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Abstract

Two new versions of the so-called Maker-Breaker Positional Games are defined by
József Beck. In these variants Picker takes unselected pair of elements and Chooser
keeps one of these elements and gives back the other to Picker. In the Picker-Chooser
version Picker is Maker and Chooser is Breaker, while the roles are swapped in the
Chooser-Picker version. It seems that both the Picker-Chooser and Chooser-Picker
versions are not worse for Picker than the original Maker-Breaker versions. Here we
give winning conditions for Picker in some Chooser-Picker games that extend the
results of Beck.
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1 Introduction

Recall that formally a Positional Game, or a Maker-Maker hypergraph game is
defined as follows. Given an arbitrary hypergraph (V,F), the first and second
players take elements of V in turns. The player, who takes all the elements of
an edge A ∈ F first wins the game. It is well known that, assuming perfect
play, either the first player wins or the game is a draw. The theory of Positional
Games is quite well developed, here we can recall only some results. For further
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readings see the important works of Berlekamp, Conway and Guy [9] or Beck
[7].

The Maker-Breaker version of a Positional Game on a hypergraph (V,F) is as
follows. The players take the elements of V as before, but Maker wins by taking
all the elements of an A ∈ F , while Breaker wins otherwise. This approach has
proved to be quite useful, since if Breaker wins (as a second player) then the
original game is a draw, while if the first player wins the original game then
Maker wins the Maker-Breaker version. More examples are in [3–5,12,13].

An important guide to understanding Maker-Breaker games is the so-called
probabilistic intuition, for more details and examples by Beck, Bednarska et al,
Krivelevich [5,8,14]. Roughly speaking, we distribute the elements of V among
Maker and Breaker randomly, and expect the win of that player in the original
Maker-Breaker game whose winning chance is greater in the random play. This
simple heuristic works surprisingly often, and gives useful instructions even
when it fails (see [2]).

Studying the very hard clique games, Beck [6] introduced a different type of
heuristic, that proved to be a great success. He defined the Picker-Chooser
or shortly P-C and the Chooser-Picker (C-P) versions of a Maker-Breaker
game that resembles fair division, (see [20]). In these versions Picker takes
an unselected pair of elements and Chooser keeps one of these elements and
gives back the other to Picker. In the Picker-Chooser version Picker is Maker
and Chooser is Breaker, while the roles are swapped in the Chooser-Picker
version. When |V | is odd, the last element goes to Chooser. Beck obtained
that conditions for winning a Maker-Breaker game by Maker and winning
the Picker-Chooser version of that game by Picker coincide in several cases.
Furthermore, Breaker’s win in the Maker-Breaker and Picker’s win in the
Chooser-Picker version seem to occur together.

Beck [6] has another interesting remark, namely that Picker may win easily the
Picker-Chooser game if Maker wins the corresponding Maker-Breaker game.
He formulates this as follows:

“Note that Picker has much more control in the Picker-Chooser version than
Chooser does in the Chooser-Picker version, or Maker does in the Maker-
Breaker version so the Picker-Chooser game is far the simplest case. This
relative simplicity explains why we start with the Picker-Chooser game instead
of the perhaps more interesting Maker-Breaker game.”

However, one has to be careful to spell out a good conjecture, since it is easy
to check that Chooser wins the 2× 2 hex.

The precise form of Beck’s conjecture is:
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Conjecture 1 Picker wins a Picker-Chooser (Chooser-Picker) game on (V,F)
if Maker (Breaker) as second player wins the corresponding Maker-Breaker
game.

Remarks. It is enough to prove Conjecture 1 for Picker-Chooser games since
the Chooser-Picker case would follow. To see this one just considers (V,F∗),
the transversal hypergraph of (V,F). That is F∗ contains those minimal sets
B ⊂ V such that for all A ∈ F , A ∩ B 6= ∅. Note that Breaker as a first
(second) player wins the Maker-Breaker (V,F) iff Maker as a first (second)
player wins the Maker-Breaker (V,F∗).

