DIGITAL TERRAIN
MODELLING

Endre Katona
University of Szeged
Department of Informatics
katona@inf.u-szeged.hu



 data sources

The problem: + data structures
 algorithms




DTM = Digital Terrain Model

Terrain function: h(x, y) with continuous partial derivatives,
excepting some special cases:

— the function is not continuous (bench).

— partial derivatives are not continuous (breakline).

2.5 dimensional modeling: not suitable for caves, for
Instance.

Model requirements:
« good approximation of the real world
» to determine h for any (x, y)



DEM = Digital Elevation Model

Raster model: matrix of height values
 resolution (e.g. 20 m)

« accuracy (e.g. 1 m)
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Note: DEM origin:
USGS (United
States Geological
Survey)



TIN = Triangulated Irregular Network

Vector model

Data structures:
a) NODE (id, x, vy, z)
TRIANGLE (id, node,, node,, nodes, tr,, tr,, trs).

b) NODE (id. x, v, z, node,, .... node.)



Contour line (level line) representation

Vector approach:
* LINE x4, yq, ..., X, ¥y Z (2D line string with height value z)
* LINE X4, ¥4, Z4, ..., X4y Yy Z (3D line sting with z, = ... = z)




DEM versus TIN

DEM:

simple data structure

easier analysis

high accuracy at high resolution
high memory demand

* time-consuming processing
TIN:

restricted accuracy
complex algorithms

less memory required
time-efficient processing



Data sources for DTM

1. Stereo aerial photos (photogrammetry)

2. Measured height values

3. Existing contour line maps
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Generating TIN from height values

a) Direct triangulation.

b) Spatial interpolation and triangulation.



Delaunay-triangulation - 1

* Given: a set of 3D nodes (X%, Yy, z)
* Reduction to 2D: instead (x, y, z) we take (x, y).

* Prefer "fat" triangles.
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Delaunay-triangulation - 2

Delaunay triangle: the circumscribing circle
does not contain further node.

Delaunay-triangulation: each triangle is a
Delaunay-triangle.

Voronoi diagram: a set of disjoint
territories. Each node has a territory.
Each point in the plane is classified into \
the territory of the closest node. Nodes
with neighboring territories can be X Py
connected by an edge.



Generating TIN from contour line maps
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Generating TIN from contour lines - 2

Processing steps:
1. Scanning the contour line map sheet.

2. Manual correction (eliminating gaps and junctions,
handle special notations).

3. Vectorization (manual or automatic),
we get a set of nodes and edges as a resullt.

4. Assigning a height value to each contour line
(manual or half-automatic).

5. Assigning triangles between contour lines (Delaunay-
algorithm).



Generating TIN from contour lines - 3

Problem: flat areas
e at mountain peaks,
« atridges.

Solution:
spatial interpolation.




Spatial interpolation

Consider a terrain function f(x, y).
Given: (x4, y1) = hq, ..., (X, ¥.,) = h,,
Problem: estimating f(x, y) in other points.

Solutions:

* Inverse distance weighted moving average
* Polynomial interpolation



Inverse distance weighted moving average

Given: height values h,, ..., h_ at points P,, ..., P,

Unknown: height value h of a given point P.

Estimation: h=(h,/d,+ ...+ h_/d )/ (1/d, + ...+ 1/d )
where d; is the distance between P; and P.

Properties:

« Good for ridges.

« Flat areas at peaks.

* Local maxima and minima may occur only at given points.



Polynomial interpolation

Given: f(x,, y,) = hq, ..., (x.,, ¥,,) = h,,

Task: approximate f(x, y) with a polynomial p(x, y) of
degree r. For example, if r = 2:
P(X, y) = @gg + 849X + AgqY + 8ypX° + 44Xy + 8ppY?

Solution: Coefficients a;; are determined by least squares
method: E = X, (p(x,, y,) —h,)? = min.

Properties:

* Local maxima or minima may occur not only at
given points.

» Expensive procedure for contour lines
(too many given points)

* Physical terrain features are not considered.



Generating DEM from contour line maps
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Solutions:
* The Intercon method
« Variational spline interpolation



« Place a regular grid on

 Create cross-sections

« Calculate height and

 Heuristics: choose the

The Intercon method (IDRISI)

contours.

along horizontal, vertical
and diagonal lines of the
grid.

slope values for each
grid point (by linear
interpolation).

=050

height value belonging
to the maximum slope.



The Intercon method - 2

Disadvantages:

* Local maxima and minima may occur only
at given points.

 Interrupted contour lines may cause significant
distortions.

* Single elevation points cannot be handled.



Variational spline interpolation

Source data:

« contour line map, and/or
« a set of elevation points.
Target data: DEM matrix

Preprocessing of contour lines:

« Scanning of contour line map sheets.

* Manual editing of the scanned raster image.
« Contour line thinning.

« Assigning height values to contour lines.



