
Special semi-supervised techniques for Natural Language

Processing tasks
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1 Introduction

Several Natural Language Processing (NLP) tasks
like parsing and Named Entity Recognition are
solved to a satisfactory accuracy for several lan-
guages and domains [1] in a supervised environ-
ment. However a labeled database is often diffi-
cult, expensive or time-consuming to obtain as it
requires much expert human effort. On the other
hand, unlabeled texts are available in abundance
owing to the World Wide Web. Semi-supervised
learning aims to build better classifiers by using
large amounts of unlabeled data along with la-
beled data. This is of great interest in many ma-
chine learning algorithms both from theoretical
and practical points of view. In this paper we at-
tempt to answers to the following two questions:

Is it possible to achieve the same accuracy in NLP
tasks with a smaller labeled corpus by utilizing un-
labeled texts instead of training on a large labeled
corpus? Which semi-supervised techniques are
applicable and especially suitable for NLP tasks?

In Section 2 we introduce the main semi-
supervised techniques described in the machine
learning literature and discuss the potential ad-
vantages of applying special semi-supervised tech-
niques in NLP. Experimental results by some of
these techniques on the classical NER (identify-
ing the classes organization, person, location and
miscellaneous) for English and Hungarian will be
presented in Section 3, followed in the last section
by discussion and some concluding remarks.

2 Supervised learning tech-
niques in Named Entity
Recognition

In a supervised learning situation a manually la-
beled training database is given and the goal is
to learn a model based on it that can predict
previously unseen instances as precisely as pos-
sible. This approach has dominated the history
of NERC so far.

2.1 Sequence labeling approach for
Named Entity Recognition

The sequence labeling based systems (D. Bikel et
al. 1999, A. McCallum and W. Li 2003, J. Finkel
et al. 2004) are the most frequently used and
the most successful in supervised NERC tasks.
In sequence labeling, the output of the system is
a prediction (here a sequence of NE labels) for
the whole sequence of tokens (usually a sentence)
instead of predicting every token separately.

The first results in NERC (D. Bikel et al.
1999) were achieved by Hidden Markov Mod-
els (HMM) in the nineties (C. Manning and H.
Schütze 1999). A first order Markov model is as-
sumed and there are two types of probability dis-
tribution: transition probabilities describe, for ex-
ample, how likely an organization is followed by a
person label while emission probabilities describe,
for example, how likely a ltd. token is an organi-



zation. From the local estimates of these proba-
bilities - which are calculated via the Baum-Welch
procedure -, the prediction for the whole sequence
is then calculated by the Viterbi algorithm.

There are two main problems associated with
using HMMs. First, they assume that features
describing the elements of the sequences are in-
dependent, and second they maximize in the like-
lihood of the observation sequence, but usually
the task is to predict the state sequence given
the observation sequence. The Maximum Entropy
Markov Model (MEMM) (A. McCallum 2000 et
al.) - rather than using distinct transmission and
emission distributions - maximizes the likelihood
of being in a state (NE label) conditioned on the
previous state and the current observation. The
conditional probability distributions of each la-
bel (state) are estimated by exponential models,
where the optimization task is actually to learn
the weights of the features. MEMMs are only
slightly more complex to train than HMMs, but
work much better. The problem with MEMMs
is that they are trained on the previous labels of
the gold standard annotation. But at test time
the previous labels could be wrong, which leads
to the infamous ”label bias” problem. The Con-
ditional Random Fields (CRF) (J. Lafferty et al.
2001) try to predict the whole sequence (instead
of learning local distributions and then finding the
best sequence by Viterbi). Only the simple chain
structured random fields are tractable as train-
ing is done by running the forward-backward al-
gorithm through several iterations. CRF is the
state-of-the-art sequence labeling procedure for
NERC problems.