The decision problem that if Picker wins a P-C (or C-P) game is at least
NP-hard [10], but probably it is PSPACE-complete as that of the Maker-
Breaker games, shown by Schaefer [18]. Still, for concrete games it can be
easier to decide the outcome of the P-C (C-P) version than the Maker-Maker
version. That is if Conjecture 1 is proved for a class of hypergraphs then
the easier P-C (C-P) games can be used in an alpha-beta pruning algorithm
for the harder Maker-Breaker game. A natural class for that is the otherwise
hopeless Hales-Jewett or torus games for low dimension (see [7,13]). We discuss
some examples and useful tools for that direction in Section 2. Here we would
emphasize the extension of Picker-Chooser games to infinite hypergraphs and
the role of Lemma 8 and Proposition 9 in this case. These might be used
in solving Harary-type of polyomino problems for Chooser-Picker games for
which the Maker-Breaker versions were studied by Harary, Blass, Pluhár and
Sieben [9,17,19].

Then we prove Conjecture 1 for the Picker-Chooser version of Shannon switch-
ing game in the generalized version as Lehman did in [15]. Let (V,F) be a
matroid, where F is the set of bases, and Picker wins by taking an A ∈ F .
Note that this is equivalent with the Chooser-Picker game on (V, C), where C
is the collection of cutsets of the matroid (V,F), that is for all A ∈ F and
B ∈ C, A ∩B 6= ∅.

Theorem 2 Let F be collection of bases of a matroid on V . Picker wins the
Picker-Chooser (V,F) game, if and only if there are A,B ∈ F such that
A ∩B = ∅.

The Erdős-Selfridge theorem [11] gives a very useful condition for Breaker’s
win in a Maker-Breaker (V,F) game.

Theorem 3 (Erdős-Selfridge [11]) Breaker as the second player has a win-
ning strategy in the Maker-Breaker (V,F) game when

∑
A∈F

2−|A| <
1

2
.
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Using a stronger condition, Beck [6] proves Picker’s win in a Chooser-Picker
(V,F) game. (For the P-C version he proved a sharp result that we include
here.) Let ||F|| = maxA∈F |A| be the rank of the hypergraph (V,F).

Theorem 4 [6] If

T (F) :=
∑
A∈F

2−|A| <
1

8(||F||+ 1)
, (1)

then Picker has an explicit winning strategy in the Chooser-Picker game on
hypergraph (V,F). If T (F) < 1, then Chooser wins the Picker-Chooser game
on (V,F).

We improve on his result by showing:

Theorem 5 If

∑
A∈F

2−|A| <
1

3
√
||F||+ 1

2

, (2)

then Picker has an explicit winning strategy in the Chooser-Picker game on
hypergraph (V,F).

It is worthwhile to spell out a special case of Conjecture 1 for this case, that
would be the sharp extension of Erdős-Selfridge theorem to Chooser-Picker
games.

Conjecture 6 If ∑
A∈F

2−|A| <
1

2
,

then Picker wins the Chooser-Picker game on the hypergraph (V,F).

The rest of the paper is organized as follows. We extend Conjecture 1 to
infinite games, and discuss the classical k-in-a-row games in Section 2. Finally,
in Sections 3 and 4 we prove Theorem 2 and Theorem 5, respectively.

2 The k-in-a-row

The game k-in-a-row is played on the infinite square grid (“graph paper”),
and the players’ goal is to get k squares in a row vertically, horizontally or di-
agonally first. By a strategy stealing argument the first player wins or achieves
a draw for all k ∈ N. Moreover the first player wins if k ≤ 4, and the game is
a blocking draw if k ≥ 8, see e. g. in [7,9,12]. A delicate case study by Allis
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[1] shows that the first player wins for k = 5 on the 15× 15 board. While the
k = 5 is still open on the infinite board, Allis’ result implies that Maker wins
for k = 5 in the Maker-Breaker version.