Variational spline interpolation - 2

Initial DEM matrix (X denotes unknown point):
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Variational spline interpolation - 3

Continuous case
Given: f(x,, y,) = dy, ..., (X, ¥,,) = d,
Task: approximate f(x, y) with a minimum energy function.

General energy functional of degree r:
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Variational spline interpolation - 4

Membrane model: E' —” 2+ f2)dx dy
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It tends to minimize
the surface area.

(Partial derivatives
are not continuous)
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Variational spline interpolation - 5

Thin plate model: E; = ﬂ fa+2fo+f,)dxdy

t tends to minimize
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(Continuous partial
derivatives)




Variational spline interpolation - 6

Membrane model
Continuous case: [ 1 H( + 1, )dx dy = min

Discrete case (matrix Z instead of function f(x,y)):
Ez1 = 2 Z [ (z P )2 t (Zi+1,j_ Z/,j)2 ]

To find the minimum of E,’, take the partial derivatives
for any i, J:

0E;\0z;,= 82— 22;,1;— 22, 1 ;— 22;;,1 — 2Z;; 1= 0



Variational spline interpolation - 7

After dividing by 2:
4z, —

=» Linear equation system.

Z Z

i+1,j - i—1,j - ZI,_[+1 - Zl,j—1 - O fOI’ any I, j.

Solution with Jacobi-iteration =» repeated convolution
with mask

1/4
14 0 1/4
1/4

Note: Given points are kept fixed during convolution.



Variational spline interpolation - 8
Thin plate model

Continuous case: E2 ”( +2f +f )dxdy 2 min

Discrete case (matrix Z instead of function f(x,y)):

Ef=% % [(z 22, +z )+

i+1j 1,]
2(ZI+IJ+1 Zi,j+1 — Zi+1,j + Z ) T (ZUH 2Zi,j + Zi,j—l)2 ]



Variational spline interpolation - 9

To find the minimum of E.?, take the partial derivatives:

OE10Z;;= 27,5 + 4Z14 4 j1q — 16Zq; + 4214 +
+2z,,,- 16z, +40z,- 16z, , + 2z, , +

+4z 4,4, — 16z, 4zI 11 7225, =0

=>» Linear equation system. [ 1 7
In a more expressive form 2 —_8 2
(after dividing by 2): 1 -8 20 -8 1
2 -8 2
= 1 _




Variational spline interpolation — 10

Solution with Jacobi-iteration =» repeated convolution

with mask ) )
—1

-2 8 =2

i —1 8 12 8 —1
32

-2 8 =2

L _1 —
Notes:

« Given points are kept fixed during convolution.
« Convergence of masks can be studied by Fourier-analysis.



Variational spline interpolation - 11

Sample initial matrix for
the iteration:

(Each unknown point
gets the value of
the nearest
contour line.)

Algorithm:
modified
distance
transform



Variational spline interpolation - 12

Membrane model after 40 iterations:

=» Fast convergence
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Variational spline interpolation — 14

Thin plate model after 5000 iterations:

=» Very slow convergence!
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The multigrid method

Basic idea:

1. Create a reduced matrix R from Z by averaging data
points. If a tile does not contain a data point, the
corresponding reduced pixel will be undefined.
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The multigrid method - 2

Basic idea (continued):
2. Give initial values to undefined elements of R.

3. Perform iteration for R. Convergence is faster
because of the reduced matrix size.
The result is denoted by R*.

4. Give initial values to undefined pixels in Z by
enlarging R* to the original size.



The multigrid method - 3
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The multigrid method - 4

Remember:
Initial terrain
used previously




The multigrid method -5

The multigrid principle:

Use a hierarchy of -
reduced matrices: | -

R, of size 1 x 1

R, of size 2x 2

R, of size 4 x 4

R,=Z of size 2" x 2"




The multigrid method - 6

Multigrid algorithm:
The original contour matrix Z is of size 2" x 2".

1. Create R, of size 1 x 1 from Z
(by averaging all the data points).

2. Create R, of size 2 x 2 from Z by reduction.
Unknown pixels of R, get initial values from R,,.
Iterate for R,, the result is R,”.

3. Create R, of size 4 x 4 from Z by reduction.
Unknown pixels of R, get initial values from R,*.
Iterate for R, , the resultis R,”.

4. Continue the procedure until R =Z.
Unknown pixels of R get initial values from R, ;.
Iterate for R, , the resultis R.".



The multigrid method -7

Conclusion:

* Only 10-40 iterations are needed at each multigrid level,
even in the case of thin plate model!

 Time and memory required:
T=t+t4+1H/16+ ...+ t/4n < 41/3



Variational spline interpolation
with multigrid

Summary for thin plate:

* Local maxima or minima may occur not only at
given points.
 ltis efficient if multigrid method is applied.

* Physical terrain features can be considered in some
sense.
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