2.2 Token level classification in Named
Entity Recognition

The other approach essentially regards the NERC
problem as the classification of separate tokens
(Support Vector Machine is frequently used in
NERC (C. Lee et al. 2004)). We showed exper-
imentally that this approach is competitive with
the theoretically more suitable sequence labeling
algorithms. We applied a boosted decision tree
learning algorithm (C4.5) for classification, be-
cause it requires less computational time, and
handles discrete features efficiently. Of course
our model is capable of taking into account the
relationships between consecutive words, collect-
ing the relevant features in a window of appro-
priate size. This model allows the sampling of
separate tokens as well. This is necessary for
creating balanced training data which sometimes

makes favor to learning algorithms. Boosting (R.
Shapire 1990) and C4.5 (R.Quanlin 1993) are well
known algorithms for those who are acquainted
with pattern recognition. Boosting has been ap-
plied successfully to improve the performance of
decision trees in several NLP tasks. A system
that made use of AdaBoost and fixed depth deci-
sion trees (X. Carreras et al. 2002) came first on
the CoNLL-2002 conference shared task for Dutch
and Spanish, but gave somewhat worse results for
English and German in 2003 (it was ranked fifth).
We have not found any other competitive results
for NERC using decision tree classifiers and Ad-
aBoost published so far.

Boosting (R. Shapire 1990) was introduced by
Shapire as a way of improving the performance of
a weak learning algorithm. The algorithm gen-
erates a set of classifiers (of the same type) by
re-weighting instances on the basis of rightly and
wrongly classified samples on the original train-
ing data set. The final decision is made using
a weighted voting schema for each classifier that
is many times more accurate than the original
model. 30 iterations of Boosting were performed
on each model. Further iterations brought only
slight improvements in the F measure (less than
0.05%), hence we decided to perform only 30 it-
erations in each experiment.

C4.5 (R.Quanlin 1993) is based on the well-
known ID3 tree learning algorithm, which is able
to learn pre-defined discrete classes from labeled
examples. Classification is done by axisparallel
hyperplanes, and hence learning is very fast. This
makes C4.5 a good subject for boosting. We built
decision trees that had at least 5 instances per
leaf, and used pruning with subtree raising and
a confidence factor of 0.33. These parameters
were determined after the preliminary testing of
some parameter settings and evaluating the de-
cision trees on the development phase test set.
In our previous experiments we collected features
belonging to various categories. This rich fea-
ture set enabled us to select several (overlapping)
smaller feature sets from the whole set. These
sets describe the tokens from different perspec-
tives and an accurate model can still be built on
them. We found that applying learning models on
each smaller feature set and then voting on their
predictions produced better scores than a single
model trained on the whole feature set. This
procedure can be regarded as a bagging method
where instead of train models on slightly differ-
ent samples the bags contain the same sample,
but different features describe it. We achieved
competitive results with the published state-of-



the-art sequential systems in the supervised envi-
ronment employing this feature set splitting pro-
cedure (Gy. Szarvas et al. 2006a).

2.3 The use of combinations of differ-
ent approaches

To solve classification problems effectively it is
worth applying various types of classification
methods, both separately and in combination.
The success of hybrid methods lies in tackling the
problem from several angles, so algorithms with
inherently different theoretical bases are good
subjects for voting and for other combination
schemes. We showed this experimentally on the
CoNNL 2003 database (E. Tjong et al. 2003): our
token level classification model (Boosting with
C4.5) just slightly outperformed the best stan-
dalone system (R. Floran et al. 2003) of the con-
test, but in combination (when we substitute the
best system in the voting scheme of the best five
models) we got a significant improvement (Gy.
Szarvas et al. 2006a). One of the semi-supervised
methods applied successfully to the NERC prob-
lem in this paper is based on the co-operation of
a sequential model and our classification based
model as well.

3 Semi-supervised techniques

In this section we shall provide an overview on
semi-supervised techniques along with a discus-
sion on their speciality in Natural Language Pro-
cessing.

3.1 General Semi-supervision in Ma-
chine Learning

In a semi-supervised learning environment a
model is trained by using unlabeled data, together
with labeled data. The goal is to utilize the un-
labeled data during the training on labeled ones.
We classify these kind of approaches into three
categories, namely generative models, bootstrap-
ping methods and low density separation. For a
detailed description, see [2].