The Picker-Chooser k-in-a-row is an easy Picker’s win for all k ∈ N, by Beck’s
argument in [7]. The Chooser-Picker is again Picker’s win for k > 1 on the
infinite board, since Picker may select elements far from each other at all time.
However, the games become interesting if we restrict them to a finite board,
since sooner or later all elements must be selected. (One might think that
Chooser starts the game by selecting a finite part of the board.)

Proposition 7 Picker wins the Chooser-Picker version of the game 8-in-a-
row on any B ⊆ Z2.

Proof. First we need an easy but useful lemma. Given the hypergraph (V,F)
let (V \X,F(X)) denote the hypergraph where F(X) = {A ∈ F , A∩X = ∅}.

Lemma 8 If Picker wins the Chooser-Picker game on (V,F), then Picker
also wins it on (V \X,F(X)).

Proof. By induction it is enough to prove the statement for X = {x}, i.
e., |X| = 1. Assume that p is a winning strategy for Picker in the game on
(V,F). That is, in a certain position of the game, the value of the function
p is a pair of unselected elements that Picker is to give to Chooser. We can
modify p in order to get a winning strategy p∗ for the Chooser-Picker game
on (V \ {x},F({x})).

Let us follow p while it does not give a pair {x, y}. Getting a pair {x, y}, we
ignore it, and pretend we are playing the game on (V,F), where Chooser has
taken y and has returned x to us. If |V | is odd, there is a z ∈ V at the end of
the game that would go to Chooser. Here Picker’s last move is the pair {y, z}.
Picker wins, since Chooser could not win from this position even getting the
whole pair {y, z}. If |V | is even, p∗ leads to a position in which y is the last
element, and it goes to Chooser. But the outcome is then the same as the
outcome of the game on (V,F), that is Picker’s win. 2

We shall cut up the infinite board to sub-boards in the same way as was in
[12], see also Figure 1. The left tile and its mirror image are the bases of the
tiling. The winning sets for the these sub-boards are the rows, the diagonals
of slope one, and the two pairs indicated by the thin lines. The middle of the
picture shows the tiling itself. We use one type of tile in an infinite strip, and
its mirror image in the neighboring stripes. On the right side of Figure 1 the
transformed tile is drawn, where the winning sets are the rows, columns and
the indicated two pairs.

5



@@

@@

Figure 1. The subdivison of the plane.

Let B̄ be the union of those sub-boards meeting B. We show that Picker wins
the Chooser-Picker 8-in-a-row game for the board B̄. Note that B̄ is a union
of sub-boards. Picker plays auxiliary games on the sub-boards independently
of each other with the goal of preventing Chooser from getting a winning set
of a sub-board.

To achieve this goal, Picker selects the two pairs first on any sub-board, that
give rise to the possible positions shown in Figure 2. Then Picker uses the
appropriate winning pairing strategy indicated by the thin lines. One checks
easily that if Picker wins all the auxiliary games then he wins the Chooser-
Picker 8-in-a-row game on playing B̄, too. Finally, by Lemma 8, Picker wins
on B. 2

f fv
v f vv

f v vf
f

Figure 2. Pairings on a sub-board.

One might wonder how the idea of the pairings used in Proposition 7 came
from. It is worthwhile to spell out the following simple fact.

Proposition 9 In a Chooser-Picker game if a winning set contains no ele-
ments of Picker, and has only two untaken elements, x, y then Picker has an
optimal strategy that starts with picking the pair {x, y}.

Proof. We may assume that Picker has a winning strategy p, otherwise there
is nothing to prove. First we show that during any optimal play of the game
Picker has to offer the pair {x, y} sometimes. If Picker offers, say, {x, z}, z 6= y,
and y has not been taken yet, Chooser would keep x, and win taking y later.
Now let us assume the Chooser has a winning strategy ρ, taking, say, x if Picker
starts with {x, y}. Chooser can adapt the strategy ρ against any strategy of
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Picker’s by pretending that the start was {x, y}. Over the course of the play
Picker has to offer the pair {x, y}. Then Chooser takes x and resumes playing
the strategy ρ, and Chooser wins, since the outcome of the game would be the
same if Picker would have started with {x, y}. 2

3 Proof of Theorem 2

The notation and the proof closely follow the ones given in [16] for the Maker-
Breaker case.

