
Acta Cybernetica — online–first paper version — pages 1–12.

Instantiation of Java Generics

Péter Sohaab and Norbert Patakiac

Abstract

Type parametrization is an essential construct in modern programming
languages. On one hand, Java offers generics, on the other hand, C++ pro-
vides templates for highly reusable code. The mechanism between these con-
structs differs and affects usage and runtime performance, as well. Java uses
type erasure, C++ deals with instantiations.

In this paper, we argue for an approach in Java which is similar to C++
template construct. We evaluate the runtime performance of instantiated
code and we present our tool which is able to use Java generics as templates.
This tool generates Java source code. We present how this approach improves
the usage of Java generics.

Keywords: Java, generic, instantiation, template

1 Introduction

Nowadays we can choose from many different programming paradigms and lan-
guages and all have unique advantages and disadvantages. We have to think dif-
ferent when programming in Java or Clean, when we use the object-oriented or the
functional paradigm. Sometimes we wish that some elements of a language would
be supported by another language though. One of these useful tools is the construct
of reusable and parametrizable code which significantly reduces the repetition of
the code. For this, the Java offers the generics that uses a runtime polymorphic
solution with some transformations at compilation time. On the other hand, the
C++ language provides the templates.

Java is considered as a verbose language, therefore Java source typically con-
tains boilerplate code [10]. To overcode the boilerplate, many libraries have been
developed, such as Project Lombok [1]. Lombok decreases the quantity of boiler-
plate code by generating Java code from annotations. However, this solution is not
able to generate similar new classes from templates.

aDepartment of Programming Languages and Compilers, Eötvös Loránd University, Budapest,
Hungary

bE-mail: sohaur@inf.elte.hu, ORCID: 0000-0003-1556-8267
cE-mail: patakino@inf.elte.hu, ORCID: 0000-0002-7519-3367

DOI: 10.14232/actacyb.284073

2 Péter Soha and Norbert Pataki

The generics in Java fit into the object-oriented realm, but they have runtime
overhead that can be reduced with compile-time instantiation. The required infor-
mation can be found in the source, therefore performance can be improved without
any limitation.

In this paper, we analyze how the template mechanism can be attempered in the
Java programming language. We take into consideration how different languages
provide type parametrization. Earlier, we have proposed an alternative syntax for
instantiable templates for improved runtime performance [12]. At this time, we
deal with standard Java code. For keeping the improved runtime performance, we
developed a tool which aims at the instantiation of Java generics. Our tool works
in the Java realm, therefore no external dependency is taken advantage of. We
present our tools and evaluate this approach.

The rest of this paper is organized as follows. In Section 2, we present the
different approaches related to type parametrization. After, we briefly present our
existing solution in Section 3. In Section 4, we present our new approach for the
instantiation of generics. Further options are presented in Section 5. In Section 6,
we evaluate the performance of our method. In Section 7, we briefly present our
further aims. Finally, this paper is concluded in Section 8.

2 Theoretical Background

2.1 About Java Generics

The constructs of generic programming paradigm were introduced in Java 1.5 in
2004 [2]. The main idea behind this step was the support of Java programmers
with a tool to avoid duplications, and help to write type safe code which is abstract
enough to fit as many situations as possible without any modifications [6]. To
reach this, all generic code has to contain a type variable section named parameter
list where the programmer can declare the usable types. This construct has a
considerable merit. Since Generics applies dynamically typed, a class or function
can be used with totally different types without recompile the code but keep type
safety. To reach that, Java offers the runtime polymorphism, which means the
following:
If X is a subtype of T, every occurance of T can be replaced with the objects of X.
This makes the usage Generics versatile but it has its own cost [5].

Restrictions on the type parameters require bounded generic type parameters.
If one defines an upper bound for a generic parameter, only its subclasses can be
used as generic argument type.

Because of the type erasure, we have to deal with the some factors which can
affect the performance:

• At compile time, all type parameters will be deleted and replaced with their
first bound or Object if it is unbounded [15].

• To ensure type safety, JVM will generate type casts.

Instantiation of Java Generics 3

• To preserve polymorphism, bridge methods will be generated as well.

And exactly here is the weakness of the generics. The Java compiler has to
modify the written code and insert runtime parts which can significally decrease the
speed and effectiveness and may increase the heap memory consumption. Because
of the dynamic typing, the construction must be as abstract as possible even if it
is not necessary at all. As we showed, sometimes a quazi-statically typed solution
can be faster. Moreover, subtype checking is quite difficult in Java [7].