The first attempts were done by applying
generative models (like HMMs)[3]. A generative
model directly describes how the labels are prob-
abilistically conditioned on the inputs (tokens).
’Directly’ means here that the types of distribu-
tions are assumed, and their parameters are esti-
mated from the data. Usually a mixture distribu-
tion is assumed and the great amount of unlabeled

data helps to identify the mixture components [3].
We regard the cluster-and-label methods (which
first cluster the whole dataset, then assign a label
to each cluster according to labeled data) to the
generative models as well, because they perform
well only via a clustering algorithm that matches
the true data distribution. However, there are
several problems associated with using generative
models. The most obvious one is that we have
to know the types of the distributions, otherwise
unlabeled data reduces the accuracy [4].

We call bootstrapping methods (self-training
and co-training) those type of methods where a
train training dataset is expanded by automat-
ically labeled (originally) raw data [5]. In self-
training a classifier first learns on the labeled
dataset and then classifies the unlabeled data.
The most reliable examples are afterwards added
to the training set and the procedure is repeated.
In co-training two or more different classifiers
are used for predicting unlabeled data, then they
”teach” each other via the most reliable instances
from the unlabeled pool. The two classifiers can
be from a different algorithm class or they can be
the same learning method trained on condition-
ally independent feature subsets.

The latest approaches of semi-supervised
learning are based on the ’separate only on low
density regions’ principle (low density separa-
tion). These approaches also use the evaluation
dataset as unlabeled data. Hence here the overall
goal is not to build a general model which pre-
dicts well on previously unseen instances (induc-
tive learning) but ”just” give an as perfect as pos-
sible prediction on a specific evaluation set (trans-
ductive learning). Transductive Support Vector
Machines (TSVM) [6] is an extension of SVM
where unlabeled points are used to find the maxi-
mum margin linear boundary in the Reproducing
Kernel Hilbert Space. In the optimization proce-
dure, it looks for a labeling of the unlabeled data
where the margin is maximized on both originally
labeled and (currently labeled) unlabeled data.
Clearly unlabeled data restrict the boundary to
low density regions. Graph-based methods are a
newer field of low density separation [7]. Here a
graph is built where nodes are labeled and unla-
beled inputs and the edges represent their simi-
larity (usually just the nearest neighbors are con-
nected). If two points are in the same cluster
there exists a path between them that only goes
through high density regions. Thus our aim here
is to learn a function (find the clusters) which cuts
on low similarity points.

The low density separation methods have a



good theoretical foundation, but at the moment
they can handle just small datasets in practice.
Even programs describing themselves as solution
to large-scale problems cannot give results for a
task of 20,000 samples with 120 features after run-
ning for a week1. There are several suggestions on
how to scale up these methods, but databases con-
taining hundreds of thousands of examples like in
most of the NLP tasks seem feasible only in the
future.

3.2 Semi-supervision in Natural Lan-
guage Processing

The special nature of Natural Language Pro-
cessing problems requires special semi-supervised
techniques. The potential of this field has not yet
been satisfactorily exploited. Two key points are
discussed here:

Complex statistics can be gathered from un-
labeled texts owing to the sequential structure of
languages. Such statistics can be word and char-
acter bi-, trigrams, token or phrase frequencies
and models of language in a wider sense (not just
the usual P (wt|wt−1) distribution). This kind of
information can be incorporated into the feature
space for each machine learning process.

Another unique characteristic of NLP appli-
cations is that they can utilize the World Wide
Web (WWW). The WWW can be viewed as
an almost limitless collection of unlabeled data,
but it cannot be handled by the classical semi-
supervised (or unsupervised) techniques. It is
feasible just via search engines (e.g. we cannot
iterate through all of the occurrences of a word).
There are two interesting problems here: first, ap-
propriate queries must be sent to a search engine;
second the response of the engine offers several
opportunities (result frequencies, snippets etc.) in
addition to simply ”reading” the pages found. Al-
though there are several papers that tell us how to
use the WWW to solve simple natural language
problems like [8], we think that it will be a rapidly
emerging area and deeper analysis will be per-
formed over the coming years.

4 Experiments

We studied the effects of self-training, co-training
and several heuristics based on the WWW along

1Two packages were downloaded and tested:
www.kyb.tuebingen.mpg.de/people/fabee/universvm.html
and www.learning-from-data.com/te-ming/semil.htm

with the impact of features gathered from unla-
beled corpora. The datasets, our tools and the
results obtained will now be described in detail.

