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The problem:
• data sources
• data structures
• algorithms



Terrain function: h(x, y) with continuous partial derivatives,
excepting some special cases:
– the function is not continuous (bench).
– partial derivatives are not continuous (breakline).

2.5 dimensional modeling: not suitable for caves, for 
instance.

Model requirements:
• good approximation of the real world
• to determine h for any (x, y) 

DTM = Digital Terrain Model



DEM = Digital Elevation Model

Raster model: matrix of height values

• resolution (e.g. 20 m)

• accuracy (e.g. 1 m)

Note: DEM origin: 
USGS (United 
States Geological 
Survey) 



TIN = Triangulated Irregular Network 

Vector model

Data structures:
a) NODE (id, x, y, z)

TRIANGLE (id, node1, node2, node3, tr1, tr2, tr3).

b) NODE (id, x, y, z, node1, ..., noden)



Contour line (level line) representation

Vector approach:
• LINE x1, y1, ..., xn, yn, z (2D line string with height value z)
• LINE x1, y1, z1, ..., xn, yn, zn (3D line sting with z1 = ... = zn)



DEM versus TIN
DEM: 
• simple data structure
• easier analysis
• high accuracy at high resolution
• high memory demand
• time-consuming processing
TIN:
• restricted accuracy
• complex algorithms
• less memory required
• time-efficient processing



1. Stereo aerial photos (photogrammetry)

2. Measured height values

3. Existing contour line maps

Data sources for DTM



Generating TIN from height values

a) Direct triangulation.

b) Spatial interpolation and triangulation.



Delaunay-triangulation - 1

• Given: a set of 3D nodes (x, y, z)

• Reduction to 2D: instead (x, y, z) we take (x, y).

• Prefer "fat" triangles.



Delaunay-triangulation - 2

Delaunay triangle: the circumscribing circle 
does not contain further node.

Delaunay-triangulation: each triangle is a 
Delaunay-triangle.

Voronoi diagram: a set of disjoint 
territories. Each node has a territory.
Each point in the plane is classified into 
the territory of the closest node. Nodes 
with neighboring territories can be 
connected by an edge.



Generating TIN from contour line maps



Part of a scanned 
contour line map

(before processing)



Generating TIN from contour lines - 2

Processing steps:
1. Scanning the contour line map sheet.
2. Manual correction (eliminating gaps and junctions, 

handle special notations).
3. Vectorization (manual or automatic), 

we get a set of nodes and edges as a result.
4. Assigning a height value to each contour line 

(manual or half-automatic).
5. Assigning triangles between contour lines (Delaunay-

algorithm).



Generating TIN from contour lines - 3

Problem: flat areas
• at mountain peaks,
• at ridges.

Solution:
spatial interpolation.



Spatial interpolation

Consider a terrain function f(x, y).

Given: f(x1, y1) = h1, ..., f(xm, ym) = hm

Problem: estimating f(x, y)  in other points.

Solutions:
• Inverse distance weighted moving average
• Polynomial interpolation



Inverse distance weighted moving average

Given: height values h1, ..., hm at points P1, ..., Pm

Unknown: height value h of a given point P.
Estimation: h = (h1/d1 + ... + hm/dm) / (1/d1 + ... + 1/dm)

where di is the distance between Pi and P.

Properties:
• Good for ridges.
• Flat areas at peaks.
• Local maxima and minima may occur only at given points.



Polynomial interpolation 

Given: f(x1, y1) = h1, ..., f(xm, ym) = hm

Task: approximate f(x, y) with a polynomial p(x, y) of 
degree r. For example, if r = 2:
p(x, y) = a00 + a10x + a01y + a20x2 + a11xy + a02y2

Solution: Coefficients ai,j are determined by least squares 
method: E = Σi (p(xi, yi) – hi)2 min. 

Properties: 
• Local maxima or minima may occur not only at 

given points.
• Expensive procedure for contour lines 

(too many given points)
• Physical terrain features are not considered.



Solutions:
• The Intercon method
• Variational spline interpolation

Generating DEM from contour line maps



• Place a regular grid on 
contours.

• Create cross-sections 
along horizontal, vertical 
and diagonal lines of the 
grid.

• Calculate height and 
slope values for each 
grid point (by linear 
interpolation).

• Heuristics: choose the 
height value belonging 
to the maximum slope.

