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Abstract The present review paper summarizes the research work done mostly by
the authors on packing equal circles in the unit square in the last years.

1. Introduction
The problem of finding the densest packing of n equal objects in a

bounded space is a classical one which arises in many scientific and en-
gineering fields. For the two-dimensional case, it is a well-known prob-
lem of discrete geometry. The Hungarian mathematician Farkas Bolyai
(1775–1856) published in his principal work (‘Tentamen’, 1832–33 Bolyai
(1904)) a dense regular packing of equal circles in an equilateral triangle
(see Figure 1.1). He defined an infinite packing series and investigated
the limit of vacuitas (the gap in the triangle outside the circles). It is
interesting that these packings are not always optimal in spite of the fact
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Figure 1.1. The example of Bolyai for packing 19 equal circles in an equilateral
triangle.

that they are based on hexagonal grid packings (Szabó (2000)). Bolyai
was probably the first author in the mathematical literature who studied
the density of a series of packing circles in a bounded shape.

Of course, the work of Bolyai was not the very first in packing circles.
There were other interesting early packings in fine arts, relics of religions
and in nature (Tarnai (1997)), too. The old Japanese sangaku problems
(Fukagawa and Pedoe (1989); Szabó (2001)) contain many nice results
related to the packing of circles. Figure 1.2 shows an example of packing
6 equal circles in a rectangle.

The problem of finding the densest packing of n equal and non-
overlapping circles has been studied for several shapes of the bounding
region, e.g. in a rectangle (Ruda (1969)), in a triangle (Graham and
Lubachevsky (1995)) and circle (Graham, Lubachevsky, Nurmela, and
Österg̊ard (1998)). Our work focuses only on the ’Packing of Equal
Circles in a Square’-problem.

The Hungarian mathematicians Dezső Lázár and László Fejes Tóth
have already investigated the problem before 1940 (Staar (1990); Szabó
and Csendes (2001)). The problem first appeared in literature in 1960,
when Leo Moser (1960) guessed the optimal arrangement of 8 circles.
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Figure 1.2. Packing of 6 equal circles in a rectangle on a rock from Japan.

Schaer and Meir (1965) proved this conjecture and Schaer (1965) solved
the n = 9 case, too. Schaer has given also a proof for n = 7 in a letter
to Leo Moser in 1964, but he never published it. There is a similar
unpublished result from R. Graham in a private letter for n = 6. Later
Schwartz (1970) and Melissen (1994) have given proof for this case (up
to n = 5 circles the problem is trivial).

The next challenge was the n = 10 case. de Groot, Peikert, and Würtz
(1990) solved this after many authors published new and improved pack-
ings: Goldberg (1970); Milano (1987); Mollard and Payan (1990); Schaer
(1971); Schlüter (1979) and Valette (1989). Some unpublished results are
known also in this case: Grünbaum (1990); Grannell (1990); Petris and
Hungerbüler (1990). The proof based on a computer aided method, and
nobody published a proof using only pure mathematical tools. There
is an interesting mathematical approach of this case in Hujter (1999).
Peikert, Würtz, Monagan, and de Groot (1992) found and proved opti-
mal packings up to n = 20 using a computer aided method. Based on
theoretical tools only, G. Wengerodt solved the problem for n = 14, 16
and 25 (Wengerodt (1983); Wengerodt (1987); Wengerodt (1987b)), and
with K. Kirchner for n = 36 (Kirchner and Wengerodt (1987)).

In the last decades, several deterministic (Locatelli and Raber (2002);
Markót (2003); Markót and Csendes (2004); Nurmela and Österg̊ard
(1999); Peikert, Würtz, Monagan, and de Groot (1992)) and stochas-
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tic (Boll, Donovan, Graham, and Lubachevsky (2000); Casado, Garćıa,
Szabó, and Csendes (2001); Graham and Lubachevsky (1996)) methods
were published. Proven optimal packings are known up to n = 30 (Nur-
mela and Österg̊ard (1999); Peikert, Würtz, Monagan, and de Groot
(1992); Markót (2003); Markót and Csendes (2004)) and for n = 36 (
Kirchner and Wengerodt (1987)).

Approximate packings (packings determined by computer aided nu-
merical computations without a rigorous proof) and candidate packings
(best known arrangements with a proof of existence but without proof
of optimality) were reported in the literature for up to n = 200: Boll,
Donovan, Graham, and Lubachevsky (2000); Casado, Garćıa, Szabó,
and Csendes (2001); Graham and Lubachevsky (1996); Nurmela and
Österg̊ard (1997); Szabó and E. Specht (2005). At the same time,
some other results (e.g. repeated patterns, properties of the optimal
solutions and bounds, minimal polynomials of packings) were published
as well (Graham and Lubachevsky (1996); Locatelli and Raber (2002);
Nurmela, Österg̊ard, and aus dem Spring (1999); Tarnai and Gáspár
(1995-96); Szabó (2000b); Szabó, Csendes, Casado, and Garćıa (2001);
Szabó (2004)).

2. The packing circles in a square problem
The packing circles in a square problem can be described by the fol-

lowing equivalent problem settings:

Problem 1 Find the value of the maximum circle radius, rn, such that
n equal non-overlapping circles can be placed in a unit square.

Problem 2 Locate n points in a unit square, such that the minimum
distance mn between any two points is maximal.

Problem 3 Give the smallest square of side ρn, which contains n equal
and non-overlapping circles where the radius of circles is 1.

Problem 4 Determine the smallest square of side σn that contains n
points with mutual distance of at least 1.

2.1 Optimization models
The problem is at one hand a geometrical problem and on the other

hand a continuous global optimization problem. Problem 2 can be writ-
ten shortly as a 2n+1 dimensional continuous nonlinear constrained (or
max-min) global optimization problem in the following form:

max
sk∈[0,1]2, 1≤k≤n

min
1≤i<j≤n

‖si − sj‖ .
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This problem can be considered in the following ways:

a) as a DC programming problem Horst and Thoai (1999):

A DC (difference of convex functions) programming problem is a math-
ematical programming problem, where the objective function can be
described by a difference of two convex functions. The objective func-
tion of the problem can be stated as the difference of the following two
convex functions g and h:

g(z) = 2
2n∑

j=1

z2
j ,

h(z) = max






2

∑

j∈J\Jik

z2
j + (zi + zk)2 + (zn+i + zn+k)2


: 1 ≤ i < k ≤ n



 ,

where
J = {1, . . . , 2n},
z = (x1, . . . , xn, y1, . . . , yn),
Jik = {i, k, n + i, n + k}.

b) or as an all-quadratic optimization problem.