4.1 Datasets and representation used

The identification and classification of Named En-
tities (NE) in plain text is of key importance
in numerous natural language processing appli-
cations. For example, in Information Extraction
systems NEs generally carry important informa-
tion about the text itself, and thus are targets
for extraction. We used English and Hungarian
Named Entity reference corpora in this study.

Named Entity Recognition (NER) models in
English were trained and tested on the CoNLL
2003 corpus [9], that consists of newswire arti-
cles provided by Reuters Inc. It has is approxi-
mately 200,000 tokens in size and contains texts
from diverse domains ranging from sports news
to politics and economics. The NE classes orga-
nization, person, location and miscellaneous are
manually tagged in the corpus. We evaluated our
methods on the development set of the contest,
because the evaluation set differs in its character-
istics from the train set. One of the aims of this
contest was to discover the usefulness of unlabeled
texts, but none of the participating systems made
use of them in a sophisticated way. The database
contains more than 18 million unlabeled tokens
which were used in our experiments.

NER models on Hungarian texts were trained
and tested on the SzegedNE corpus [10] which
consists of short business news from 38 NewsML
topics ranging from acquisitions to stock market
changes or the opening of new industrial plants.
The annotation of the corpus followed the CoNNL
annotation. The size of this corpus is the same
as that for the CoNNL corpus (200,000 tokens).
Currently we do not have unlabeled texts from
the same source as this corpus. Our investiga-
tions on other raw texts (from the domain econ-
omy) were unsuccessful (see Section 3.4). Hence
we followed the transductive approach in Hun-
garian semi-supervised experiments, that is the
evaluation dataset was used as unlabeled text.

As far as we know our results are the first
real semi-supervised ones on the CoNNL database
(H. Ji and R. Grishman [11] provided results on
ACE04 NER task).

We employed a rich feature set which de-
scribes the characteristics of each token along
with its actual context (a moving window of size
four). The same feature sets were used in the
experiments on Hungarian and English. Our fea-



tures fell into the following major categories:
Orthographical features: capitalization, word

length, bit information about the word form
(whether it contains a digit or not, has upper-
case character inside the word, and so on), the
most implicative character level bi/trigrams from
the train texts for each NE class.

Phrasal information: chunk codes and fore-
casted class of several preceding words used by
the classification approach (we used online evalu-
ation).

Contextual information: sentence position,
trigger words (the most frequent and unambigu-
ous tokens in a window around the NEs) from the
train text, and so on.

Dictionaries of first names, company types,
sport teams, denominators of locations (moun-
tains, city) and so on; we collected 12 English
specific lists from the Internet and 4 additional
ones for the Hungarian problem.

Frequency information: frequency of the to-
ken, the ratio of the token’s capitalized and low-
ercase occurrences, the ratio of capitalized and
sentence beginning frequencies of the token.

4.2 Machine Learners diversity

In a supervised learning situation a manually la-
beled training database is given and the goal is to
learn a model based on it that can predict pre-
viously unseen instances as precisely as possible.
This approach has dominated the history of NER
so far.

Sequence labeling (structure prediction) algo-
rithms try to predict the whole sequence (usually
the sentence). The most successful are Condi-
tional Random Fields (CRF) [12] (with the sim-
ple chain structure). These are tractable as train-
ing is done by running the forward-backward al-
gorithm through several iterations. CRF is the
state-of-the-art sequence labeling procedure for
NER problems.

There is an other approach which essentially
regards the NER problem as the classification of
separate tokens (Support Vector Machine is fre-
quently used in NER). We showed experimentally
that this approach is competitive with the the-
oretically more suitable sequence labeling algo-
rithms [1]. We applied a boosted decision tree
learning algorithm (C4.5) for classification, be-
cause it requires less computational time, and
handles discrete features efficiently. Of course our
model is capable of taking into account the re-
lationships between consecutive words, collecting
the relevant features in a window of appropriate

size. This model allows the sampling of separate
tokens as well. This is necessary for creating bal-
anced training data which sometimes makes favor
to learning algorithms.