Listing 1: Java generics example

1 public class Generic <T> {

2 private T element;

3
4 public Generic(T value) {

5 element=value;

6 }

7
8 public T get() {

9 return element;

10 }

11 }

2.2 Templates in C++

C++ provides templates for efficient type parametrization [4]. A template is a
code snippet that is parametrized and the C++ compiler instantiates with different
arguments at compilation time. Let us consider the following example that is quite
similar to the previous one:

Listing 2: C++ template example

1 template <class T>

2 class Template {

3 private:

4 T element;

5
6 public:

7 Template(const T& t): element(t) { }

8
9 const T& get() const { return element; }

10 };

The compiler cannot instantiate the template and cannot generate correspond-
ing low-level code unless the template argument is known, thus the template itself is
not compilable code from the view of typical C++ compilers (e.g. g++, clang++).

4 Péter Soha and Norbert Pataki

The compiler generates specific code when the template is instantiated. For in-
stance, in case of Template<int>, the compiler generates code from the template
by substituted T with int. This construct enables to instantiate templates with ar-
bitrary, previously unknown classes. The compiler is aware of the called functions
related to the template parameter, so it can optimize many calls [9]. Moreover,
type safety is an essential aspect of templates. On the other hand, code bloat of
binary code may appear and template instantiation increases compilation time.

C++ provides function templates and class templates [13]. However, a template
can be parametrized not only types but integral constant values, pointers, pointer-
to-members, etc. If the compiler does know what the argument is, it is able to
generate code. However, string literals are not supported to be template arguments
[14].

C++ templates offer an interesting approach. In case of class templates, one
can write special implementation for specific class parameters with partial and full
specializations. Utilization of this possibility leads us to C++’s template metapro-
gramming feature that is a Turing-complete subset of C++ [11]. Metaprograms are
beneficial since they can speed-up the execution time, enable the development of
active libraries that make decisions at compilation time and evaluate compile-time
asserts.

3 Previous Works

To create templates in Java, we investigated two different ways to instantiate a
generic class. In our previous paper, we offered a new keyword and a different
class structure to transform a generic class to a template one called Java Template
[12]. This constructed originated from the C++ templates. It was quite useful
and comfortable but already had limitations. In this case, we had to manually
rewrite the existing code and declare the template variables. The work was getting
more complex when we tried to transform some of the standard containers, and
that was the inspiration to try a totally different way and instead of transforming
code just create a tool which can work with pure Generics without any structural
modification (later we will see that it is impossible because of the context-sensitive
parts).

First of all we summarize the results of the Java Templates and after all we
show how can we instantiate the generic classes directly.

3.1 Templates and Packages

The Java Template is a very similar class construct to C++ templates, but mixing
the benefits of the Generics. At the beginning of the class definition, there is the
template keyword followed by the identifiers of type parameters. To insure the
instantiation, we restricted the following:

• If T is primitive type or literal of primitive types (String literals inclusive)
there is no limitation.

Instantiation of Java Generics 5

• If T is an object type, we recommend to use the fully qualified name to avoid
any importing issue.

At this point, we have some other requirements by Java that we have to meet.
Every Java class has its own and unique identifier called fully qualified name. This
is a composition of the name of the class and its place of the package hierarchy. The
Java compiler does not allow the programmer to create two different classes in the
same package with the same name. And well, if we use generics, we have to create
only one class to many types, but with templates (since it is statically typed) every
single type needs its own instance. To solve this issue, we decided that the package
which contains the template instance will build up from the actual parameter types.
For this, we made some restrictions:

• If T is a primitive type, or a literal of primitve types (String literals included)
we add a prefix to it.

• If T is an object type, we use the fully qualified name, by escaping the sepa-
rators with backslash.

• All package names must be able to generate with only of the previous two
rules.

To avoid any OS specific issue with package names, the maximum length should
not exceed 260 characters.

3.2 Instantiation

The Java Templates have a special way to instantiation since this construct is not
the part of Java. For this, we developed a tool, which can tokenize the source and
turn it into a standard C++ macro. Considering that the macro is a low-level
language feature, to guarantee the success, need some restrictions:

• The number of declared type parameters at most the number of given param-
eters.

• For object types, the fully qualified name is preferred.

• A formal variable name can be replaced with a given literal if, and only if the
specific variable name is only occurs at right hand side of an expression or
where literals are allowed by Java.