The general form of an all-quadratic optimization problem (Raber
(1999)) is

min
[
xTQ0x + (d 0)Tx

]

subject to

xTQ lx + (d l)Tx + c l ≤ 0 l = 1, . . . , p

x ∈ P,

where Q l (l = 0, . . . , p) are real (n+1)×(n+1) matrices, d l (l = 0, . . . , p)
are real (n+1)-dimensional vectors, c l (l = 1, . . . , p) are real numbers, p
is the number of constraints and P is a polyhedron. Solving the general
case of an all-quadratic optimization problem is NP-hard.

The problem with the following values is a special all-quadratic opti-
mization problem with a linear objective function (Szabó and E. Specht
(2005)):
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Q0 = 0, xT = (x0, x1, . . . , x2n), (d 0)T = (−1, 0, . . . , 0),

(d l)T = 0, c l = 0, p =
n(n− 1)

2
, P = [0,

√
2]× [0, 1]2n,

[Ql]ij = Ql′l′′
ij =





−1, if i = j =





2l′,
2l′′,

2l′ + 1,
2l′′ + 1,

1, if i = j = 1,
i = 2l′′ + 1 and j = 2l′ + 1,
i = 2l′′ and j = 2l′,
i = 2l′ + 1 and j = 2l′′ + 1,
i = 2l′ and j = 2l′′,

0, otherwise,

1 ≤ i, j ≤ 2n + 1,

1 ≤ l′ < l′′ ≤ n.

In this model, x0 is the minimal distance between the points. The
coordinates of the ith point (1 ≤ i ≤ n) are (x2i−1, x2i).

These models can be of interest, to be used for mathematical pro-
gramming solvers as hard optimization problems. The investigations
show that those approaches are effective that utilize the geometrical
properties of the problem.

3. Properties of optimal packings and bounds
Recently, Locatelli and Raber (2002) proved two engaging properties

that must be satisfied by at least one optimal solution of Problem 2.
These theorems state the intuitive fact that as many points as possible
should be located along the boundary of the square.

Theorem 1.1 (Locatelli and Raber (2002)) There exists always an op-
timal solution of Problem 2 such that at each vertex of the square one
and only one of the following conditions hold:

at least one point of the optimal solution coincides with that vertex
of the square,

two points of the optimal solution belong to the edge determined
by the vertices and have a distance of mn, where mn denotes the
minimal distance between the points in the optimal solution.
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Theorem 1.2 (Locatelli and Raber (2002)) There exists always an opti-
mal solution of Problem 2 such that along each edge of the square there is
no portion of the edge of width greater than or equal to twice the optimal
distance mn which does not contain any point of the optimal solution.

Using two another generalized theorems we can give lower and upper
bounds for mn.

Theorem 1.3 (Hadwiger (1944)) Let us denote by X a subset on the
plane by bordering a Jordan curve. If Mn denotes the maximum of
minimal distance between n points in X, then

√
2A(X)√

3n
≤ Mn,

where A(X) is the area of X.

Theorem 1.4 (Folkman and Graham (1969)) Let us denote by X a
compact convex subset on the plane. The number of points with mutual
distance of at least 1 can be at most

2√
3
A(X) +

1
2
P (X) + 1,

where A(X) is the area and P (X) is the perimeter of X.

After a short calculation it can easily be shown that these inequalities
are equivalent with the following lower and upper bounds for mn, where
X is a unit square:

√
2√
3n

≤ mn ≤ 1
n− 1

+

√
1

(n− 1)2
+

2√
3(n− 1)

. (1.1)

Using these inequalities one may find that, if n tends to infinity,

lim
n→∞

√
n mn =

√
2√
3
, thus

mn ≈
√

2√
3n

.

Szabó, Csendes, Casado, and Garćıa (2001) have provided another
lower bound using regular patterns and in Szabó, Csendes, Casado, and
Garćıa (2001); Tarnai and Gáspár (1995-96) heuristic upper bounds were
studied based on the computation of the areas of circles and minimum
gaps among the circles.
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3.1 Computer aided approaches
In this subsection we give an overview of the most important earlier

methods to find approximate packings. Several strategies were used, e.g.
nonlinear programming solver (MINOS, Maranas, Floudas, and Pardalos
(1995)) and Cabri-Geométry software (Mollard and Payan (1990)).

Unfortunately, these approaches were good only for small numbers
of circles. Here we summarize some useful earlier approaches to find
approximate packings for higher n.

3.1.1 Energy function minimization. By virtue of

min
1≤i<j≤n

‖si − sj‖ = lim
m→−∞


 ∑

1≤i<j≤n

‖si − sj‖m




1
m

the problem is relaxed as

min
si∈[0,1]2, 1≤i≤n

∑

1≤i<j≤n

1
‖si − sj‖m .

This objective function can be interpreted as a potential or energy func-
tion. A physical analogon of this approach is to regard the points as
electrical charges (all positive or all negative) which are repulsing each
other. If the minimal distance between the charged particles increases,
the corresponding value of the potential function decreases. Nurmela
and Österg̊ard (1997) used a similar energy function with large posi-
tive integer m values, where λ is scaling factor to prevent numerical
overflows:

∑

1≤i<j≤n

(
λ

||si − sj ||2
)m

.

Introducing xi = sin(x
′
i) and yi = sin(y

′
i), it transforms into an un-

constrained optimization problem in variables x
′
i, y

′
i, where the coordi-

nates of the centers of the circles fulfill the constraints −1 ≤ xi ≤ 1,
−1 ≤ yi ≤ 1.

They published candidate packings up to 50 circles using a combi-
nation of Goldstein-Armijo backtracking linear search and the Newton
method for the optimization.