Boosting [13] and C4.5 [14] are well known
algorithms for those who are acquainted with
pattern recognition. Boosting has been applied
successfully to improve the performance of deci-
sion trees in several NLP tasks. A system that
made use of AdaBoost and fixed depth decision
trees [15] came first on the CoNLL-2002 confer-
ence shared task for Dutch and Spanish, but gave
somewhat worse results for English and German
in 2003 (it was ranked fifth).

To solve classification problems effectively it
is worth applying various types of classification
methods, both separately and in combination.
The success of hybrid methods lies in tackling the
problem from several angles, so algorithms with
inherently different theoretical bases are good
subjects for voting and for other combination
schemes. We showed this experimentally on the
CoNNL 2003 database [1]: our token level classi-
fication model (Boosting with C4.5) just slightly
outperformed the best standalone system [16] of
the contest, but in combination (when we substi-
tute the best system in the voting scheme of the
best five models) we got a significant improve-
ment.

One of the semi-supervised methods applied
successfully to the NER problem in this paper is
based on the co-operation of a sequential model
and our classification based model (co-training) as
well. The CRF and the decision tree approaches
have different theoretical bases. First, the deci-
sion tree forecasts for each token independently
(the information about the surrounding words are
incorporated into the feature space) while the
CRF solves a sequence labeling problem. Second,
CRF approximates the distribution conditioned
on the joint feature space while the decision tree
chooses a feature split at each step in a greedy
way. This kind of diversity of the two models
makes them a good candidate for co-training.

4.3 The impact of features derived
from unlabeled corpora

In the first experiments we examined the impact
of training size in a clear supervised environment
along with the features derived from unlabeled
corpora. We used the CRF in these experiments.

These kinds of feature are the frequency infor-
mation and various dictionaries. The former one
was gathered from corpora containing several bil-



lion of tokens (Gigaword and Szószablya). The
Named Entity dictionaries were collected from
the Web as well. These lists (for a certain cate-
gory) can be gathered by automatic methods via
search engines and simple frame-matching algo-
rithms [8], but the elementary lists can be down-
loaded in a collected form and only their filtering
and normalization have to be done. The lists used
here are downloaded and cleared manually which
required less than 1 person day.

The 4-4 curves of Figure 1 represents the re-
sults using the entire feature space (continuous),
without frequency information (dotted), without
dictionaries (dashed) and without either (long-
dashed). The following tendency can be observed:
the absence of dictionaries causes smaller loss in
accuracy when the training set size is growing.
The added value of dictionaries is important when
only a small labeled database is present but this
information can be gained from a great labeled
dataset. The employment of frequency informa-
tion eliminates 19% of the errors in average, the
dictionaries 15% and their combined usage 28%.

Overall, Figure 1 has a logarithmic trend in
performance as the corpus size increases. These
results of the supervised model were used as the
baseline to the semi-supervised investigations.
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Figure 1: The effect of training corpus size on the
supervised learning tasks

4.4 Results obtained by bootstrapping
methods

We investigated self-training and co-training in
parallel. In self-training CRF was applied and in
co-training we extended the labeled training set
of CRF with automatically labeled instances by
our boosting and decision tree based NER model
[1]. The diversity of the two models makes them
a good candidate for co-training.

Figure 2 shows the results obtained by self-
training (dotted line) and co-training (continuous
line) with different sizes of labeled training data.

The baselines (the zero point on the X axis) were
the accuracies of the supervised CRF model. The
accuracy of co-training could be increased when
we do not use every predicted sentences but de-
fine a confidence threshold of the decision tree
for choosing reliable sentences. Obviously the
lower the threshold, the lower the ratio of sen-
tences match the criteria, and thus a larger unla-
beled initial database is required. Figure 3 shows
two confidence level settings: the continuous line
(the same as in Figure 2) represents a confidence
threshold of 10−3, while the dotted line represents
a threshold of 10−10.

