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Abstract

This paper deals with the densest packing of equal circles in a square
problem. Sharp bounds for the density of optimal circle packings have
given. Several known optimal and approximate circle packings contain
optimal substructures. Based on this observation it is sometimes easy to
determine the minimal polynomials of the arrangements.
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1 Four equivalent allocation problems

The paper deals with an unsolved allocation problem of the discrete
geometry. First of all let us see some equivalent problem settings.

Definition 1 P(r,,S) € P,, is a circle packing with radius r, in
[07 5]27 Where :Prn = {((xlayl)a L) (xnayn)) € [07‘5]2n | (xi - x]')Q +
(yi—y;)* > 4rp; @i, yi € [rn, S—r) (1 <0 < j <n)}. P(ra,S) € Py,

is an optimal circle packing, if 7, = Igna;z@ T

Problem BT Determine the optimal circle packings for n > 2.

Definition 2 A(m,,X) € A, is a point arrangement with mini-
mal distance m,, in [0, ¥]?, where A,,, = {((x1,91),---, (Tn,Yn)) €
0,527 | (@ — 23) + (s — y)* > m25 (1 <i < j <m)}. A(mn, %) €
Am, is an optimal point arrangement, if i, = max m,,.

mn

Problem PP Determine the optimal point arrangements for n > 2.

Definition 3 P'(R,s,) € P, is an associate circle packing with
radius R in [0, s,,], where P, = {((z1,y1),- .., (@n,yn)) € [0,5,])*" |



(i —2;)® + (yi —y;)® > 4R%* 2,y € [R,sn —R) (1 <i<j<n)}
P'(R,s,) € P; is an optimal associate circle packing, if 3, =
min s,.

P! 0

Problem % Determine the optimal associate circle packings for
n > 2.

Definition 4 A'(M,0,) € A, is an associate point arrangement

with the minimal distance M in [0, 0], where A}, = {((z1,91),.--,
(2n ) € 10,0 | (2 — )% + (i — ) > ME (1 <i < j < m)}.

A'(M,0,) € AL is an optimal associate point arrangement, if 7, =
min oy,.

AL #0

Problem ‘BY Determine the optimal associate point arrangements

for n > 2.

Theorem 1 Problem BT, B, BT and P} are equivalent, in the
sense that if Problem B can be solved for a fized n and ¢ values,
then the other Problems P} can be solved for all 1 < i < 4 values.

Proof: The centers of the circles in a packing P(7,,S) determine an
optimal point arrangement in a square of side length of S — 27, [19].
By scaling-up an optimal arrangement of n points in a square we
obtain an optimal point arrangement in another square of arbitrary
side length. By drawing circles by radius % around the points
in a point arrangement A(m,,Y) the packing will give an optimal
associate circle packing in a ¥ + m,, side square. By scaling-up an
optimal associate circle packing provides an optimal associate circle
packing with any radius. The centers of the circles in a packing
P'(3,, R) determine an optimal associate point arrangement in an
Sn — 2R side of square by a minimal distance of 2R. By scaling-up
this point arrangement gives an optimal associate point arrangement
A'(Gn, M). Drawing again circles around the points with radius &,
the circle packing will be optimal in a &,, + M side of square, hence
we return to an optimal circle packing P(7,,.S).

O
Proposition 1 The relations between the parameters m,,, T, Sn

and 7, are given in the Tables 1-2.

P(ry,S) A(mp, X)
P(ry,S) 1 Tn = 5y
A(my,X) My = % 1
P'(R, s,) 5, = 45 5y = Ut
A'(M,0,) | Tn = M SQ;an) T, = ]\m/I_TXL)

Table 1 Relations between the parameters of the problems.



P'(R,sp) A (M, o)
P(ry,S) Fn = 22 Tn = 300e)
A(mna E) My = gfl_%gR my, = ];I_f
P'(R, spn) 1 5, = 2BMATn)
A(M,0,) | 7, = MEa20) 1

Table 2 Relations between the parameters of the problems.

Proof: It follows from suitable scaling based on the technique de-
scribed in [19]. a

2 Some historical comments

To find P(7,,1) for a large n value is a great challenge in mathemat-
ics and computer sciences. From 1960 [11] until nowadays several
researchers tried to solve this problem in the traditional way “by
hand” and using computers too. As the structures of optimal pack-
ings are changing step by step, the determination of optimal packings
is hard. There are repeated pattern classes among the structures of
optimal packings but they do not cover every possible optimal struc-
tures [5, 12, 19].