3.1.2 Billiard simulation. The billiard simulation method is
physically motivated too. Let us consider a random arrangement of the
points. Draw equal circles around the points without overlapping. Each
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circle can be considered as a ball with an initial radius, moving direction
and speed. Start the balls and increase slowly the common radius of
them. The swing of each ball during the process will be less and less.
The algorithm stops when the packing or a substructure of the pack-
ing becomes rigid. Using billiard simulation Graham and Lubachevsky
(1996) reported several candidate packings for up to 50 circles and for
some values beyond.

3.1.3 A perturbation method. Boll, Donovan, Graham, and
Lubachevsky (2000) used a stochastic algorithm which gave improved
packings for n = 32, 37, 48, and 50. A brief outline of their method is

1. Step: Consider n random points in the unit square,
2. Step: define s = 0.25 as an initial value,
3. Step: for each point

a) perturb the place of the center by s in the directions of North,
South, East, or West,

b) if during the movement the distance between the point and
its nearest neighbour becomes greater, update the new loca-
tion of the point,

4. Step repeat Step 3 while movable points exist,
5. Step s := s/1.5, and if s > 10−10 then continue with Step 3.

Using the previous simple algorithm good candidate packings can be
found after some millions of iterations. They have found unpublished
approximate packings up to n = 200. Douglas Hanson, an 8th grade
student from Texas, has recently improved some of them using Donovan’s
program (see http://www.packomania.com).

3.1.4 TAMSASS-PECS. The TAMSASS-PECS (Threshold
Accepting Modified Single Agent Stochastic Search for Packing Equal
Circles in a Square) method is based on the Threshold Accepting global
optimization technique and a modified SASS local optimization algo-
rithm Solis and Wets (1981). The algorithm starts with a pseudoran-
dom initial packing, a standard deviation and with a threshold level.
The algorithm improve the current solution by an iterative procedure.
At every step it tries to find a better position of the actual point using a
local search. The stopping criterion is based on the value of the standard
deviation, which is decreased at every iteration. The framework of the
method is the Threshold Accepting approach. It is a close alternative of
the Simulated Annealing algorithms. It accepts every move that leads
to a new approximate solution not much worse than the current one and
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rejects other moves. Using TAMSASS-PECS Casado, Garćıa, Szabó,
and Csendes (2001) reported approximate packings up to n = 100 and
improved some earlier packings.

3.1.5 A deterministic approach based on LP-relaxation.
The circle packing problem can be regarded as an all-quadratic opti-
mization problem, i.e. an optimization problem with not necessarily
convex quadratic constraints. The hardness is due to the large num-
ber of constraints. This approach provides a rectangular subdivision
branch-and-bound algorithm. To give an upper bound at each node of
the branch-and-bound tree, M. Locatelli and U. Raber used the spe-
cial structure of the constraints and gave an LP-relaxation Locatelli and
Raber (2002). They have found candidate packings for up to 39 circles
proving the optimality theoretically within a given accuracy.

3.1.6 The MBS algorithm. The basic idea of the approach
MBS (Modified Billiard Simulation) is as follows (Szabó and E. Specht
(2005)): Distribute randomly n points inside the unit square and blow
them up in a uniform manner. This can be done by incrementing the

radii gradually from an initial value of r0 =
√

10
23nπ (which is a safe lower

bound). In early stages of the process, when the distance between the
small circles is much greater than their size and no collisions occur, there
is no need to change their positions. As the circles grow, we have to deal
with collisions (also among the circles and the boundaries). During the
process when the decrease is too small or the number of iterations is
larger than a given number, the calculation stops.

The efficiency of the MBS algorithm comes from a significant reduc-
tion of computational costs. The basic idea is as follows: It is not nec-
essary to calculate and store the mutual distance between two circles if
they are too far from each other and will never meet. For the numerical
calculation the program uses two matrices CCD and CED. Matrix CCD
stores the adjacency between the objects themselves, and matrix CED
holds these between the objects and the sides of the square. At start,
all matrix elements are set to NEAR which means that only such pairs
of circles will be checked during the calculation. When (after thousands
of collisions) a mutual distance of a pair is great enough, then the value
is set to FAR which means that this contact will never occur in later it-
erations. As long as the program runs, the cost of the subroutine which
determines the contacts will become less and less.
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n exact rn exact mn approximate mn dn

2 1
2
(2−√2)

√
2 1, 4142135624 0, 5390120845

3 1
2
(8− 5

√
2 + 4

√
3− 3

√
6)

√
6−√2 1, 0352761804 0, 6096448087

4 1
4

1 1, 0000000000 0, 7853981634

5 1
2
(−1 +

√
2) 1

2
m2 0, 7071067812 0, 6737651056

6 1
46

(−13 + 6
√

13) 1
6

√
13 0, 6009252126 0, 6639569095

7 1
13

(4−√3) 4− 2
√

3 0, 5358983849 0, 6693108268

8 1
4
(1 +

√
2−√3) 1

2
m3 0, 5176380902 0, 7309638253

9 1
6

1
2

0, 5000000000 0, 7853981634

10 – – 0, 4212795440 0, 6900357853

11 (see separately) (see separately) 0, 3982073102 0, 7007415778

12 1
382

(−34 + 15
√

34) 1
15

√
34 0, 3887301263 0, 7384682239

13 – – 0, 3660960077 0, 7332646949

14 1
33

(6−√3) 2
13

(4−√3) 0, 3489152604 0, 7356792555

15 1
2
r3 2 r8 0, 3410813774 0, 7620560109

16 1
8

1
3

0, 3333333333 0, 7853981634

17 – – 0, 3061539853 0, 7335502633

18 1
262

(−13 + 12
√

13) 1
2
m6 0, 3004626063 0, 7546533579

19 – – 0, 2895419920 0, 7523078967

20 1
482

(65− 8
√

2) 1
16

(6−√2) 0, 2866116524 0, 7794936869

21 – – 0, 2718122554 0, 7533577029

22 – – 0, 2679584016 0, 7716801121

23 1
2
(−7− 5

√
2 + 4

√
3 + 3

√
6) 1

4
m3 0, 2588190451 0, 7636310321

24 1
92

(21− 5
√

2 + 3
√

3− 4
√

6) r3 0, 2543330950 0, 7749632598

25 1
10

1
4

0, 2500000000 0, 7853981634

26 – – 0, 2387347572 0, 7584690905

27 1
3022

(−89 + 40
√

89) 1
40

√
89 0, 2358495283 0, 7723114565

28 – – 0, 2305354936 0, 7718541114

29 – – 0, 2268829007 0, 7789062418

30 1
1202

(126− 5
√

10) 1
75

(20−√10) 0, 2245029645 0, 7920190265

Table 1.1. The numerical results for n=2 – 30.

