GREEDY COLORINGS OF UNIFORM HYPERGRAPHS

ANDRÁS PLUHÁR

ABSTRACT. We give a very short proof of an Erdős conjecture that the number of edges in a non-2-colorable *n*-uniform hypergraph is at least $f(n)2^n$, where f(n) goes to infinity. Originally it was solved by József Beck in 1977, showing that f(n) at least $c \log n$. With an ingenious recoloring idea he later proved that $f(n) \ge cn^{1/3+o(1)}$. Here we prove a weaker bound on f(n), namely $f(n) \ge cn^{1/4}$. Instead of recoloring a random coloring, we take the ground set in random order and use a greedy algorithm to color. The same technique works for getting bounds on k-colorability. It is also possible to combine this idea with the Lovász Local Lemma, reproving some known results for sparse hypergraphs (e.g., the *n*-uniform, *n*-regular hypergraphs are 2-colorable if $n \ge 8$).

1. INTRODUCTION

We use the notation of [2] and partly those of [8]. A hypergraph (V, E) is kcolorable if V can be colored by using at most k colors such that no edge $A \in E$ is monochromatic. Let $m_k(n)$ denote the minimum possible number of edges of an n-uniform hypergraph that is non-k-colorable. We suppress the lower index for k = 2, that is $m(n) = m_2(n)$. We list some of the significant results concerning the values of $m_k(n)$ and other colorability issues as follows.

Erdős proved lower and upper bounds on m(n), namely $2^{n-1} \leq m(n) \leq cn^2 2^n$ in [5] and in [6], respectively. While the upper bound is still the best known, the lower bound on m(n) was improved in a sequence of papers. Note that all subsequent works start with his idea, that is coloring the vertices randomly and independently of each other.

First Schmidt showed $(1 - 2/n)2^n < m(n)$ (see [11]), then Beck came up with the idea of *recoloring* of a random coloring, and he proved the bounds $c \log n2^n < m(n)$ and $n^{1/3+o(1)}2^n < m(n)$ [3, 4], respectively. The proof of the latter bound was simplified by Spencer in [12].

Twenty years later Radhakrishnan and Srinivasan modified the recoloring idea of Beck, and showed $0.7\sqrt{n/\ln n}2^n < m(n)$ [10]. In the same paper it was shown that a hypergraph is 2-colorable if every edge meets at most $0.17\sqrt{n/\ln n}2^n$ other edges. It

¹⁹⁹¹ Mathematics Subject Classification. 05C65, 05C15.

Key words and phrases. coloring, hypergraph, greedy algorithm, regular.

This research was partially supported by OTKA grant T049398.

PLUHÁR

is also worth noting that Erdős and Lovász guessed [7] that m(n) is perhaps around $n2^n$.

The *n*-uniform, *n*-regular hypergraph is an interesting special case. The 2-colorability easily follows from the Lovász Local Lemma for $n \ge 9$, (see e.g., in [2]), for n = 8 it was proven by Alon and Bregman in [1], and finally Thomassen [13] showed it for $n \ge 4$.

Kostochka obtained the following lower bound on $m_k(n)$ in [8]. For every $k \in \mathbb{N}$, let $\epsilon(k) = \exp\{-4k^2\}$ and $r = \lfloor \log_2 k \rfloor$. Then for every $n > \exp\{2\epsilon^{-2}\}, m_k(n) \ge \epsilon(k)k^n(n/\ln n)^{r/(r+1)}$.

In this paper we use a different probability space which admits easier proof, though it gives weaker bounds. The main idea is to use greedy colorings on a random order of the vertices. Note that Radhakrisnan and Srinivasan [10] also used random vertex orderings after an initial random coloring. To generate a random order we let each vertex u pick a random real x_u uniformly and independently of each other from [0, 1], and order the vertices according to these values. Equivalently, one can take a uniformly selected random element among the permutations of the vertex set, although the first form is better suited for the proof of Theorem 4.

In the next section we give a simple proof for the statement $m(n) > c_1 \sqrt[4]{n} 2^n$. The analysis of a random greedy algorithm also yields $m_k(n) > c_2 k^{-1} n^{\frac{k-1}{2k}} 2^n$. The constructions lead to a "characterization" of k-colorable hypergraphs which might be of interest by its own. We conclude the paper by a new proof for the 2-colorability of n-uniform, n-regular hypergraphs for $n \ge 8$.