It is clear that the circle packing problem is at one hand a dis-
crete geometrical problem and on the other hand a global optimiza-
tion problem. The earlier optimization models (as a continuous,
constrained global optimization problem, DC programming prob-
lem, all-quadratic optimization problem, etc.) and other approaches
(elimination methods “by hand” and based on computer-aided meth-
ods, energy function minimization, SA and TA techniques, billiard
simulation, LP-relaxation, etc.) have given many approximate pack-
ings and some proofs for the optimality [1, 2, 5, 7-10, 12-13, 15, 21].

Table 3 summarize the known optimal packings with their au-
thors. The optimal packings are known up to n = 27 and the n = 36
case.

Year Authors Results for n
1965 J. Schaer and A. Meir [16, 17] 8,9

1970 B. L. Schwartz [18] 6

1983 G. Wengerodt [22, 23, 24] 14,16,25
1987 K. Kirchner and G. Wengerodt [6] 36

1992 R. Peikert et al. [15] 10 - 20

1999 | K. J. Nurmela and P. R. J. Ostergard [13] | 7,21 — 27

Table 3 The authors of the known optimal packings.



To find optimal packings and to prove the optimality of pack-
ings is hard problem. Recently several papers have published not
only optimal packings but approximate packings too. Table 4 con-
tains the most important improvements in the last decade. A more
detailed history of Problem P (1 <4 <4)isin [8, 15, 20, 21].

Year Authors Results for n

1995 C. A. Maranas et al. [8] up to 30
1996 R. Graham and B. D. Lubachevsky [5] up to 61
1997 | K. J. Nurmela and P. R. J. Ostergard [12] | up to 50

2000 D. W. Boll et al. [1] 32,37, 48, 50
2001 L. G. Casado et al. 2] up to 100
2002 M. Locatelli and U. Raber [7] up to 40
Sub. E. Specht and P. G. Szabdé [21] up to 200

Table 4 The authors of approximate packings.

3 The density of packings

Definition 5 Let X be a compact convex subset of [0,1]>. The
density of a circle packing P(ry,1) in X is

N on'rim n'm2m
1 =555 (=i i)

where n' denotes the number of the circles (points) in X and V(X)
is the area of X. Let us denote by d([0, 1]2,n) the density of P(¥,, 1).

Remark 1 The finding of P(7,,1) is equivalent to the determina-
tion of the densest packing of n equal circles in [0, 1]2.

Theorem 2 For every n > 2

3—2\/§7r<d0,12, < —,
where the bounds are sharp.

Proof: It is known that , /ﬁ < My, [21]. This lower bound implies
a lower bound of the density:

nmw -
—————— <d([0,1]*,n).
(2 + V12n2)2 (10,3, m)
As the densities of optimal packings are known up to n = 27, it easy
to check that up to n = 13 circles the density of an optimal packing
is greater or equal to d([0,1],2) = (3 — 2v/2)7 ~ 0.539 (Table 5).



n approximate d, | n  approximate d,
2 0.5390120845 8 0.7309638253

3 0.6096448087 9 0.7853981634

4 0.7853981634 | 10  0.6900357853
5
6
7

0.6737651056 | 11  0.7007415778
0.6639569095 | 12 0.7384682239
0.6693108268 | 13  0.7332646949

Table 5 The density of packings up to n = 13 circles.

If n > 13 then after a short calculation the following inequality can
be proved:

(3-2V2)7 < < d([0,1%,n).

nm
(2 + V12n2)2
The lower bound is sharp, because d([0, 1]?,2) = (3 — 2v/2)7.

Let us study the upper bound. First we prove that for every n > 2

d([0,1]2,n) < ——.

V12
This statement is equivalent with
T < fi(n) = 2+\/2\/§n
" ! Van—-2

It is not to hard to prove this inequality using a corollary of Oler’s
theorem [4]:

If X is a compact convex subset (with a perimeter of S(X)) of the
plane, then the number of points with mutual distance of at least 1
is at most 5

V3

This statement gives the following upper bound for 7,,:

V(X) + %S(X)-i—]..

1+, /1+(n—-1)=%
mn < fa(n) = " “n

n—1

After a calculation it can be proven that fo(n) < fi(n), for n > 2.