4 New Results

Since the transformation and templatize not really decent when the class structure
getting more complex, we had to have find another way. The new idea was that
instead of creating a new language feature, and depend on external tools (especially
g++ compiler for the Java Templates) we shall use only what Java gives us. In our

6 Péter Soha and Norbert Pataki

new tool, we totally left the g++ and other external dependecies and build up the
preprocessing with pure Java. In this version, we introduced a typetable in the lexer
tool, which acts as a field memory and store the formal and actual parameters in
an associative container (list of key-value pairs). This makes the identification and
replace lot easier and let us use this information in the future. The main steps now
are the following:

• Load the source and localize the generic type declarations.

• Parse the type placeholders and store them in the typetable. To ensure correct
run, we made a check to determine that the tool get enough arguments,
because as we discussed, the number of actual types must be greater than
or equal to the placeholders. In this step, the generic bounds are irrelevant
because they will be replaced with an exact type, which will be an upper
bound of the acceptable object at that point (this can be possible because of
the Liskov substitution principle).

• Assemble the package of the class. This step is the first which clearly gains
advantage by using the typetable. To create the package, we read the values
one-by-one, and concatenate to the package name. To meet the rules of pack-
age name declared in Java, we have to replace the dot character to backslash
when the current type is an object. For this step, we implement a minor
feature as the support of generic type arguments. To reach this, we treat the
characters of the diamond operator as dot, and also escape it with backslash.

With these three steps, we get the same result as with Java Templates which
needed six steps for this. In the next sections, we show small examples to both
methods and compare them.

4.1 Examples

First, we create a basic implementation of a Stack with the Java Templates. To
give information to the lexer tool, we had to use the template keyword to declare
the formal parameters. Since we are not restricted by the Java grammatic rules,
we can use arrays typed by placeholders because the final type will be known at
last before compile time.

Listing 3: Java template example

1 template(T)

2 class Stack {

3 private T[] elements = new T[10];

4 private int c = 0;

5 // ...

6 public void push(T item) { elements[c++] = item; }

7 public T pop() { return elements[--c]; }

8 }

Instantiation of Java Generics 7

Now, the same stack implemented with the toolkit of Java Generics. Since our
improved tool can work with standardized generic classes, we do not need any spe-
cial keyword or language feature, because we can extract all necessary information
right from the source. However (as we discussed this problem in the next section)
this is a special example. In this case, we have only one Object array (which the
only possibility because the grammatic rules), but we could prepare our tool to
handle this, since there are no ambiguous types. Note, if we want to declare an-
other Object array, we may run into anomalies because all these will be replaced
with a specific type which given as argument.

Listing 4: Java generic class example

1 class Stack <T> {

2 private Object [] elements = new Object [10];

3 private int c = 0;

4 // ...

5 public void push(T item) { elements[c++] = item; }

6 public T pop() { return (T)elements[--c]; }

7 }

Finally, both versions of our tool will produce the exactly same Java class. This
class is now statically typed (as much as Java allows it), and as one may see in
section 6, in some cases, the speed-up is considerable.

Listing 5: Generated Java class

1 class Stack {

2 private int[] elements = new int [10];

3 private int c = 0;

4 //...

5 public void push(int item) { elements[c++] = item; }

6 public int pop() { return elements[--c]; }

7 }

4.2 Compilation with our Tool

We demonstrate the precompiling process of the generic with our tool. A straight-
forward generic class is Pair that we use for presentation.

In this example, the two generic parameters are K and V which denote the key
and value types. For instantiation, the tool requires the following arguments in
order:

• Tha Java source file contains the implementation of Pair generic class.

• Restriction for this step that the file may contain only one top level class
which has to match the name of type.

8 Péter Soha and Norbert Pataki

• The actual type of K which if it is an object type then it must be the fully
qualified name.

• The actual type of V that has the same condition as K.

Listing 6: Java Pair generic class example

1 public class Pair <K, V> {

2 private K key;

3 private V value;

4
5 public K getKey () { return key; }

6 public V getValue () { return value; }

7
8 public void setKey(K _key) { key = _key; }

9 public void setValue(V _value) {

10 value = _value;

11 }

12 }

Now let the actual parameters are int and boolean, therefore we use the here-
inafter command for the instantiation:
$java Tool Pair.java int boolean

After compilation, we have the instantiated Pair class in a unique path which
ensures to avoid the ambiguous references. This class contains the following:

Listing 7: Generated class example

1 public class Pair {

2 private int key;

3 private boolean value;

4
5 public int getKey () { return key; }

6 public boolean getValue () { return value; }

7
8 public void setKey(int _key) { key = _key; }

9 public void setValue(boolean _value) {

10 value = _value;

11 }

12 }

This tool is now a standalone component of the building process right before
the compilation. We are working on an improved integration of compilation task.