2. Results

2.1. **2-coloring.** We define a random greedy coloring of a hypergraph H = (V, E) as follows. Let σ be a uniformly picked random order of V. At the beginning all vertices are blue. In the i^{th} step we recolor the vertex $\sigma(i)$ to red if $\sigma(i)$ is the first element of an $A \in E$ according to the order σ .

Clearly, there are no completely blue edges in E at the end of the procedure. Let the number of completely red edges be X.

Claim 1. $\mathbb{E}X < 2\sqrt{\pi}e^{1/(6n)}n^{-\frac{1}{2}}2^{-2n}|E|(|E|-1).$

Proof of Claim 1. We say that $A \in E$ precedes $B \in E$ if the last vertex of A becomes red because it was the first element of B. If $X_{A,B}$ is the indicator variable of the event A precedes B then $X = \sum X_{A,B}$, where the summation runs over all ordered pairs of E. Hence

$$\mathbb{E}X = \sum \mathbb{E}X_{A,B} = \sum \Pr(A \text{ precedes } B) = \sum \frac{((n-1)!)^2}{(2n-1)!} = \sum \frac{2(n!)^2}{n(2n)!},$$

 $\mathbf{2}$

since A may precede B iff $A \cap B = \{x\}$ and x is the last element of A and the first element of B. Let us use the Stirling formula, i.e., $n! = \sqrt{2\pi n} (n/e)^n e^{\lambda_n}$, where $1/(12n+1) < \lambda_n < 1/(12n)$.

$$\mathbb{E}X = \sum \frac{2(n!)^2}{n(2n)!} \le |E||E-1| \frac{2\sqrt{\pi}e^{2\lambda_n - \lambda_{2n}}}{\sqrt{n}} 2^{-2n} \le 2\sqrt{\pi}e^{1/(6n)}n^{-\frac{1}{2}}2^{-2n}|E|(|E|-1),$$

since $e^{2\lambda_n - \lambda_{2n}} < e^{1/(6n)}$.

Corollary 1. $m(n) > \frac{\sqrt{2}}{2} \pi^{-\frac{1}{4}} e^{-\frac{1}{12n}} \sqrt[4]{n} 2^n$. That is $m(n) > 0.5268 \sqrt[4]{n} 2^n$, for $n \ge 3$.

Proof. Just plug in $|E| = \frac{\sqrt{2}}{2}\pi^{-1/4}e^{-1/(12n)}\sqrt[4]{n}2^n$ into the formula of Claim 1. It gives $\mathbb{E}X < 1$, which means that there exists a good 2-coloring of (V, E).

2.2. **k-coloring.** It is possible to get k-colorings by greedy algorithms for arbitrary $k \in \mathbb{N}$. Here greedy means that we color all the vertices with color 1, and in the i^{th} step we recolor the vertex $\sigma(i)$ if $\sigma(i)$ is a first element of an $A \in E$ according to the order σ . To recolor $\sigma(i)$ we use the smallest possible color that does not result in a monochromatic edge, otherwise we use the color k.

For an order σ of V, let $\{A_i\}_{i=1}^k$ be an ordered k-chain if $|A_i \cap A_{i+1}| = 1$, $A_i \cap A_j = \emptyset$ for |i - j| > 1 and $\sigma^{-1}(x) \leq \sigma^{-1}(y)$ for all $x \in A_i$ and $y \in A_{i+1}$, $i = 1, \ldots, k - 1$. If we have a fixed order σ , let f(A) and $\ell(A)$ be the first and the last vertices of an edge A, respectively.

Lemma 2. The hypergraph (V, E) is k-colorable if and only if there is an order σ of V containing no ordered k-chains. Moreover the greedy algorithm on (V, E) in this case provides a good k-coloring.

Proof. For the "if" part let us color the vertices of V by the greedy algorithm in order σ . By the setup of the greedy algorithm, if there is a monochromatic edge $A_{k-1} \in E$ then its color can only be k. Now $\ell(A_{k-1})$ gets the color k since there is an edge, let us call it A_k , such that $\ell(A_{k-1}) = f(A_k)$. Similarly, $f(A_{k-1})$ is colored k, since there is an edge A_{k-2} such that $\ell(A_{k-2}) = f(A_{k-1})$, and all vertices of $A_{k-2} \setminus A_{k-1}$ are colored k-1. Taking $f(A_{k-2})$, we can get an $A_{k-3} \in E$ such that all vertices of $A_{k-3} \setminus A_{k-2}$ are colored k-2. By induction there is an $A_i \in E$ such that all vertices of $A_i \setminus A_{i+1}$ are colored i+1 if $i \geq 1$. But then $\{A_i\}_{i=1}^k$ is an ordered k-chain. The "only if" is trivial, given a good k-coloring let σ be an order induced by the colors, breaking the ties arbitrarily.