Secondly, we show that there is a point arrangement series {S;}2,,
for which lim d(S;,n;) = %, thus the upper bound of the density
1—00 12

is also sharp.



The proof is constructive. Let us denote by [[p,q]] (where p?* <
3q%, ¢ < 3p?) the following lattice point arrangement class: Divide
the parallel sides of the square for p and ¢ equal parts, to obtain pq
rectangulars (see Figure 1 for p = 3,¢q = 5,n = 12). Put the first
point in the lower left edge of square and put the others in every
second gridpoints [14].

—@® ® ]
[ @ o
—@® ® @
[ J L *

Figure 1. The [[3,5]] lattice arrangement.

Let us consider the following packing series {S;};°;:

Sy=11,1]], S2=113,5]],
S; =451 — Si—2,
using the operations

[[p1, ¢ul] £ [[p2, ¢2]] = [[p1 £ P2, @1 £ g2]]
Alp,dll = [, Al (A e Z27)

(it is easy to prove that these operations are well-defined).

The limit density of the packing series {S;},,is 15> because S; =
2 2
(lpi,ai]], n(S:) = Mém, m(S;) = %, therefore

N2
S 500 = Jim 0SS =

1 1 i i
g r ) (@Y Emew
' T+ m(S;)?

3
—_
I
S
3 o~

where n(S;) denotes the number of the points in S;, and m(S;) is
the minimum distance between the points in S;.
O

Remark 2 It is easy to prove on the previous way that for every
n>4

T 2

Z S d([oa 1] an)a
and the density of square-lattice packings is always 7.



4 Optimal substructures

Definition 6 A circle packing/point arrangement in X C [0,1]?
is an optimal substructure if the density d(X,n') is maximal in X,
where n' denotes the number of the circles/points in X.

Figures 2 and 3 show two examples for optimal substructures where
X is a square or a circle. The optimality of packing of 19 equal
circles in a circle was proved in [3].

24 circles in the unit square 15 circles in the unit square

radius = 0.101381800432  density = 0.774963259758 redius = 0.127166547515  density = 0.762056010927
distance = 0 254333095030  contacts = 5§ distanca = 0341081377402  contacts = 36

Figure 2. Optimal substructure in an optimal packing, where X is
a square.

23 circles in the unit square 19 circles in the unit circle

radiuz = 0.102802323380  density = 0.763631032126 radiuz = 0.116000000031  density = 0.803192144613
distance = 0.258819045103  contacts = 56 ratio = 4.863703305156  contacts = 48

Figure 3. Optimal substructure in an optimal packing, where X is
a circle.

It is interesting that the known optimal packings (and many ap-
proximate packings) contain sometimes optimal substructures. For
studying the connection between the packings a good concept is the
containment graph.



Definition 7 The containment graph for a fixed set X is a directed
graph, where the nodes are circle packing instances. There is a di-
rected edge from A to B, if A is an optimal substructure in B.

There is an example of a containment graph in Figure 4.

10 23‘7‘/8473—>11
13 24 (2) 21 22 6

T 415 0
18
N
24 (3)
14«—9 »24(1) 2
| 9 1702 |
2 16— 253 5

Figure 4. The containment graph, where X is a square with paral-
lel sides with the unit square for the known optimal packings. There
are two and three different included optimal packings for n=17 and
24, respectively.

Sometimes, when a packing contains optimal substructures, it is easy
to calculate the minimal polynomial based on the minimal polyno-
mial of the substructures. In the following section we introduce the
concept of the generalized minimal polynomial of packings and we
use it to calculate the traditional minimal polynomials of the ar-
rangements.

5 Generalized minimal polynomials

Definition 8 pl(x) is a generalized minimal polynomial, where
x € {r,m,s,c} and I € {S,%, R, M} respectively, and the first pos-
itive root of the polynomial pl () is Z,, and the degree of p!(z) is
minimal. We use the P, (z) = pl(z) notation too.

Remark 3 If p! (z) is a generalized minimal polynomial, then cp’, ()
is also a minimal polynomial, where ¢ # 0 real number.

Proposition 2 The relations between the minimal polynomials are
described in Table 6.