The most important conclusion of these ex-
periments is that the increasing trend remains
stable even when we use large unlabeled datasets
as well and we could achieve slightly better re-
sults by co-training with 100,000 labeled tokens
(with an F measure of 91.28%) instead of using
the supervised model with 200,000 labeled tokens
(91.26%). In order to obtain this accuracy with
100,000 labeled tokens we gathered 23,507 reli-
able sentences (400,000 tokens) from a raw text
of 3 million tokens.

Figure 2: Self-training (dotted) and co-training
(continuous) results on the NER tasks

Figures 2 and 3 show that, by using unla-
beled text, the results of a supervised model can
be improved significantly with every size of la-



beled training data both in English and Hungar-
ian NER tasks. Along with these nice results we
must mention some poor ones as well. Co-training
was not robust when we evaluated it on the eval-
uation set of the CoNNL 2003 contest (instead
of the development set). In the case of 100,000
labeled examples plus 200,000 raw ”reliable” to-
kens, the supervised model achieved an F mea-
sure of 83.58%, while co-training with 10−3 con-
fidence threshold gave just 83.21%. The model
with a 10−10 confidence level improved the ac-
curacy but not by a significant amount (F mea-
sure of 83.62%). We investigated bootstrapping
methods with raw Hungarian economy texts ob-
tained from another source than our corpus. We
found that neither self-training nor co-training
could achieve better results than the supervised
CRF. Based on these experiments we came to the
conclusion that the training set, the evaluation
set and the unlabeled dataset as well should share
very similar characteristics in a well functioning
semi-supervised system.

Figure 3: Co-training results with a confidence
thresholds of 10−3 (continuous line) and 10−10

(dotted)

4.5 Utilizing the World Wide Web as
an input for NLP tasks

There are several ways of gathering informa-
tion for Natural Language Processing tasks from
the World Wide Web (as an external knowledge
source). In connection to NER, the published sys-
tems collect lists of Named Entities belonging to
pre-specified classes [8] from the WWW. We in-
troduced [17] three different approaches to fine-
tuning the results of an NER system using the
Google API and Wikipedia:

A significant part of system errors in NER
taggers is caused by the erroneous identification of
the beginning (or end) of a longer phrase. Token-
level classifiers (like the one we applied here) are
especially prone to this as they classify each token
of a phrase separately. We considered a tagged

entity as a candidate long-phrase NE if it was
followed or preceded by a non-tagged uppercase
word, or one/two stop words and an uppercase
word. Our hypothesis for this first heuristic is
that if the boundaries hence been marked cor-
rectly and the surrounding words are not part of
the entity, then the number of web-search results
for the longer query should be significantly lower
(the NE is followed by the particular word in just
certain contexts). But in the case of a dislocated
phrase boundary, the number of search results for
the extended form must be comparable to the re-
sults for the shorter phrase. This means that ev-
ery time we found a tagged phrase that received
more than 0.1% of web query hits in an extended
form, we extended the phrase with its neighbour-
ing word(s).

Our hypothesis for the second heuristics was
that the most frequent role of a named entity can
be statistically useful information. Thus we did
the following: if the system was unable to decide
the class label of a phrase (it could not find evi-
dence in the context of the certain phrase) then
we mined the most frequent usage of the corre-
sponding NE using the WWW and took that as a
prediction. Our approach works by invoking sev-
eral special Google queries in order to find such
noun phrases following or preceding the pattern
that is a category name for a particular class (e.g.
NP such as NE, NP including NE, NE and other
NP). We used the lists of unambiguous NEs col-
lected from the training data to acquire common
NE category names from the WWW. Then us-
ing these category lists as a disambiguator (we
assigned the class sharing the most words in com-
mon with those extracted for the given NE) when
the NER system was unable to give a reliable
prediction was beneficial to overall system per-
formance. We used the simple way of interpret-
ing the uncertainty of a decision, we measured
the level of disagreement among individual mod-
els (committee-based learning).