This tool at the moment has two major deficiencies. The first one is the require-
ment of explicit enumeration of all actual types, although if we want to replace for
example the T extends Number parameter, it shall be guessed and replace T with
Number. This feature is useful every time when the bound is a class/typename, so

Instantiation of Java Generics 9

giving command line arguments is necessary only when we want to use primitives
or the bound is an interface. The second one is a more serious limitation, since only
one class can be given to the tool but in enterprise environment there are hundreds
of classes in every single project and instantiate one by one requires countless hours.
So we want to introduce a JSON-like format which contains cases of every single
preprocessing task. A task describes the name of the file which will be instantiated
and the actual type parameters.

5 Improvements

Although the new methods are really beneficial, we find some questions which still
waiting for to being aswered. One of them is the problem of the ambiguous field
typing. Let us suppose that we created a generic container class that uses an
Object array to store elements. Now we declare another Object array for reasons.
If we use the new tool, the clear way is to replace the storage array’s type from
Object to the given one (let it be now int). But we also have the other array
named otherarray which has a different (but not less important) functionality,
and it must remain Object. In this case, we have the following possible solutions:

1. Replace Object with int: In this case, the functionality of otherarray will
be damaged, since the role of the Object array is context-sensitive.

2. Train the tool to identify the possible fields: This way is significantly more
complex because of the context-sensitive grammar rules and the chance of
mistakes even more higher than the previous solution.

3. Pass the chosen identifiers as tool arguments: Now, we can decide in every
case whether the current field is modifiable. Although from the point of the
input this is one of the best choice, with the extra arguments can make the
usage of the tool more complicated.

4. In Java, one can use annotations for the member declarations. Members can
be distinguished by their annotations.

6 Measurements

In this section, we present the performance of our solution. We focus on the run-
time performance because this property is more important than the duration of
compilation time. The preprocessor has I/O-intensive tasks, so its performance
depends on the storage device [3]. Moreover, a compiler support approach would
be more effective in which the instantiation is executed on constructed abstract
syntax tree.

We have evaluated how the proposed approach affects the runtime. We have
started a cloud-based virtual machine with Ubuntu 16.04 LTS operating system

10 Péter Soha and Norbert Pataki

image and Java 8 JVM installed. We evaluate two different scenarios with high
number of test cases. We use our stack data structure implementations.

The first scenario is using stack that contains integers. The generic implemen-
tation must be used with Integers, the instantiated generic version can be instan-
tiated with int. This approach avoids the autoboxing between int and Integer

and overhead of many memory allocations can be eliminated.
We have instantiated the stack with Integer in the second scenario. In this case,

the template and generic parameter is exactly the same. However, the template
stack itself knows that it contains Integer, not Object, so less runtime validations
are needed in this case, as well.

Our approach performed better in both scenarios. The performance is improved
significantly in the first scenario. The average running time of the long-term perfor-
mance test has beeen reduced to 2.63% of the generic approach with our template
mechanism. We measure this speed-up when the size of stack was 8000000. We
fulfilled the stack with 8000000 push operations and after we used pop functions
until the stack becomes empty. High amount of dynamic memory allocation and
autoboxing conversion can be avoided with instantiated generic in this case. The
results were rather balanced when both stacks contain Integer objects. In the
second scenario, the average running time has been reduced to 82.645% with the
proposed approach. This means more than 20% speed-up in the execution with-
out any special instantiation and special ones are able to speed-up the execution
significantly. However, more effective code can be generated with more specific
approaches [8].

The speed-up is significant, therefore we should realize what are the main rea-
sons behind this effect, cache consistency or other JVM runtime optimazations. As
future work, we evaluate the proposed approach with more generics and explore
how the instantion can be utilized much more effectively.

7 Future Work

As we discussed earlier, the most difficult issue that waiting for solution is the
problem of context-sensitive code parts. Of course not just the ambiguous fields,
but in Java Standard especially, since the container classes take advantage of the
toolkit of the Generics. First of all, we have to explore and classify the parts which
can lead to anomalies or errors if we directly transform them. Comprehensive
evalutaion is necessary, as well. In the future, we want to implement an integrated
development environment (IDE) plugin which wraps our solutions and provides
wide support to the users. All in all, our most ambitious goal is to become part of
the Java language.

8 Conclusion

Type parametrization is an essential construct in modern programming languages
with different backgrounds. For instance, C++ provides templates that are instan-

Instantiation of Java Generics 11

tiated by the compiler during compilation. Java offers generics that are based on
type erasure. According to the measurements, the runtime performance can be
significantly better when templates are in-use.