Pa(r) = P =5 (m=2r) | pR(m) = pi=rtm(s:= )
PE=S(s = 1) PY= (0 = m)

pU=5-21(g 1= ) pE=EI(p o= 1)

pa(s) = p = (e =2r) | pi(o) = pp=M*o(r:=9)
PER(r i= 5) PN (m = )

= (m = 29) py MM (s = 5)

Table 6. Relationships between the minimal polynomials.

Proof: It is based on Proposition 1, with a short calculations.
O

Example 1 Let us calculate pf| () if we know that
Pyi(m) = m®+8m" —22m° +20m® +18m* — 24m* — 24m* 4 32m 8.

It is easy to check that pZ(m) = P,(m)X9%F so p¥ (m) = m® +
8mTY —22mS%2 +20m5%3 +18m ¥t — 24m3%5 —24m>¥0 4 32m ¥ —
838,

Using the pS(r) = p>'=%72"(m := 2r) relation

pii(r) = pri 07 (m= 2r) = (2r)8 4 8(2r)7(S — 2r) — 22(2r)%(S -
2r)2 4+ 20(2r)°(S — 2r)% + 18(2r)4(S — 2r)* — 24(2r)3(S — 2r)® —
24(2r)2(S — 2r)% 4+ 32(2r)(S — 2r)7 — 8(S — 2r)® = —18176r% +
45056175 —63360r55%+56192r°S% —30432r*51 499207255 — 18887256
+192rS7 — 858,

Divide by -8 the previous generalized minimal polynomial is

PS5 (r) = 227208 — 5632175 + 7920r55% — 7024r55% + 3804r15" —
1240735° 4+ 236r2S6 — 24757 + S8.

5.1 Calculation of minimal polynomials from the
minimal polynomials of substructures

Proposition 3 Let us consider a point arrangement in [0,1]%. Let
us suppose, there are N > 2 optimal substructures of the previous
arrangement in a square of sides X1, %s,..., Xn. If fs(z) is a poly-
nomial and there exist 1 < 4,j < N such that ¥; = fx(X;), then



the minimal polynomial pZ (m) can be calculated from the minimal
polynomials of the optimal substructures in the following way:

pa(m) = Res(p%i (m), ™) (m), 5;) =

det(Syl(py: (m), pf{™) (m), £)).
Proof: It follows immediately from the definition of the resultant.
O
Example 2 Determine Ps4(m) based on p3; (m) and p3?(m).

i I e v
N ¥ f\/&/
LD XD
Sl AC) LR
ARCC T () <
KT TR NOT=OAROR

m=0.20560464675956 n=34 m=0.20276360086322 n=35

r=0.08527034435052 c= r=0.08429071212235 c-80

d=0.77664906433227 f=0 d=0.78122721299871 f=0

Figure 5. Approximate circle packings for n = 34 and n = 35.

In this example

fe(z)y=X—zand ¥ =1,

Pyt (m) = 16m*—16m2x2 + x4 prr(m) =m—3y =m—1435,
> )
P3y(m) = Res(pyi (m),py” " (m), 1) =
1 0 0 0 1
m—1 1 0 0 0
= 0 m—1 1 0 —16m? | = m*+28m3 —10m? —4m+1
0 0 m—1 1 0
0 0 0 m—1 16m*

Proposition 4 Let us consider the minimal polynomial P,(m) and
suppose that

amqy + b b—dm,
my,=——— and my = ————,
cmy, +d cm, — a

where a,b,c, and d are real numbers. The minimal polynomial
P,/ (m) can be calculated in the following way:

am +b
cm+d

Py (m) =P, ( > (em + d)desr.

10



cm—+d
mial and m,, is a root of this polynomial. It is a minimal polynomial
because if it would not be the case then there would be another poly-
nomial R, with R(m,,) = 0 and

Proof: It is easy too see that P, ( M) (em+d)4e8 P~ is a polyno-

am+b
d deg P,
cgft < deg (cm+d

> (em + d)des

But this is impossible since in this case

b—dm
cm —a

(deg R =)degR ( > (em — a)8F < deg P,,

which contradicts that P,(m) is a minimal polynomial.