Claim 2. Let X be the number of k-chains in a random order of the n-uniform hypergraph (V, E), and s = n - 1 > 0. Then

$$\mathbb{E}X < |E|^k \exp\left\{\frac{k}{12s} + 1\right\} (2\pi s)^{\frac{k-1}{2}} k^{-sk-1} s^{k-1}.$$

PLUHÁR

Proof of Claim 2. The proof is almost the same as that of Claim 1. Let \mathcal{K} be the set of ordered k-tuples of A. For any $H \in \mathcal{K}$,

$$\Pr(H \text{ is a } k - \text{chain}) \le \frac{\{(n-1)!\}^2 \{(n-2)!\}^{k-2}}{\{(n-1)k+1\}!} = \frac{s!^k}{(sk+1)!s^{k-2}}$$

Using the Stirling formula, with the bounds $e^{\lambda_s k} < e^{k/(12s)}$, $1 < e^{\lambda_{sk+1}}$ we get

$$\mathbb{E}X < |E|^k \exp\{\frac{k}{12s} + 1\}(2\pi s)^{\frac{k-1}{2}} k^{-sk-1} s^{k-1}.$$

Corollary 3. If $|E| \le (2\pi e)^{-1/2} s^{\frac{k-1}{2k}} k^s$, then (V, E) is k-colorable. That is $m_k(n) > (\sqrt{4\pi e}k)^{-1} n^{1/2 - 1/(2k)} k^n$.

Proof of Corollary 3. If $|E| \leq (2\pi e)^{-1/2} s^{\frac{k-1}{2k}} k^s$ then there is an order σ of V such that (V, H) has no k-chain by Claim 2. Moreover $(\sqrt{4\pi e}k)^{-1} n^{1/2-1/(2k)} k^n < (2\pi e)^{-1/2} s^{\frac{k-1}{2k}} k^s$, and then (V, E) is k-colorable by Lemma 2.

Remarks. One can consider Lemma 2 from yet another point of view. Given a hypergraph (V, E) and a fixed order σ on its vertices, one may construct a directed graph $G_{\sigma} = (V(G_{\sigma}), E(G_{\sigma}))$. Let $v \in V(G_{\sigma})$ iff v = f(A) or $v = \ell(A)$ for some $A \in E$, and $(u, v) \in E(G_{\sigma})$ iff there is an $A \in A$ such that u = f(A) and $v = \ell(A)$. Obviously if for an order σ the graph G_{σ} has a good k-coloring then (V, E) is also k-colorable, and if (V, E) is k-colorable, then there exists an order σ such that G_{σ} is k-colorable. The non trivial part of Lemma 2 says that G_{σ} has a good k-coloring if it has no directed paths of length k. This is nothing else but a special case of an old result attributed to T. Gallai and B. Roy, that says if a directed graph G contains no paths of length k, then G is k-colorable, see chapter 9., problem 9 in [9].

2.3. Sparse hypergraphs. If a hypergraph (V, E) is *sparse*, that is each edge meets at most D other edges, then a good 2-coloring exists if $D \leq 0.17\sqrt{n/\ln n}2^n$ and n is big enough [10]. The direct use of the random orders and the Lovász Local Lemma gives

Theorem 4. Let H = (V, E) be an n-uniform hypergraph in which each edge meets at most D other edges. If $2e(2D^2 - D)((n-1)!)^2/(2n-1)! \leq 1$, then H is 2-colorable.

Before the proof let us recall the Lovász Local Lemma. To spell it out we need a definition. If $A_1, ..., A_n$ are events of a probability space, then a *dependence graph* G = (V, E) of these events is a graph having the following properties: $V = \{1, ..., n\}$, and each event A_i is mutually independent of the events $\{A_j : (i, j) \notin E\}$. Let $\deg_G(v)$ be a degree of a vertex v in G. For details see [2] and [7]. **Lemma 5.** (Lovász Local Lemma) [7] Let $A_1, ..., A_n$ be events of a probability space, and G be a dependence graph of these events. If $Pr(A_i) \leq p$ and $\deg_G(A_i) \leq d$ for all $1 \leq i \leq n$, and $ep(d+1) \leq 1$, then $Pr(\bigcap_{i=1}^n \overline{A_i}) > 0$.

