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New EU regulations

● Users are supposed to 
– Have easier acces to personal data
– Have easier portability of data
– Have a right to erasure

● Companies can still collect data, the point is the 
users are supposed to have complete control 
over their data

● It is a big question what the effect will be (if any)

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM:310401_2
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Aspects of privacy

● We do not want private data to go public
● What does this mean

– No one can get raw private data in any way
– Leaking indirect information on private data must be 

limited
● So called “anonymized” data is suspicious
● Distorted (eg noise-added) data is suspicious
● The output of aggregate queries is also suspicious
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Publishing data

● Anonymized data is not secure due 
to eg linkage attacks

– Netflix and IMDB [Narayanan and 
Smatikov]

– MGIC and voting register 
[Latanya Sweeney]

– etc.
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Interactive databases

● Executing queries on 
hidden data

● If there is no trusted 
central database, we 
need secure 
distributed algorithms

– secure multiparty 
computation
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Interactive databases

● Publishing the results of 
the executed queries

● This can also leak 
private information

– min, max
– Many specially 

designed queries
– One can audit sets of 

queries for privacy 
but this is very hard
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What approach to take?

● So is it ok to assume (or make sure) data is not 
shared at all and only query results are 
published?

● Not quite
– Some queries return individual records

● Min, max, etc

– Sets of queries can be designed that allow 
inference of values of individual records
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Publishing query outputs

● So even aggregate and statistical queries might 
reveal private information

● Should we add noise to the output?
– Clearly, we need noise with an expected value of 0, but 

then many queries can be used to average it out
● So we need to add the same noise to the same query
● But it is hard to detect whether it is the same query

– Even if we can make sure the same query gets the 
same noise, we are not safe
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Publishing query outputs

● Special case: n records, each record is one bit, sum query, 
bounded noise

● Can we restore 99% of the records using a number of queries?

– Even noise less than n/401=O(n) is not enough if we 
execute all the 2n queries (all the subsets of the records)

– With an O(√n) bound on noise O(n log2n) queries are 
enough

● Non-interactive case: if we publish a noisy database then

– We either have very noisy query results

– Or (most of) the records will be recovered
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What should we protect?

● Dalenius's desideratum (1977)
– „Anything that can be learned about a respondent in 

a statistical database should be learnable without 
access to the database”

● Is this possible?
– We need to learn something otherwise queries 

make no sense at all!
– This is the main difference from cryptography: some 

information must leak
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What should we protect?

● So how to formulate the problem then?
– Same (or very similar) prior and posterior knowledge 

about an individual?
● Doesn't work: if we learn that almost every record has a 

given property (aliens learn that “humans have two feet”) 
then any given record will have that with a high probability: 
the aliens learned a lot about me

● Auxilary information: Turing is two inches taller than the 
average height: now, if we can query the average height, we 
learned a lot again about Turing (now using auxilary info)

● Let's do this then
– To what extend does my risk grow by being included in 

the database compared to not being included
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A thing to digest

● Differential privacy thus 
sometimes might not 
protect privacy at all! 
– Based on the information 

gained in a database 
some secrets can be 
revealed even if one was 
never in the database in 
the first place!

https://www.theguardian.com/technology/2017/sep/07/new-artificial-intelligence-can-tell-whether-
youre-gay-or-straight-from-a-photograph
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Differential privacy

● Let us take a database D
● Let M(D) be the noisy query output

– M(D) is a random variable where randomness is 
due to added noise by function M(), D is constant

● Let D' be a database that differs in only one 
record from D

● M() is ε-differentially private if

P(M (D)∈S )⩽exp(ε)P (M (D ')∈S )
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Differential privacy

P(M (D)) P(M (D ' ))

Their ratio is bounded
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Differential privacy
● Let us take a database D
● Let M(D) be the noisy query output

– We think of M as a random variable with a 
distribution that depends on D

● Let D' be a database that differs in only one 
record from D

● M() is ε-differentially private if

● Which is the same as
if the database priors are the same

P(M∣D)⩽exp (ε)P (M∣D ')

P(D∣M )⩽exp(ε)P (D '∣M )
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Compositionality

● If  M
1
 and M

2
 are queries over the same database records, 

are independent and are ε
1
-, and ε

2
-differentially private, 

respectively, then publishing both M
1
 and M

2
 is ε

1
+ε

2
-

differentially private

● If M
1
 and M

2
 are queries over non-overlapping subsets of 

records (that are defined independently of the actual 
database) then publishing both of them is max(ε

1
,ε

2
)-

differentially private

– „privacy budget”: a fixed ε parameter that allows a finite 
number of queries or noise must be increased with time

– When the budget is over no more queries are allowed at all 
(the database must be deleted)
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A possible implementation of 
differential privacy

● Global sensitivity:
● Laplace distribution:
● Adding noise to 

deterministic query

– Y ~ Laplace(0,Δg/ε) 

f (x∣μ ,β)=
1

2β
exp(

−|x−μ|

β
)

Δ g= max
D ,D' differ in one record

|g (D)−g (D ' )|

M (D)=Y +g (D)
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Counting, sum, histogram

● Counting

– Sensitivity is 1
● Sum

– Sensitivity depends on the range of values: it is the 
absolute value of the record with maximum absolute 
value

● Histogram

– We have to count the number of points in each cell
– Since changing one record changes only one cell, the 

overall sensitivity is also 1
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k-means
● Let us consider features from  [0,1]

● The assignment step is private (requires no output)

● Averaging step

– Average: sum divided by count

– Counts in k cells: like a histogram, sensitivity 1

– Sums of d dimensional vectors in each cell: sensitivity is 1 in 
all dimensions (ie sensitivity is d in terms of the 1-norm) 

● So we “burn” (d+1)ε in each iteration from our budget

● This is when we publish partial results in each iteration (count 
and cluster centers)

– What about publishing just the end result?
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Decentralized implementation

● Differential privacy mechanisms add noise to 
the query output

● If the query is implemented in a decentralized 
(privacy preserving) manner, noise also has to 
be added in a decentralized way

● Let us focus on the sum query again
– One approach is to decompose the noise term and 

distribute it to the participants
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Infinitely divisible distributions
● A probability distribution is infinitely divisible if it can be 

expressed as the distribution of a sum of any number of 
i.i.d. random variables of some appropriate distribution

● Clearly, infinitely divisible noise distributions can be 
added to the sum collectively using a privacy preserving 
sum query

– Every node i samples the appropriate distribution locally 
adding it to its local value: x

i
+ξ

i

– The sum of these samples will form the noisy sum query 
result with the desired (infinitely divisible) noise distribution: 
Σ

i
x

i
+Σ

i
ξ

i

● The most well known infinitely divisible distribution is the 
normal distribution
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Decomposing the Laplacian noise
● The Laplacian noise is also infinitely divisible

● This follows from the facts that
– The gamma distribution itself is infinitely divisible

– The exponential distribution is a special case of the gamma 
distribution (G(1,λ) is exponential)

– And the Laplace distribution is the difference of two 
exponential distributions (L(λ)=G

1
(1,λ)-G

2
(1,λ))
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