O
Example 3 Let us determine P35(m).
a) Based on Proposition 3 using p>2 (mm) and p}2(m), we have
felx)y=X—zand X =1,
prd(m) = 2m* — 4mPY, — 2m%? + 4m33 — B4,
pyi(m)=2m—Xy =2m—1+43,
Py5(m) = Res(pi3 (m),py~ " (m), $1) =
1 0 0 0 -1
2m —1 1 0 0 4m
0 2m — 1 1 0 —2m? | = 46m* —84m>+50m>—12m+1.
0 0 2m — 1 1 —4m3
0 0 0 2m -1 2m*
b) Based on Proposition 4 using
Poy(m) = m* — 16m> + 20m* — 8m + 1
and the mgs = 2ry4 relationship,
mss = 2r9q = M4 , SO Moy = U and
mog + 1 1 —mas
Ps5(m) = Pyy <1L> (1—m)* = 46m* — 84m? + 50m* — 12m + 1.
-m

11



5.2 Determining minimal polynomials in a differ-
ent way

Sometimes the structure of an optimal packing is not symmetric and
it does not contain an optimal substructure. In this case a possi-
ble way to calculate the minimal polynomial is the following: Let
us define a quadratical system of equations to the packing where
an equation reflects the fact that distance of two points is m,. To
determine the minimal polynomial we have to eliminate all vari-
ables without m,,. Using Buchberger’s algorithm (Grébner basis)
or another technique based on the resultant and a symbolic algebra
system (e.g. Maple, Mathematica, CoCoA, Macaulay2, Singular,
etc.) this can be done, but sometimes this is also hard [15].

Example 4 Let us determine Pig(m).

: \ / T \\ P_9(x_9,y_9) P_10(x_10,y_10)
Sraw.

P_8(x_8,y_8)

P_6(x_6,y_6)

m

WO
LA Al

m=0.42127954398390 n=10 m
r=0.14820432256522 c=21 [
d=0.69003578526417 =0 P_I(x_l,y_1) P_2(x_2y_2) P_3(x_3,y_3)

Figure 6. The optimal packing of 10 circles/points in the unit
square.

The corresponding quadratical system of equations is the following;:

(1 —22)* + (y1 — y2)? = m? (1 —24)® 4+ (y1 —ya)? =m?
(w2 —23)* + (y2 — y3)? = m? (x2 —@5)” + (y2 —y5)> =m?
(x5 —w6)*> + (y5 — ys)? = m? (x5 —w6)” + (y3 — ys)? =m?
(x4 —27)® + (ya —yr)> =m? (x5 —x7)® + (y5 —yr)> =m?
(x7 —m0)® + (y7 —y9)® = m; (x7 — 210)* + (y7 — Y10)* = mz

(28 — 210)” + (ys — y10)> =m (z6 — 28)* + (ys —ys)* =m
The points Py, P, P3, Py, Ps, Ps, Py, and Pyg are on the side of the
square thus 1 = x4 =29 = y2 = y3 = 0 and g = 28 = Y9 = Y10 =
1. It is easy to see that y4 = y1 + m, 3 = x5 + m and yg = yg + m.
P, P3 P; Py is a thombus thus 25 = 1 —m and y5 = yg. In the Py P; Py
and Py P; Py isosceles triangulars (thus the points Py, P; and Pig
are on a straight line) these equalities holds: y7; = (1 + y1 +m)/2
and x7 = x10/2.

12



Using the previous observations all variables are eliminated with the
exception of xs,x10,¥1,ys and m. The system of equations is then
reduced to the form:

ity o= om?
2 2 _ 2
rip+(1 -y —m)° = (2m)°,
11—z’ +(1—ys —m)®> = m?,
(1—zy—m)>+y2 = m?,
2=2m—z10)>+Q2ys —1—y1 —m)®> = (2m)*%

Let us determine the minimal polynomal with Maple 8 based on the
Groebner package:

>with(Groebner) :univpoly(m, [polynomials],{zs,y1,Z10,¥s5, m}) ;.

The obtained minimal polynomial Pjo(m) is given in the following
subsection.