It is useful to consider not only random arrangements for the initial
packing but hexagonal or regular lattice packings too. Sometimes the re-
lationship between the number of the circles and the structure of packing
can provide a good initial configuration. The code and the found pack-
ings (up to n = 300) can be downloaded from the Packomania web-site:
http://www.packomania.com/.

In Table 1.1 we have summarized the numerical results of the known
optimal packings.
r11 = 1

568

�
176− 9

√
2− 14

√
3− 13

√
6− 2

p
−16523 + 12545

√
2− 9919

√
3 + 6587

√
6
�
, and

m11 = 1
4

�
−4− 3

√
2 + 2

√
3 + 3

√
6 +

�
4 +

√
2− 2

√
3−√6

�p
1 + 2

√
2
�
.
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4. Repeated patterns in packings
Sometimes, there is a connection between the structures of the pack-

ings and the number of circles. When the structure of a packing follows
a kind of regularity (e.g. a lattice arrangement), then the coordinates of
the centers of the circles can easily be calculated and these structures
are called patterns.

It is easy to see the pattern when the number of the circles is a square
number (n = k2, 1 ≤ k ≤ 6). In this case, the circles are in a k×k lattice
arrangement (PAT1) and mn = 1

k−1 . This pattern gives the optimal
solutions considering the mentioned cases, however, if n = 49, then
there exist denser packings (cf. Nurmela and Österg̊ard (1997)). The
patterns proposed by Nurmela and Österg̊ard (1997) and Graham and
Lubachevsky (1996) are summarized in Table 1.2. The fourth column
of Table 1.2 gives those cases which can ensure optimal packings for
the patterns, while in the fifth column, we can find the ones with the
best known packings. We will show examples of them in Figure 1.3.
Here d = nr2π denotes the density of the packing, c is the number of
connections and f stands for the number of free circles.

Pattern n mn Optimal (k) The best (k)

PAT1 k2 1
k−1

2,3,4,5,6 —

PAT2 k2 − 1 1

k−3+
√

2+
√

3
3,4,5(3) 6

PAT3a k2 − 2 1

k−2+ 1
2
√

3
3,4 —

PAT3b k2 − 2 1

k−5+2
√

2+
√

3
5 6(4)

PAT4 k(k + 1) k2−k−
√

2k
k3−2k2 4 5,6,7

PAT5 k2 + bk/2c
q

1
k2 + 1

(2k−2)2
2, 4, 5 6, 7

Table 1.2. Patterns for the optimal and for the currently best known arrangements.

If n = k2−1 then (PAT2) pattern can be recognized, or for n = k2−2
(PAT3a, PAT3b). These patterns are similar to PAT1, but in this
case we remove 1 or 2 circles and press the remaining ones into their
columns and rows. There exist 3 different optimal solutions for n = 24
(PAT2) and 4 different good packings for n = 34 (PAT3b), in both
cases with the same radius values. PAT4 and PAT5 are patterns, which
represent the points (or centers of the circles) in a lattice arrangement.
A generalized pattern of PAT5 is discussed by Szabó, Csendes, Casado,
and Garćıa (2001).

After studying these patterns, we can recognize that always exists
a threshold number k0 such that the patterns give the optimal or the
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m=0.20000000000000
r=0.08333333333333
d=0.78539816339744

n=36
c=84
f=0

m=0.20276360086322
r=0.08429071212235
d=0.78122721299871

n=35
c=80
f=0

m=0.34891526037401
r=0.12933179371003
d=0.73567925554265

n=14
c=32
f=1

PAT1 PAT2 PAT3a

m=0.20560464675956
r=0.08527034435052
d=0.77664906433227

n=34
c=80
f=0

m=0.22450296453108
r=0.09167105798598
d=0.79201902646073

n=30
c=65
f=0

m=0.16538621483322
r=0.07095768455476
d=0.82253064459417

n=52
c=103
f=0

PAT3b PAT4 PAT5

Figure 1.3. Examples for the repeated patterns.

currently best known packings up to this dimension, but later on these
packings will provide only lower bounds for the optimal values.

It is an interesting question whether there is a universal pattern with
an infinite packing series in which all packings are optimal. This is a
natural question, originating from an analogous problem: find the dens-
est packing for n equal circles in an equilateral triangle and n = k(k+1)

2 ,
k ≥ 1. In this case there exists an infinite series of optimal packings,
see Lubachevsky, Graham, and Stillinger(1997). Here the circles are in
the hexagonal arrangement (the centers of the circles are in a hexagonal
grid) which is the densest packing of equal circles in the plane.

A similar conjecture exists for equal circles packing in a square prob-
lem (Nurmela, Österg̊ard, and aus dem Spring (1999); Szabó (2000b)).
Consider the following recursive sequences (k ≥ 3):

a1 = 1, a2 = 3, b1 = 1, b2 = 5,

ak = 4ak−1 − ak−2, bk = 4bk−1 − bk−2.
(1.2)
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Dividing the side of the square into ak and bk equal parts, we obtain
ak×bk rectangulars. Put the first point into a corner of the square, then
place the points in each second corners of the rectangulars as on Figure
1.4. It is open for which values of ak and bk these packings are optimal.

m=0.38873012632301
r=0.13995884403842
d=0.73846822388404

n=12
c=25
f=0

Figure 1.4. An example for a generalized pattern of PAT5 with 12 points.

An interesting number theoretical statement is that when ak and bk

are defined by the previous recursive series, then

a) lim
k→∞

ak
bk

=
√

3
3 , and

b)
{

ak
bk

}∞
k=1

is a subseries of the approximate fractions of the

√
3

3
= [0; 1, 1, 2] = 0 +

1

1 +
1

1 +
1

2 +
1

1 +
1

2 +
1

1 +
1

2 + . . .

continued fraction. Looking at the previous packing sequence, the num-
ber of the circles is equal to

n =
(ak + 1)(bk + 1)

2
.

