

Outline

- What is Computerized Tomography (CT)
- What is Discrete Tomography (DT)
- Binary tomography using 2 projections
- Ambiguity and complexity problems
- A priori information
- Reconstruction as optimization
- Open questions

Tomography

- A technique for imaging the 2D cross-sections of 3D objects
- parts of human body with X-rays
- structure of molecules or crystals
- obtaining shape information of industrial parts

Discrete Tomography

- in CT we need a few hundred projections
- time consuming
- expensive
- sometimes we do not have many projections
- in many applications the range of the function to be reconstructed is discrete and known \rightarrow DT (only few 2-10 projections are needed)
- $f: \mathrm{R}^{2} \rightarrow D$, if $D=\{0,1\}$ then f has only binary values (presence or absence of material) \rightarrow binary tomography

Computerized Tomography

X-rays
$u c y^{\prime} \downharpoonleft f(x, y) \quad$ Reconstruct $f(x, y)$ from its projections

$$
g(s, \sigma)=\int_{-\infty}^{\infty} f(x, y) d u
$$

Reconstruction from 2 projections

Reconstruction from 2 projections

Main Problems

1) Consistency
2) Uniqueness
3) Reconstruction
4) \rightarrow 1)

Reconstruction

Ryser, 1957 - from row/column sums R/S, respectively

- Construct the non increasing permutation of the elements of $S \rightarrow S^{\prime}$
- Fill the rows from left to right $\rightarrow B$
- Shift elements from the rightmost columns of B to the columns where $S(B)<S^{\prime}$
- Apply the inverse of the permutation that was used to construct S '

$$
O(n(m+\log n))
$$

Consistency

- Necessary condition: compatibility

$$
\begin{aligned}
& \sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} s_{j} \\
& r_{i} \leq n(i=1, \ldots, m), s_{j} \leq m(j=1, \ldots, n)
\end{aligned}
$$

- Gale, Ryser, 1957: there exist a solution iff

$$
\sum_{j=1}^{k} s_{j}^{\prime} \leq \sum_{j=1}^{k} s_{j}^{*} \quad k=1, \ldots, n
$$

\[

\]

Ambiguity

Due to the presence of switching components there can be many solutions with the same two projections

Solutions:

1. Further projections can be taken along lattice directions
2. A priori information of the set to be reconstructed can be used

In the case of more than 2 projections uniqueness, consistency and reconstruction problems are NP-hard

$h \nu$-Convex and Connected Sets

	1				
	1	1	1	1	1
1					
1					
1					

	1				
	1	1	1	1	1
1	1	1			
1	1	1			
1					

$h v$-convex 4-connected: $O\left(m n \cdot \min \left\{m^{2}, n^{2}\right\}\right) \quad$ - Chrobak, Dürr, 1999
$h v$-convex 8-connected: $O\left(m n \cdot \min \left\{m^{2}, n^{2}\right\}\right) \quad-K u b a, 1999$
$h v$-convex 8 - but not 4-connected: $O(m n \cdot \min \{m, n\})$
Balázs, Balogh, Kuba, 2005

[^0]
h-convex

v-convex

h-convex

Open Problems

- New kinds of prior information (e.g., model image, special convexity properties, ...)
- Efficient heuristics for NP-hard reconstruction
- Guessing geometrical properties from projections
- Tomography in higher dimensions
- Stability

[^0]: $h v$-convex: NP-complete, Woeginger, 1996