5.3 A list of the known minimal polynomials P, (m)

(2 < n <100)

n =2 m2 —2

n=3 m* — 16m? + 16

n=4 m—1

n=>5 2m? — 1

n==6 36m?2 — 13

n="7 m? — 8m + 4

n=2~8 m* —4m?2 + 1

n=29 2m — 1

n =10 1180129m 8 — 11436428m17 + 98015844m 16 — 462103584m1°

3

+1145811528m4 —1398966480m 13 +227573920m 12 4+ 1526909568m!1
—1038261808m 10 — 2960321792m? + 7803109440m8 — 9722063488 m7
+7918461504m° — 4564076288m° + 1899131648m* — 563649536m>
+114038784m2 — 14172160m + 819200

=11 mB+8m”—22m8+20m°+18m* —24m?® —24m2+32m—8

=12 225m?2 — 34

=13 5322808420171924937409m 40 + 586773959338049886173232m39
+13024448845332271203266928m38 — 12988409567056909990170432m37
—66972175395892949739372512m36 — 271451157211281654252175360m 3%
+1438322342979585076139742976m3% — 335429895467663916497996800m33
—6543699259726848821592216832m32 +9441371361011345362166468608m31
+10182180602633501397232254976m30 —42246019864541071922661621760m 22
+37620100408876038921186476032m>® +-28699095956807539331396009984m 27
—102587608293645346411004952576m 2% +103509313296807875445571190784m 2%

13



—23909360523055293307841740800m24 —62735581440162634955836358656m23
+88454871551963142041952583680m22 —53012494559549527012040245248m 21
+2135173605242212884072628224m2° +26378985900767549703436894208m 19
—26497225761631816480192462848m18 +12731474183761933022491836416m 17
—398432339928038268662185984m16 — 4422001291286852186186711040m,15
+3658751900977247115934695424m 14 —1429726216634427968279543808m 13

+57770773621828718826618880m 12 + 275582370688699861317976064m '
—171632310725283375512289280m 10 + 46974915155899860050247680m°
+1760067432596599241441280m8 — 7491112055212411797372928m7
+3652998504696614282592256m° — 1072642406499215430647808m>
+217086289997205686190080m* — 30811405631471617048576m>
+2960075719794736758784m? — 174103532094609162240m

+4756927106410086400

n =14 13m? — 16m + 4

n=15 2m* —4m3 —2m?2 +4m —1

n =16 3m—1

n=17 m® —4m” +6m° —14m° +22m* — 20m3 +36m2 —26m+5

n =18 144m? — 13

n=19 242m10 — 1430m° — 8109m8 + 58704m” — 78452m°
—2918m° + 43315m* + 39812m* — 53516m?2 + 20592m
—2704

n =20 128m? — 96m + 17

n =23 16m* — 16m? + 1

n=24 m* —16m> +20m? —8m + 1

n =25 Im -1

n =27 1600m?2 — 89

n =30 1202m? — 252m + 13

n =34 m* +28m> — 10m? —4m + 1

n =235 46m* — 84m® + 50m? — 12m + 1

n = 36 5m — 1

n =39 1732m? — 68m — 17

n =42 864m? — 360m + 37

n =52 7056m? — 193

n = 56 1715m? — 588m + 50

n =99 28900m? — 389

5.4 An experimental way to guess minimal poly-
nomials using Maple 8

Recently M. Cs. Markét and T. Csendes [9, 10] have developed a reli-
able numerical computer aided method to find the optimal solution
of the circle packing problem. This approach is based on interval
arithmetic computations and gives high accuracy numerical results.
They studied the n = 28,29, and 30 cases. If the precision of the
computation is good enough, sometimes the minimal polynomial can
be guessed using e.g. Maple 8. Applying the

14



>Digits:=a;
>with(PolynomialTools) :MinimalPolynomial (m,b);

commands, where a is the accuracy of approximation of m, and b is
the degree of the approximating minimal polynomial. Table 7 sum-
marizes the accuracy necessary to find the exact minimal polynomial
P, (m).

n degree accuracy | m degree accuracy
2 2 3|18 2 10
3 4 10 | 19 10 58
4 1 3120 2 10
5 2 4|23 4 10
6 2 9|24 4 10
7 2 6 | 25 1 4
8 4 5|27 2 15
9 1 3130 2 13
10 18 193 | 34 4 10
11 8 20 | 35 4 13
12 2 11 | 36 1 4
13 40 1217 | 39 2 13
14 2 7| 42 2 13
15 4 7| 52 2 14
16 1 4 | 56 2 14
17 8 19 |1 99 2 17

Table 7. The necessary accuracy in digits to determine the exact
minimal polynomial P, (m).

6 Summary

In this work we investigated the relations between the parameters
of four equivalent allocation problems. We proved sharp constant
bounds on the density of packings. Some new concepts (optimal
substructure, containment graph and generalized minimal polyno-
mial) have been introduced. Based on optimal substructures, we
have calculated some new minimal polynomials.
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