An explicit formula for n is the following:

n =
√

3
6

(Ak −Bk)(Ak + Bk + 1)− 1
4
(A2

k + B2
k) +

1
2
,
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where Ak = (2 +
√

3)k and Bk = (2 − √3)k. The maximum mn of the
minimal distance is mn =

√
1
a2

k
+ 1

b2k
.

Here, the circles also approximate the hexagonal structure, but this
alone, of course, does not prove the optimality. An interesting packing
sequence can be found for the densest packing of equal circles in a circle
problem in which n = 3k(k + 1) + 1. On the one hand, the hexagonal
structure might be solved in this pattern as well and it presents the
most spread packings when n = 7, 19, 37 and 61. On the other hand
when n = 91, 127, 169 better ways of packing can be used (Lubachevsky
and Graham (1997)).

5. Minimal polynomials of packings
Sometimes it is useful to have an algebraic description of a packing.

The minimal polynomial is a polynomial with minimal degree and the
first positive root of the polynomial is mn. Sometimes it is easy to deter-
mine the minimal polynomial of a packing (e.g. the packing symmetric
or contains optimal substructures Szabó (2004)). But if the structure of
an optimal packing is not symmetric and it does not contain an optimal
substructure then it is not trivial to calculate the minimal polynomial.
In this case a possible way to determine the minimal polynomial is the
following: Let us define a quadratic system of equations to the packing
where an equation reflects the fact that the distance of two points is
mn. To determine the minimal polynomial we have to eliminate all vari-
ables with the exception of mn. Using Buchberger’s algorithm (based on
Gröbner basis) or another technique utilizing the resultant and a sym-
bolic algebra system (e.g. Maple, Mathematica, CoCoA, Macaulay2,
Singular, etc.) this can be done, but sometimes this is also hard.

As an example, let us determine the minimal polynomial p10(m) for
n = 10 (de Groot, Peikert, and Würtz (1990)). The corresponding
quadratic system of equations is the following:

(x1 − x2)
2 + (y1 − y2)

2 = m2 (x1 − x4)
2 + (y1 − y4)

2 = m2

(x2 − x3)
2 + (y2 − y3)

2 = m2 (x2 − x5)
2 + (y2 − y5)

2 = m2

(x5 − x6)
2 + (y5 − y6)

2 = m2 (x3 − x6)
2 + (y3 − y6)

2 = m2

(x4 − x7)
2 + (y4 − y7)

2 = m2 (x5 − x7)
2 + (y5 − y7)

2 = m2

(x7 − x9)
2 + (y7 − y9)

2 = m2 (x7 − x10)
2 + (y7 − y10)

2 = m2

(x8 − x10)
2 + (y8 − y10)

2 = m2 (x6 − x8)
2 + (y6 − y8)

2 = m2

The points P1, P2, P3, P4, P6, P8, P9, and P10 are on the side of the square
thus x1 = x4 = x9 = y2 = y3 = 0 and x6 = x8 = y9 = y10 = 1. It is
easy to see that y4 = y1 + m, x3 = x2 + m and y8 = y6 + m. P2P3P5P6

is a rhombus thus x5 = 1−m and y5 = y6. In the P4P7P9 and P9P7P10
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m=0.42127954398390
r=0.14820432256522
d=0.69003578526417

n=10
c=21
f=0 P_2(x_2,y_2) P_3(x_3,y_3)

P_5(x_5,y_5)

P_7(x_7,y_7)

P_4(x_4,y_4)

P_9(x_9,y_9) P_10(x_10,y_10)

P_1(x_1,y_1)

m m

m

m

m

m m

m

m m

mm

P_8(x_8,y_8) 

P_6(x_6,y_6) 

Figure 1.5. The optimal packing of 10 circles/points in the unit square.

isosceles triangulars these equalities holds: y7 = (1 + y1 + m)/2 and
x7 = x10/2.

Using the previous observations, all variables are eliminated with the
exception of x2, x10, y1, y5 and m. The system of equations is then re-
duced to the form (y1 6= 0):

x2
2 + y2

1 = m2,

x2
10 + (1− y1 −m)2 = (2m)2,

(1− x10)2 + (1− y5 −m)2 = m2,

(1− x2 −m)2 + y2
5 = m2,

(2− 2m− x10)2 + (2y5 − 1− y1 −m)2 = (2m)2.

Let us now determine the minimal polynomial with Maple 8 based on
the Groebner package:

>with(Groebner):univpoly(m,[polynomials],{x2, y1, x10, y5,m});.

The obtained minimal polynomial p10(m) is given in the following list.

A list of the known minimal polynomials pn(m) (2 ≤ n ≤ 100):

n = 2 m2 − 2
n = 3 m4 − 16m2 + 16
n = 4 m− 1
n = 5 2m2 − 1
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n = 6 36m2 − 13
n = 7 m2 − 8m + 4
n = 8 m4 − 4m2 + 1
n = 9 2m− 1
n = 10 1180129m18 − 11436428m17 + 98015844m16 − 462103584m15

+1145811528m14 − 1398966480m13 + 227573920m12 + 1526909568m11

−1038261808m10 − 2960321792m9 + 7803109440m8 − 9722063488m7

+7918461504m6 − 4564076288m5 + 1899131648m4 − 563649536m3

+114038784m2 − 14172160m + 819200

n = 11 m8 +8m7− 22m6 +20m5 +18m4− 24m3− 24m2 +32m− 8
n = 12 225m2 − 34
n = 13 5322808420171924937409m40 + 586773959338049886173232m39