Proof of Theorem 4. Let us consider the uniform random orders of V. For $A, B \in E$ let \mathcal{A}_{AB} be the bad event that either A precedes B or B precedes A. Clearly, the event \mathcal{A}_{AB} is mutually independent of all the other events \mathcal{A}_{RS} when $(A \cup B) \cap (R \cup S) = \emptyset$. One checks that the number of intersecting unordered pairs $(R, S) \neq (A, B)$ that also intersects $A \cup B$ is not more than $2D^2 - D - 1$. Now the Lovász Local Lemma implies, there is an order σ containing no 2-chain, if

$$e\Pr(\mathcal{A}_{AB})(2D^2 - D) = 2e(2D^2 - D)((n-1)!)^2/(2n-1)! < 1.$$

This inequality holds by assumption, so H is 2-colorable by Lemma 2.

Remark. A quick asymptotic of Theorem 4 gives that such hypergraphs are 2colorable if $D < 0.23\sqrt[4]{n}2^n$. This result is asymptotically weaker than the former $0.17\sqrt{n/\ln n}2^n$ bound, but Theorem 4 has better constants and works for all n > 1. It already implies the known results of the values for which an *n*-uniform, *n*-regular hypergraph is 2-colorable. Note that this follows from the Lovász Local Lemma easily if $n \ge 9$, while for the case n = 8, see the paper of Alon and Bregman, [1].

Corollary 6. Every n-uniform, n-regular hypergraph is 2-colorable, for $n \ge 8$.

Proof of Corollary 6. First we show a sharp bound on Δ_n , the number of intersecting unordered pairs $(R, S) \neq (A, B)$ that also intersects $A \cup B$. Observe that the number of pairs intersecting with the fixed (A, B) is maximum when (V, E) is *almost disjoint*, i.e., for every $R, S \in E$ we have $|R \cap S| \leq 1$ if $R \neq S$.

From the n-regularity we have

$$\Delta_n \le 2(n-1)^4 + 2(n-1)\binom{n-1}{2} + \binom{n-2}{2} + 2(n-2).$$

Following the proof of Theorem 4, the Lovász Local Lemma implies that if

$$f(n) := 2e(\Delta_n + 1)((n-1)!)^2/(2n-1)! < 1,$$

then an *n*-uniform, *n*-regular hypergraph (V, E) is 2-colorable. Since $f(8) \leq 0.604$, Corollary 6 follows.

Acknowledgment. We thank József Beck, Péter Hajnal and also the anonymous referees for their helpful comments and encouragement.

References

- N. Alon and Z. Bregman, Every 8-uniform 8-regular hypergraph is 2-colorable. Graphs and Combinatorics 4 (1988), 303–305.
- [2] N. Alon and J. Spencer, The Probabilistic Method. Wiley-Interscience, New York, 2000.

PLUHÁR

- [3] J. Beck, On a combinatorial problem of P. Erdős and L. Lovász. Discrete Math. 17 (1977), no. 2, 127–131.
- [4] J. Beck, On 3-chromatic hypergraphs. Discrete Math. 24 (1978), no. 2, 127–137.
- [5] P. Erdős, On a combinatorial problem. Nordisk Mat. Tidskr. 11 (1963) 5-10.
- [6] P. Erdős, On a combinatorial problem, II, Acta Math. Acad. Sci. Hungar., 15 (1964), 445–447.
- [7] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions. Infinite and finite sets, Colloq. Math. Soc. J. Bolyai, Vol. 10 North-Holland, Amsterdam, (1974) pp. 609–627.
- [8] A. Kostochka, Coloring uniform hypergraphs with few colors. Random Structures Algorithms 24 (2004), no. 1, 1–10.
- [9] L. Lovász, Combinatorial problems and exercises. North-Holland Publishing Co., Amsterdam-New York, 1979.
- [10] J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hypergraph 2coloring. *Random Structures Algorithms* 16 (2000), no. 1, 4–32.
- [11] W. M. Schmidt, Ein kombinatorisches Problem von P. Erdös und A. Hajnal. Acta Math. Acad. Sci. Hungar 15 (1964) 373–374.
- [12] J. H. Spencer, Coloring n-sets red and blue. J Combinatorial Theory, Series A, 30 (1981), 112–113.
- [13] C. Thomassen, The even cycle problem for directed graphs, J. Amer. Math. Soc. 5 (1992), no. 2. 217–229.

UNIVERSITY OF SZEGED, DEPARTMENT OF COMPUTER SCIENCE *E-mail address*: pluhar@inf.u-szeged.hu

 $\mathbf{6}$