Table 1: Search queries for obtaining category
names to a named entity

English Hungarian
NP such as NE NE egyike NP - NE is one of NP

NP including NE NE és más NP - NE and other NP

NP especially NE NE és egyéb NP - NE and other NP

NE is a NP NE vagy más NP - NE or other NP

NE is the NP NE vagy egyéb NP - NE or other NP

NE and other NP

NE or other NP



In the majority of cases, consecutive Named
Entities either follow each other with a separat-
ing punctuation mark (enumerations) or belong to
different classes. In the first case, a non-labeled
token separates the two phrases, while in the sec-
ond case the different class labels identify the
boundaries. Rarely do two or more NEs of the
same type appear consecutively in a sentence. In
such cases the phrasal boundaries must be marked
with a tag (’B-’ instead of the common ’I-’ prefix).
Such cases are rather problematic for a statisti-
cal model. We exploited the encyclopedic knowl-
edge of Wikipedia to enable our system to distin-
guish between long phrases and consecutive enti-
ties. We queried the Wikipedia site for all entities
that had two or more tokens. If we found an ar-
ticle sharing the same title as the whole query,
or the majority of the occurrences of the phrase
in the Google snippets occurred without punctu-
ation marks inside, we treated the query phrase
as a single entity. If a punctuation mark was in-
side the phrase in the majority of the cases, we
separated the phrase at the position of the punc-
tuation mark. This method allowed us to separate
phrases like ’Golan Heights | Israel’.

The empirical results of [17] on the techniques
introduced above confirm the usefulness of the ex-
ternal information gathered from the Web. We
came up against two problems when adapting
our approach to the Hungarian task. First, we
could not use each query of the most frequent
role heuristics translated from English as the sub-
stantive verb in the third person singular is not
present in Hungarian. We had to look for new
query expressions and found one that was help-
ful: NE egyike NP (NE is one of NP). Second,
the Hungarian web (we used the site:.hu expres-
sion in our queries) seems to be too small to get
really useful responses. On average about 70%
of our queries got zero results from the Google
API and the size of Hungarian Wikipedia is only
about 3.5% of the English one. This fact suggests
that the above mentioned WWW-based methods
probably cannot provide satisfactory results for
less common languages like Hungarian.

5 Discussion and Conclusions

The aim of this paper was to reveal to the uti-
lization potential of unlabeled texts in Natural
Language Processing tasks. We found experi-
mental evidence for the usefulness of raw texts
on English and Hungarian NER tasks. Due to
learner diversity of co-training, unlabeled data

improved supervised models with every size of la-
beled dataset. What is more we achieved the same
level of accuracy with 100,000 labeled examples
and raw texts as that from using supervised learn-
ing with 200,000 labeled tokens. However we dis-
cussed that employing standard semi-supervised
techniques for NLP tasks is still unfeasible (low
density separation based approaches) or requires
a very careful unlabeled data selection (very simi-
lar domain/structure), hence we argue to discover
special semi-supervised techniques for NLP.

We investigated the effect of features derived
from unlabeled corpora. These features brought
an average error reduction of 28% and can be ob-
tained in couple of hours of human work. We
think that the use of the World Wide Web as
an unlimited unlabeled corpus for semi-supervised
learning will be done in a more sophisticated way
in the near future. Our heuristics are based on the
assumption that, even though the World Wide
Web contains much useless and faulty informa-
tion, for our simple features the correct usage of
language dominates over misspellings and other
sorts of noise. Our experiments confirmed this
hypothesis: we described three heuristics based
on the Google API response (hit counts and snip-
pets) and on the Wikipedia encyclopedia. Us-
ing them as a supplementary heuristics a state-
of-the-art multi-lingual NER system was further
improved.

In the future we would like to develop solu-
tions which employ the WWW more effectively
and find novel semi-supervised procedures that
are especially suitable for other natural language
processing tasks.
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Named entity extraction using adaboost. In Pro-
ceedings of CoNLL-2002, Taipei, Taiwan, 2002.

[16] Radu Florian, Abe Ittycheriah, Hongyan Jing,
and Tong Zhang. Named entity recognition
through classifier combination. In Walter Daele-
mans and Miles Osborne, editors, Proceed-
ings of CoNLL-2003, pages 168–171. Edmonton,
Canada, 2003.

[17] R. Farkas, Gy. Szarvas, and R. Ormándi. Improv-
ing a state-of-the-art named entity recognition
system using the world wide web. ICDM2007,
LNCS, 4597:163–172, 2007.