+13024448845332271203266928m38 − 12988409567056909990170432m37

−66972175395892949739372512m36 − 271451157211281654252175360m35

+1438322342979585076139742976m34 − 335429895467663916497996800m33

−6543699259726848821592216832m32 + 9441371361011345362166468608m31

+10182180602633501397232254976m30 − 42246019864541071922661621760m29

+37620100408876038921186476032m28 + 28699095956807539331396009984m27

−102587608293645346411004952576m26 + 103509313296807875445571190784m25

−23909360523055293307841740800m24 − 62735581440162634955836358656m23

+88454871551963142041952583680m22 − 53012494559549527012040245248m21

+2135173605242212884072628224m20 + 26378985900767549703436894208m19

−26497225761631816480192462848m18 + 12731474183761933022491836416m17

−398432339928038268662185984m16 − 4422001291286852186186711040m15

+3658751900977247115934695424m14 − 1429726216634427968279543808m13

+57770773621828718826618880m12 + 275582370688699861317976064m11

−171632310725283375512289280m10 + 46974915155899860050247680m9

+1760067432596599241441280m8 − 7491112055212411797372928m7

+3652998504696614282592256m6 − 1072642406499215430647808m5

+217086289997205686190080m4 − 30811405631471617048576m3

+2960075719794736758784m2 − 174103532094609162240m
+4756927106410086400

n = 14 13m2 − 16m + 4
n = 15 2m4 − 4m3 − 2m2 + 4m− 1
n = 16 3m− 1
n = 17 m8 − 4m7 + 6m6 − 14m5 + 22m4 − 20m3 + 36m2 − 26m + 5
n = 18 144m2 − 13
n = 19 242m10 − 1430m9 − 8109m8 + 58704m7 − 78452m6

−2918m5 + 43315m4 + 39812m3 − 53516m2 + 20592m
−2704

n = 20 128m2 − 96m + 17
n = 23 16m4 − 16m2 + 1
n = 24 m4 − 16m3 + 20m2 − 8m + 1
n = 25 4m− 1
n = 27 1600m2 − 89
n = 30 1202m2 − 252m + 13
n = 34 m4 + 28m3 − 10m2 − 4m + 1
n = 35 46m4 − 84m3 + 50m2 − 12m + 1
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n = 36 5m− 1
n = 39 1732m2 − 68m− 17
n = 42 864m2 − 360m + 37
n = 52 7056m2 − 193
n = 56 1715m2 − 588m + 50
n = 99 28900m2 − 389

6. A reliable computer-assisted optimization
method for circle packing

The papers Markót (2000), Markót (2003) and Markót and Csendes
(2004) introduced a computer-aided technique for proving optimality of
certain problem instances. In contrast to the earlier computer meth-
ods (see Section 1), the presented algorithm is based fully on interval
arithmetic. Thus, our method is capable to overcome the rounding and
conversion problems occurring in finite precision floating point compu-
tations and in I/O routines.

6.1 Problem definition
We study the point packing problem, Problem 2, but with the square

of distances. Denote the set of points to be located by ((x1, y1), . . . ,
(xn, yn)), all in [0, 1]2. In the sequel we denote this point set briefly by
(x, y). Moreover, denote the square of the distance between the points
(xi, yi) and (xj , yj) by dij . Then the objective function to be maximized
is:

fn(x, y) = min
1≤i<j≤n

(xi − xj)
2 + (yi − yj)

2 = min
1≤i<j≤n

dij . (1.3)

Prior to our investigation the optimal solutions of the cases n =
2, . . . , 27 and 36 were known. Although a part of the optimality proofs
were based on computer-assisted methods, still those methods used float-
ing point arithmetic (with the exception of an interval based local result
verification method of Nurmela and Österg̊ard (1999)).

6.2 Interval analysis
The description of the algorithm requires a brief survey on the basic

interval definitions and properties (for more details see e.g. Alefeld and
Herzberger (1983); Hansen (1992); Moore (1966)):

The set of compact intervals is denoted by I, where for all A ∈ I
intervals A = [A,A] = {a ∈ R | A ≤ a ≤ A}. Here A,A ∈ R mean the
lower and upper bounds of A, respectively. In the case of A = A we call
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A a point interval. For a given set of reals D ⊆ R, I(D) denotes the set of
all intervals in D. The width of an interval is defined by w(A) := A−A.

The real arithmetic operations can be extended for intervals by ap-
plying the general definition A ◦B := {a ◦ b | a ∈ A, b ∈ B}, which can
be calculated by the following formulas:

A + B = [A + B, A + B],

A−B = [A−B, A−B],

A ·B = [min{A B,AB, AB, AB}, max{A B,AB, AB,A B}],
A/B = A · [1/B, 1/B], if 0 6∈ B.

Let ϕ : D ⊆ R→ R be an elementary real function which is continuous
in all A ∈ I(D) intervals. Then the interval extension of the elementary
function ϕ is Φ : I(D) → I, Φ(A) := {ϕ(a) | a ∈ A}. For a given function
the corresponding interval extension can be calculated e.g. by invoking
monotonicity properties.

A vector of n intervals is called an n-dimensional interval (or shortly,
a box): X = (X1, X2, . . . , Xn), X ∈ In, and Xi ∈ I for i = 1, 2, . . . , n.
For a given n-dimensional set D ⊆ Rn we denote the set of n-dimensional
boxes in D by I(D). The extension of the basic arithmetic operations
and elementary functions for multidimensional intervals is defined com-
ponentwise, similarly as for real vectors.

In order to define interval extensions for compound real functions, we
introduce the concept of interval inclusion functions. We call F : I(D) →
I an inclusion function of f : D ⊆ Rn → R, if f(X) = {f(x) |x ∈ X} ⊆
F (X) holds for all X ∈ I(D), where f(X) denotes the range of f over
X.

Beyond the theoretical reliability of interval computations, the in-
clusion properties should be guaranteed also in the case when finite
precision floating-point computer arithmetic is applied, i.e. the round-
ing errors should be controlled. This is usually done by the computa-
tional environment using exactly representable floating-point numbers
(also called machine numbers) together with directed outward rounding
procedures.

6.3 The optimization frame algorithm
We have applied an interval branch-and-bound optimization approach

(see e.g. Csallner, Csendes, and Markót (2000); Csendes and Ratz (1997);
Hammer, Hocks, Kulisch, and Ratz (1993); Hansen (1992); Kearfott
(1996); Markót, Csendes, and Csallner (2000); Ratschek and Rokne



20

(1988)) designed for determining all the global maximizers of the general
global optimization problem

max
z∈Z0

f(z), (1.4)

where f : Rn → R is a continuous objective function and Z0 ∈ In is the
search space. The main building blocks of the algorithm are basically
the same as the steps of the classical B&B methods. We utilize the fact
that interval arithmetic provides a general tool to compute guaranteed
enclosures F (Z) of the range of the objective function f(z) over a box
Z. At each iteration cycle, we choose a box Z from the list of boxes
(WorkList) waiting for further subdivision, and split it into subboxes,
U1, . . . , U s (we used s = 2 in the present method).

