∑ ((n− 1)!)2

(2n− 1)!
=
∑ 2(n!)2

n(2n)!
,
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since A may precede B iff A ∩ B = {x} and x is the last element of A and the
first element of B. Let us use the Stirling formula, i.e., n! =

√
2πn(n/e)neλn , where

1/(12n+ 1) < λn < 1/(12n).

EX =
∑ 2(n!)2

n(2n)!
≤ |E||E − 1|2

√
πe2λn−λ2n

√
n

2−2n ≤ 2
√
πe1/(6n)n−

1
2 2−2n|E|(|E| − 1),

since e2λn−λ2n < e1/(6n). �

Corollary 1. m(n) >
√

2
2
π−

1
4 e−

1
12n 4
√
n2n. That is m(n) > 0.5268 4

√
n2n, for n ≥ 3.

Proof. Just plug in |E| =
√

2
2
π−1/4e−1/(12n) 4

√
n2n into the formula of Claim 1. It gives

EX < 1, which means that there exists a good 2-coloring of (V,E). �

2.2. k-coloring. It is possible to get k-colorings by greedy algorithms for arbitrary
k ∈ N. Here greedy means that we color all the vertices with color 1, and in the ith

step we recolor the vertex σ(i) if σ(i) is a first element of an A ∈ E according to the
order σ. To recolor σ(i) we use the smallest possible color that does not result in a
monochromatic edge, otherwise we use the color k.

For an order σ of V , let {Ai}ki=1 be an ordered k-chain if |Ai∩Ai+1| = 1, Ai∩Aj = ∅
for |i − j| > 1 and σ−1(x) ≤ σ−1(y) for all x ∈ Ai and y ∈ Ai+1, i = 1, . . . , k − 1.
If we have a fixed order σ, let f(A) and `(A) be the first and the last vertices of an
edge A, respectively.

Lemma 2. The hypergraph (V,E) is k-colorable if and only if there is an order σ of
V containing no ordered k-chains. Moreover the greedy algorithm on (V,E) in this
case provides a good k-coloring.

Proof. For the “if” part let us color the vertices of V by the greedy algorithm in order
σ. By the setup of the greedy algorithm, if there is a monochromatic edge Ak−1 ∈ E
then its color can only be k. Now `(Ak−1) gets the color k since there is an edge,
let us call it Ak, such that `(Ak−1) = f(Ak). Similarly, f(Ak−1) is colored k, since
there is an edge Ak−2 such that `(Ak−2) = f(Ak−1), and all vertices of Ak−2 \ Ak−1

are colored k − 1. Taking f(Ak−2), we can get an Ak−3 ∈ E such that all vertices of
Ak−3 \Ak−2 are colored k− 2. By induction there is an Ai ∈ E such that all vertices
of Ai \ Ai+1 are colored i + 1 if i ≥ 1. But then {Ai}ki=1 is an ordered k-chain. The
“only if” is trivial, given a good k-coloring let σ be an order induced by the colors,
breaking the ties arbitrarily. �

Claim 2. Let X be the number of k-chains in a random order of the n-uniform
hypergraph (V,E), and s = n− 1 > 0. Then

EX < |E|k exp

{
k

12s
+ 1

}
(2πs)

k−1
2 k−sk−1sk−1.
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Proof of Claim 2. The proof is almost the same as that of Claim 1. Let K be the
set of ordered k-tuples of A. For any H ∈ K,

Pr(H is a k − chain) ≤ {(n− 1)!}2{(n− 2)!}k−2

{(n− 1)k + 1}!
=

s!k

(sk + 1)!sk−2
.

Using the Stirling formula, with the bounds eλsk < ek/(12s), 1 < eλsk+1 we get

EX < |E|k exp{ k

12s
+ 1}(2πs)

k−1
2 k−sk−1sk−1.

�

Corollary 3. If |E| ≤ (2πe)−1/2s
k−1
2k ks, then (V,E) is k-colorable. That is

mk(n) > (
√

4πek)−1n1/2−1/(2k)kn.