Previously, we created Java templates and a tool that instantiates them. A
new syntax was offered that was not compatible with existing code bases. There-
fore, our aim became the instantiation of Java generics: standard Java generics to
instantiate with a new tool. In this paper, we introduced the background of our
proof-of-concept tool and we have measured and evaluated the runtime efficiency
of the proposed approach. The instantiated generic performs significantly better
compared to the standard solution.

References

[1] Project Lombok. https://projectlombok.org/.

[2] Arnold, Ken, Gosling, James, and Holmes, David. Java(TM) Programming
Language, The (4th Edition). Addison-Wesley Professional, 2005.

[3] Babati, Bence, Pataki, Norbert, and Porkoláb, Zoltán. C/C++ preprocess-
ing with modern data storage devices. In Proceedings of the 13th IEEE In-
ternational Scientific Conference on Informatics, pages 36–40. IEEE, 2015.
DOI: 10.1109/Informatics.2015.7377804.

[4] Burrus, Nicolas, Duret-Lutz, Alexandre, Duret-Lutz, Re, Geraud, Thierry,
Lesage, David, and Poss, Raphael. A static C++ object-oriented program-
ming (SCOOP) paradigm mixing benefits of traditional OOP and generic pro-
gramming. In Proceedings of the Workshop on Multiple Paradigm with OO
Languages (MPOOL), 2003.

[5] Dragan, Laurentiu and Watt, Stephen M. Performance analysis of generics
in scientific computing. In Proceedigs of the Seventh International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05),
pages 93–100, 2005. DOI: 10.1109/SYNASC.2005.56.

[6] Ghosh, Debasish. Generics in Java and C++: A comparative model. ACM
SIGPLAN Notes, 39(5):40–47, 2004. DOI: 10.1145/997140.997144.

[7] Grigore, Radu. Java generics are turing complete. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, pages 73–85, New York, NY, USA, 2017. ACM. DOI: 10.1145/

3009837.3009871.

[8] Horváth, Gábor, Pataki, Norbert, and Balassi, Márton. Code generation in se-
rializers and comparators of Apache Flink. In Proceedings of the 12th Workshop
on Implementation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems, ICOOOLPS’17, pages 5:1–5:6, New York, NY, USA,
2017. ACM. DOI: 10.1145/3098572.3098579.

12 Péter Soha and Norbert Pataki

[9] Meyers, Scott. Effective STL. Addison-Wesley, 2001.

[10] Nam, Daye, Horvath, Amber, Macvean, Andrew, Myers, Brad, and Vasilescu,
Bogdan. MARBLE: Mining for boilerplate code to identify API usability
problems. In Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 615–627, 2019. DOI:
10.1109/ASE.2019.00063.

[11] Porkoláb, Zoltán. Functional programming with C++ template metapro-
grams. In Horváth, Zoltán, Plasmeijer, Rinus, and Zsók, Viktória, editors,
Central European Functional Programming School: Third Summer School,
CEFP 2009, Budapest, Hungary, May 21-23, 2009 and Komárno, Slovakia,
May 25-30, 2009, Revised Selected Lectures, pages 306–353, Berlin, Heidel-
berg, 2010. Springer. DOI: 10.1007/978-3-642-17685-2_9.

[12] Soha, Péter and Pataki, Norbert. Effective type parametrization in Java. AIP
Conference Proceedings, 2116(1):350007, 2019. DOI: 10.1063/1.5114360.

[13] Stroustrup, Bjarne. The C++ Programming Language (special edition).
Addison-Wesley, 2000.

[14] Szűgyi, Zalán, Sinkovics, Ábel, Pataki, Norbert, and Porkoláb, Zoltán. C++
Metastring Library and Its Applications. In Generative and Transforma-
tional Techniques in Software Engineering III: International Summer School,
GTTSE 2009, Braga, Portugal, July 6-11, 2009. Revised Papers, pages 461–
480. Springer, Berlin, Heidelberg, 2011. DOI: 10.1007/978-3-642-18023-1_

15.

[15] Torgersen, Mads, Hansen, Christian Plesner, Ernst, Erik, von der Ahé, Peter,
Bracha, Gilad, and Gafter, Neal. Adding wildcards to the Java programming
language. In Proceedings of the 2004 ACM Symposium on Applied Computing,
SAC ’04, pages 1289–1296, New York, NY, USA, 2004. ACM. DOI: 10.1145/

967900.968162.