Then for all U i subintervals some shrinking tools, the so-called accel-
erating devices are applied, which delete some parts of U i that cannot
contain a global maximizer point. When the box Û i enclosing all the
remaining parts of U i fulfills a certain termination criterion, we put Û i

into the list of the result boxes (ResultList), otherwise we store Û i for
further processing in the WorkList. At each iteration we also try to
update the best known lower bound f̃ of the global maximum value.
f̃ is also called as cutoff value: we can delete all boxes U i from the
WorkList for which F (U i) < f̃ holds. The algorithm stops when the
WorkList becomes empty: then the candidate boxes in the ResultList
contain the enclosures of all the global maximizers, and moreover, the
interval [f̃ , max{F (Z) |Z ∈ ResultList}] encloses the global maximum
value.

In the following, we specify the algorithmic details by defining an in-
clusion function of (1.3) and introducing a special accelerating device.
Note that already in the first phase of our study it turned out that the
classical accelerating devices are not enough, we have to tune our algo-
rithm by designing special interval-based tools utilizing the geometric
properties of the problem class.

6.4 Introducing an interval inclusion function
Markót (2000) gives a non-trivial interval inclusion function of the

objective function (1.3):

Theorem 1.5 (Markót (2000), slightly modified) Assume that (X,Y ) ⊆
[0, 1]2n, and let

Dij = (Xi −Xj)
2 + (Yi − Yj)

2, for all 1 ≤ i 6= j ≤ n.
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Define a := min1≤i6=j≤n Dij , a ∈ R, and b := min1≤i 6=j≤n Dij , b ∈ R.
Then the interval Fn(X, Y ) := [ a, b ] encloses the range of fn(x, y) over
the (X, Y ) box.

6.5 The method of active areas
This method played a key role in the earlier theoretical and computer-

aided optimality proofs, e.g. in de Groot, Monagan, Peikert, and Würtz
(1992); de Groot, Peikert, and Würtz (1990); Kirchner and Wengerodt
(1987); Locatelli and Raber (2002); Nurmela and Österg̊ard (1999);
Nurmela and Österg̊ard (1999b); Peikert, Würtz, Monagan, and de Groot
(1992). The essence of the method is the following: assume that we have
an f̃0 lower bound for the maximum of the minimal pairwise distances.
Let C = (C1, . . . , Cn), Ci ⊆ [0, 1]2, i = 1, . . . , n be the currently investi-
gated search set (with a suitable representation), where Ci contains the
ith point of all packing configurations in C. Then, from each component
Ci we can iteratively delete those points which have a distance smaller
than f̃0 to all points of the remained region of an other component.

Figure 1.6. Approximating the active regions by polygons (with exact arithmetic).
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Figure 1.6 shows an example of eliminating a region (the shaded poly-
gon) from polygon B using polygon A, when assuming exact computa-
tions.

In the first version of our interval approach (Markót (2000)) the re-
maining (active) region of each component was approximated by a rect-
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angle (or unions of rectangles obtained after a horizontal and/or vertical
quantization) during the basic elimination step. This matches the idea
proposed by de Groot et al. and by Nurmela and Österg̊ard. However,
our algorithm variant using this device was only able to confirm the local
optimality of the earlier found optimal packings.

Instead of representing the remaining regions simply by unions of
cells, Nurmela and Österg̊ard (1999) approximated the remaining sets
by polygons. The proposed procedure raises several problems when us-
ing floating point computations. As a solution, in Markót and Csendes
(2004) we developed a reliable version of this polygonal approach us-
ing interval arithmetic. This method proved to be the most efficient
accelerating test of the present algorithm.

6.6 The method of handling free circles
The efficient way of handling free circles in the optimal solution (or

equivalently, handling free points in the corresponding point packing
problem) is crucial when circle packing problems are solved with interval
algorithms, since free circles pose a positive measure, continuum set of
equivalent global optimizers. The simple method below shows a suitable
way to overcome this difficulty. The basic idea is that – under certain
conditions – some remaining regions can temporarily be replaced by
machine points, i.e. by pairs of two machine numbers without losing any
global optimizers.

1. Let (X, Y ) ∈ I2n enclose all the remaining boxes (stored either in the
WorkList or in the ResultList) after a certain number of iteration loops
when executing the B&B algorithm. Let f̃ be the current cutoff value.

2. Assume that there exist machine points pk1 , . . . , pkt , pks ∈ (Xks , Yks),
s ∈ {1, . . . , t} within t different components of (X,Y ) such that

D(pks , (Xj , Yj)) > F (X, Y ) ≥ f̃

holds for all s ∈ {1, . . . , t} and for all j 6= ks, j ∈ {1, . . . , n}. Let K
denote the index set {k1, . . . , kt}.

3. Replace the components (Xi, Yi) with the point intervals pi for each
i ∈ K. Run the B&B algorithm on the resulting (X ′, Y ′) box ignoring
the step of improving f̃ and stop it after a certain number of iterations.

4. Let (X ′′, Y ′′) ∈ I2n include all the remaining boxes. The output box
of the procedure is then given by (Xi, Yi) for i ∈ K and by (X ′′

j , Y ′′
j ) for

j 6∈ K.
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Theorem 1.6 Markót and Csendes (2004) The above procedure is cor-
rect in the sense that all the optimal solutions in (X,Y ) are also con-
tained in the output box.

6.7 Investigating subsets of tile combinations
In order to avoid (a part of) the extra amount of work caused by

geometrically equivalent packing configurations and to restrict the ap-
plication of the method of active areas to a local investigation, most
computer methods for circle packing include a preprocessing procedure
called tiling:

Assume that a lower bound f̃ for the maximum value of the consid-
ered point packing problem instance is given. Split the unit square into
regions (tiles) in such a way, that the square of distance between any
two points within each tile is less than f̃ (or the distance between any
two points within each tile is less than the f̃0 value of Section 6.5). Then
for a feasible solution having an objective function value greater than
or equal to f̃ , each tile can contain obviously at most one point of this
solution. The optimal packings can be then found by running the search
procedure on all possible tile combinations.