Proof of Corollary 3. If |E| ≤ (2πe)−1/2s
k−1
2k ks then there is an order σ of V

such that (V,H) has no k-chain by Claim 2. Moreover (
√

4πek)−1n1/2−1/(2k)kn <

(2πe)−1/2s
k−1
2k ks, and then (V,E) is k-colorable by Lemma 2. �

Remarks. One can consider Lemma 2 from yet another point of view. Given a
hypergraph (V,E) and a fixed order σ on its vertices, one may construct a directed
graph Gσ = (V (Gσ), E(Gσ)). Let v ∈ V (Gσ) iff v = f(A) or v = `(A) for some
A ∈ E, and (u, v) ∈ E(Gσ) iff there is an A ∈ A such that u = f(A) and v = `(A).
Obviously if for an order σ the graph Gσ has a good k-coloring then (V,E) is also
k-colorable, and if (V,E) is k-colorable, then there exists an order σ such that Gσ is
k-colorable. The non trivial part of Lemma 2 says that Gσ has a good k-coloring if
it has no directed paths of length k. This is nothing else but a special case of an old
result attributed to T. Gallai and B. Roy, that says if a directed graph G contains no
paths of length k, then G is k-colorable, see chapter 9., problem 9 in [9].

2.3. Sparse hypergraphs. If a hypergraph (V,E) is sparse, that is each edge meets

at most D other edges, then a good 2-coloring exists if D ≤ 0.17
√
n/ lnn2n and n is

big enough [10]. The direct use of the random orders and the Lovász Local Lemma
gives

Theorem 4. Let H = (V,E) be an n-uniform hypergraph in which each edge meets
at most D other edges. If 2e(2D2−D)((n−1)!)2/(2n−1)! ≤ 1, then H is 2-colorable.

Before the proof let us recall the Lovász Local Lemma. To spell it out we need
a definition. If A1, ..., An are events of a probability space, then a dependence graph
G = (V,E) of these events is a graph having the following properties: V = {1, ..., n},
and each event Ai is mutually independent of the events {Aj : (i, j) 6∈ E}. Let
degG(v) be a degree of a vertex v in G. For details see [2] and [7].
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Lemma 5. (Lovász Local Lemma) [7] Let A1, ..., An be events of a probability space,
and G be a dependence graph of these events. If Pr(Ai) ≤ p and degG(Ai) ≤ d for
all 1 ≤ i ≤ n, and ep(d+ 1) ≤ 1, then Pr(∩ni=1Ai) > 0.

Proof of Theorem 4. Let us consider the uniform random orders of V . For A,B ∈ E
let AAB be the bad event that either A precedes B or B precedes A. Clearly, the event
AAB is mutually independent of all the other events ARS when (A∪B)∩ (R∪S) = ∅.
One checks that the number of intersecting unordered pairs (R, S) 6= (A,B) that also
intersects A∪B is not more than 2D2−D−1. Now the Lovász Local Lemma implies,
there is an order σ containing no 2-chain, if

ePr(AAB)(2D2 −D) = 2e(2D2 −D)((n− 1)!)2/(2n− 1)! < 1.

This inequality holds by assumption, so H is 2-colorable by Lemma 2. �

Remark. A quick asymptotic of Theorem 4 gives that such hypergraphs are 2-
colorable if D < 0.23 4

√
n2n. This result is asymptotically weaker than the former

0.17
√
n/ lnn2n bound, but Theorem 4 has better constants and works for all n > 1.

It already implies the known results of the values for which an n-uniform, n-regular
hypergraph is 2-colorable. Note that this follows from the Lovász Local Lemma easily
if n ≥ 9, while for the case n = 8, see the paper of Alon and Bregman, [1].

Corollary 6. Every n-uniform, n-regular hypergraph is 2-colorable, for n ≥ 8.

Proof of Corollary 6. First we show a sharp bound on ∆n, the number of inter-
secting unordered pairs (R, S) 6= (A,B) that also intersects A∪B. Observe that the
number of pairs intersecting with the fixed (A,B) is maximum when (V,E) is almost
disjoint, i.e., for every R, S ∈ E we have |R ∩ S| ≤ 1 if R 6= S.

From the n-regularity we have

∆n ≤ 2(n− 1)4 + 2(n− 1)

(
n− 1

2

)
+

(
n− 2

2

)
+ 2(n− 2).

Following the proof of Theorem 4, the Lovász Local Lemma implies that if

f(n) := 2e(∆n + 1)((n− 1)!)2/(2n− 1)! < 1,

then an n-uniform, n-regular hypergraph (V,E) is 2-colorable. Since f(8) ≤ 0.604,
Corollary 6 follows. �
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