First we show that if there are no two disjoint A,B ∈ F then Chooser wins.
LetM1 = (V,F) andM =M1∨M1 be the union matroid ofM1 with itself.
The rank function rM of the union matroid of M = M1 ∨ · · · ∨ Mk is the
following,

rM(S) = min
T⊂S

{
|S \ T |+

k∑
i=1

ri(T )

}
,

where the matroids are defined on the same ground set S, and the matroid
Mi has the rank function ri. We have minT⊂V {|V \ T |+ 2r1(T )} = rM(V ) <
2r1(V ), since M1 does not have two disjoint bases. Equivalently, |V \ T | <
2(r1(V )− r1(T )). Receiving a pair (x, y), Chooser keeps an element of V \T if
possible. At the end of the game Chooser owns at least d|V \ T |/2e elements of
V \ T . That is Picker may own at most b|V \ T |/2c < r1(V )− r1(T ) elements
of V \ T at the end of the game.

Let Y be the elements of Picker at the end of the game. Clearly,

r1(Y ) ≤ r1(Y ∩ (V \ T )) + r1(T ) < r1(V )− r1(T ) + r1(T ) = r1(V ),

that is Picker has lost the game.

For the other direction, we assume that A,B ∈ F , A ∩ B = ∅, and use
induction. We consider the matroid M/y \ x given a pair (x, y) taken by
Chooser and Picker, respectively. Clearly Picker wins the game for M if he
can win it for M/y \ x. (The dimension of M/y \ x is one less than that of
M, and if A′ is a base of M/y \ x, then A′ ∪ {y} is a base of M.)

All we need here is the strong base exchange axiom (or rather theorem), that
says if A and B are bases of a matroidM, then there exist x ∈ A, y ∈ B such
that both {A \ {x}} ∪ {y} and {B \ {y}} ∪ {x} are also bases of M. Picker
selects the pair (x, y) such that the above applies, and reduces the game to
eitherM/y \ x orM/x \ y. Since A \ {x} and B \ {y} are disjoint bases both
in M/y \ x and M/x \ y, we can proceed. 2
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4 Proof of Theorem 5

We shall modify the proof of Theorem 4 appropriately. The idea of the proof
is to associate a weight function T (F) to a hypergraph (V,F) that measures
the danger for Picker. The value of T becomes 1 iff Chooser wins the game,
so Picker tries to keep T down. In Maker-Breaker games the greedy selection
works, see the classical Erdős-Selfridge theorem in [11] or in [7]. Let T (F) =∑
A∈F 2−|A|, T (F ; v) =

∑
v∈A∈F 2−|A| and T (F ; v, w) =

∑
{v,w}⊂A∈F 2−|A| for an

arbitrary hypergraph (V,F).

Assume that after the ith turn Chooser already has the elements x1, x2, . . . , xi
and Picker has the elements y1, y2, . . . , yi. Now Picker picks a 2-element set
{v, w}, from which Chooser will choose xi+1, and the other one (i. e. yi+1)
will go back to Picker. Let Xi = {x1, x2, . . . , xi} and Yi = {y1, y2, . . . , yi}. Let
Vi = V \ (Xi∪Yi). Clearly |Vi| = |V |−2i. Let F(i) be the truncated subfamily
of F which consists of the unoccupied parts of the still dangerous winning
sets:

F(i) = {A \Xi : A ∈ F , |A \Xi| ≤ d|Vi|/2e , A ∩ Yi = ∅}.

Here we will deviate a little from Beck’s proof, since he includes all sets A ∈ F ,
|A \ Xi| ≤ |Vi| in F(i) if A ∩ Yi = ∅. But if |A \ Xi| > d|Vi|/2e, then Picker
automatically gets an element of A, so deleting these sets from F(i) does not
change the outcome of the game.