Prior to the results of the present studies, the main problem when
solving circle packing problem instances for n > 27, n 6= 36 was the
highly increasing number of initial tile combinations. For n = 28, a
sequential process on those combinations would have required about
1000 times more processor time (about several decades) even with non-
interval computations — compared to the case of n = 27.

The idea behind the newly proposed method is that we can utilize
the local relations (patterns) between the tiles and eliminate groups of
tile combinations together. Let us denote a generalized point packing
problem instance by P (n,X1, . . . , Xn, Y1, . . . , Yn), where n is the number
of points to be located, (Xi, Yi) ∈ I2, i = 1, . . . n are the components
of the starting box, and the objective function of the problem is given
by (1.3). The theorem below shows how to apply a result achieved on
a 2m-dimensional packing problem to a 2n-dimensional problem with
n ≥ m ≥ 2.

Theorem 1.7 Markót and Csendes (2004) Assume that n ≥ m ≥ 2 are
integers and let

Pm = P (m,Z1, . . . , Zm,W1, . . . ,Wm) = P (m, (Z,W )), and

Pn = P (n,X1, . . . , Xn, Y1, . . . , Yn) = P (n, (X,Y ))

be point packing problem instances (Xi, Yi, Zi, Wi ∈ I; Xi, Yi, Zi,Wi ⊆
[0, 1]). Run the B&B algorithm on Pm using an f̃ cutoff value in the ac-
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celerating devices but skipping the step of improving f̃ . Stop after an ar-
bitrary preset number of iteration steps. Let (Z ′1, . . . , Z

′
m,W ′

1, . . . , W
′
m) :=

(Z ′,W ′) be the enclosure of all the elements placed on the WorkList
and on the ResultList. Assume that there exists an invertable, distance-
preserving geometric transformation ϕ with ϕ(Zi) = Xi and ϕ(Wi) = Yi,
∀i = 1, . . . , m. Then for each point packing (x, y) ∈ R2n satisfying
(x, y) ∈ (X, Y ) and fn(x, y) ≥ f̃ , the statement

(x, y) ∈ (ϕ(Z ′1), . . . , ϕ(Z ′m), Xm+1, . . . , Xn,

ϕ(W ′
1), . . . , ϕ(W ′

m), Ym+1, . . . , Yn) := (X ′, Y ′)

also holds.

The meaning of Theorem 1.7 is the following: assume that we are able
to reduce some search regions on a tile set S′. When processing a higher
dimensional subproblem on a tile set S containing the image of the tile
set of the smaller problem, it is enough to consider the image of those
of the remaining regions of S′ as the particular components of the latter
problem.

Figure 1.7. The idea behind processing tile combinations.
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Figure 1.7 illustrates the application of the idea of handling sets of
tile-combinations: the remaining regions of the tile combinations S and
S′ are given by the shaded areas. The transformation ϕ is a reflection
to the horizontal centerline of the rectangular region enclosing S′.

Corollary 1.8 Markót and Csendes (2004) Let ϕ be the identity trans-
formation and assume that the B&B algorithm terminates with an empty
WorkList and with an empty ResultList, i.e. the whole search region
(Z, W ) = (Z1, . . . , Zm, W1, . . . , Wm) = (X1, . . . , Xm, Y1, . . . , Ym) is elim-
inated by the accelerating devices using (the same) f̃ . Then (X, Y ) does
not contain any (x, y) ∈ R2n vectors for which fn(x, y) ≥ f̃ holds.
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6.8 Tile algorithms used in the optimality proofs
The method of the optimality proofs is started by finding feasible tile

patterns and their remaining areas on some small subsets of the whole
set of tiles. Then bigger and bigger subsets are processed while using
the results of the previous steps. Thus, the whole method consists of
several phases. The two basic procedures are:

– Grow(): add tiles from a new column to each element of a set of tile
combinations.

– Join(): join the elements of two sets of tile combinations pairwise.

The detailed description of Join() and Grow() and the strategy of in-
creasing the dimensionality of the subproblems can be found in Markót
and Csendes (2004).

6.9 Numerical results: optimal packings for
n = 28, 29, 30

The results obtained with the multiphase interval arithmetic based
optimality proofs are summarized below:

– Apart from symmetric cases, one initial tile combination (more pre-
cisely, the remaining areas of the particular combination) contains
all the global optimal solutions of the packing problem of n points.

– The guaranteed enclosures of the global maximum values of Problem
2 are

F ∗28 = [0.2305354936426673, 0.2305354936426743], w(F ∗28) ≈ 7 · 10−15,
F ∗29 = [0.2268829007442089, 0.2268829007442240], w(F ∗29) ≈ 2 · 10−14,
F ∗30 = [0.2245029645310881, 0.2245029645310903], w(F ∗30) ≈ 2 · 10−15.

– The exact global maximum value differs from the currently best
known function value by at most w(F ∗

n).

– Apart from symmetric cases, all the global optimizers of the problem
of packing n points are located in an (X,Y )∗n box (see Markót and
Csendes (2004)). The components of the result boxes have the
widths of between approximately 10−12–10−14 (with the exception
of the components enclosing possibly free points).

– The differences between the volume of the whole search space and the
result boxes are more than 711, 764, and 872 orders of magnitudes,
respectively.
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– The total computational time was approximately 53, 50, and 20 hours,
respectively. The total time complexities are remarkably less than
the forecasted execution times of the predecessor methods.

6.10 Optimality of the conjectured best
structures

An optimal packing structure specifies which points are located on
the sides of the square, which pairs have minimal distance, and which
points of the packing can move while keeping optimality. The output of
our methods serves only as a numerical approximation to the solution of
the particular problems but it says nothing about the structure of the
optimal packing(s). Extending the ideas given in Nurmela and Österg̊ard
(1999) to an interval-based context, in a forthcoming paper we intent to
prove also some structural properties of the global optimizers (for details
see Markót (2003b)).
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