Let F(end) = F(d|V |/2e), i. e., these are the unoccupied parts of the still
dangerous sets at the end of the play. Chooser wins iff T (F(end)) ≥ 1, so to
guarantee Picker’s win it is enough to show that T (F(end)) < 1. Let xi+1 and
yi+1 denote the (i + 1)th elements of Chooser and Picker, respectively. Then
we have

T (F(i+ 1)) = T (F(i)) + T (F(i);xi+1)− T (F(i); yi+1)− T (F(i);xi+1, yi+1).

It follows that

T (F(i+ 1)) ≤ T (F(i)) + |T (F(i);xi+1)− T (F(i); yi+1)|.

Introduce the function

g(v, w) = g(w, v) = |T (F(i); v)− T (F(i);w)|
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which is defined for any 2-element subset {v, w} of Vi. Picker’s next move is
that 2-element subset {v0, w0} of Vi for which the function g(v, w) achieves its
minimum. Since {v0, w0} = {xi+1, yi+1}, we have

T (F(i+ 1)) ≤ T (F(i)) + g(i), (3)

where

g(i) = min
v,w:v 6=w,v,w⊂Vi

|T (F(i); v)− T (F(i);w)|. (4)

To estimate g(i) we take a lemma from [6]. It is an easy exercise for the reader.

Lemma 10 If t1, t2, . . . , tm are non-negative real numbers and t1 + t2 + . . .+
tm ≤ s, then

min
1≤j<`≤m

|tj − t`| ≤
s(
m
2

) .
We distinguish two phases of the play.

Phase 1: |Vi| = |V | − 2i > 2||F||. (Note that Beck uses |Vi| > ||F||.) Simple
counting shows that

∑
v∈Vi

T (F(i); v) ≤ ||F||T (F(i)).

By Lemma 10 and (4),

g(i) ≤ ||F||(
|Vi|
2

)T (F(i)),

so by (3),

T (F(i+ 1)) ≤ T (F(i))

1 +
||F||(
|Vi|
2

)
 .

Since 1 + x ≤ ex = exp(x), we have

T (F(i+ 1)) ≤ T (F) exp

||F||
i∑

j=0

1(
|Vj |
2

)
 .
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It is easy to see that

∑
i:|Vi|>2||F||

1(
|Vi|
2

) < 1

2||F||
,

so if i0 denotes the last index of the first phase then

T (F(i0 + 1)) <
√
eT (F). (5)

Phase 2: |Vi| = |V | − 2i ≤ 2||F||.

Then a similar counting as in Phase 1 gives

∑
v∈Vi

T (F(i); v) ≤
⌈
|Vi|
2

⌉
T (F(i)).

One checks that T (F(i + 1)) ≤ T (F(i)) when 2 ≤ |Vi| ≤ 4. If |Vi| ≥ 4, then
by Lemma 10 and (4),

g(i) ≤ 1

|Vi| − 1
T (F(i)),

so by (3),

T (F(i+ 1)) ≤ |Vi|
|Vi| − 1

T (F(i)). (6)

Let us recall the well-known Wallis’ formula, limn→∞
1

2n+1

∏n
i=1

(2i)2

(2i−1)2
= π

2
.

Since (2n+2)2

(2n+1)(2n+3)
> 1 for all n ∈ N , we have the inequality for all n ∈ N

n∏
i=1

2i

2i− 1
<

√
π

2
(2n+ 1). (7)

By repeated application of (6) we have

T (F(end)) ≤ T (F(i0 + 1))2
∏

i:2≤|Vi|≤2||F||

|Vi|
|Vi| − 1

≤ T (F(i0 + 1))2
||F||∏
j=2

2j

2j − 1
.
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Now using (7), (5) and (2), we have

T (F(end)) < T (F(i0 + 1))

√
π(||F||+ 1

2
) ≤
√
eπT (F)

√
||F||+ 1

2
< 1.

That is, Chooser cannot completely occupy a winning set, and Theorem 5
follows. 2
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