The Intercon method (IDRISI)



Disadvantages:
• Local maxima and minima may occur only 

at given points.
• Interrupted contour lines may cause significant 

distortions.
• Single elevation points cannot be handled.

The Intercon method - 2



Variational spline interpolation

Source data: 
• contour line map, and/or
• a set of elevation points.
Target data: DEM matrix

Preprocessing of contour lines:
• Scanning of contour line map sheets.
• Manual editing of the scanned raster image.
• Contour line thinning.
• Assigning height values to contour lines.



Variational spline interpolation - 2
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Initial DEM matrix (X denotes unknown point):



Variational spline interpolation - 3

Continuous case
Given: f(x1, y1) = d1, ..., f(xm, ym) = dm

Task: approximate f(x, y) with a minimum energy function. 

General energy functional of degree r:
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Variational spline interpolation - 4

Membrane model:

It tends to minimize 
the surface area. 

(Partial derivatives 
are not continuous)



Variational spline interpolation - 5

Thin plate model:

It tends to minimize 
the surface curvature.

(Continuous partial 
derivatives) 



Variational spline interpolation - 6

Membrane model

Discrete case (matrix Z instead of function f(x,y)):

EZ
1 =  Σi Σj [ (zi,j+1 – zi,j)2 + (zi+1,j – zi,j)2 ] 

To find the minimum of EZ
1, take the partial derivatives 

for any i, j:

∂EZ
1/∂zi,j = 8zi,j – 2zi+1,j – 2zi–1,j – 2zi,j+1 – 2zi,j–1 = 0

Continuous case: min



Variational spline interpolation - 7

1/4
1/4    0   1/4

1/4

After dividing by 2:

4zi,j – zi+1,j – zi–1,j – zi,j+1 – zi,j–1 = 0  for any i, j.

Linear equation system.

Solution with Jacobi-iteration  repeated convolution 
with mask

Note: Given points are kept fixed during convolution.



Variational spline interpolation - 8

Thin plate model

Continuous case: min

Discrete case (matrix Z instead of function f(x,y)):

EZ
2 = Σi Σj [(zi+1,j – 2zi,j + zi–1,j)2 + 
+ 2(zi+1,j+1 – zi,j+1 – zi+1,j + zi,j)2 + (zi,j+1 – 2zi,j + zi,j–1)2 ]



Variational spline interpolation - 9
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To find the minimum of EZ
2, take the partial derivatives:

∂EZ
2/∂zi,j = 2zi+2,j + 4zi+1,j+1 – 16zi+1,j + 4zi+1,j–1 +

+ 2zi,j+2 – 16zi,j+1 + 40zi,j – 16zi,j–1 + 2zi,j–2 +
+ 4zi–1,j–1 – 16zi–1,j + 4zi–1,j+1 + 2zi–2,j = 0

Linear equation system.

In a more expressive form

(after dividing by 2):



Variational spline interpolation – 10
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Solution with Jacobi-iteration  repeated convolution 
with mask

Notes:
• Given points are kept fixed during convolution.
• Convergence of masks can be studied by Fourier-analysis.



Variational spline interpolation - 11

Sample initial matrix for 
the iteration:

(Each unknown point
gets the value of
the nearest 
contour line.)

Algorithm:
modified
distance
transform



Variational spline interpolation - 12

Membrane model after 40 iterations:

Fast convergence



Variational spline interpolation - 13

Thin plate model after 500 iterations:



Variational spline interpolation – 14

Thin plate model after 5000 iterations:

Very slow convergence!

The solution:

multigrid method



Basic idea:
1. Create a reduced matrix R from Z by averaging data 

points. If a tile does not contain a data point, the 
corresponding reduced pixel will be undefined.

Z R

The multigrid method



Basic idea (continued):
2. Give initial values to undefined elements of R. 
3. Perform iteration for R. Convergence is faster 

because of the reduced matrix size. 
The result is denoted by R*.

4. Give initial values to undefined pixels in Z by 
enlarging R*  to the original size. 

The multigrid method - 2



Example: initial terrain gained from an 8-reduced 
matrix

The multigrid method - 3



The multigrid method - 4

Remember: 
initial terrain 
used previously



The multigrid method - 5

The multigrid principle:

Use a hierarchy of 
reduced matrices:

R0 of size 1 x 1

R1 of size 2 x 2

R2 of size 4 x 4

...

Rn=Z of size 2n x 2n



The multigrid method - 6
Multigrid algorithm:
The original contour matrix Z is of size 2n x 2n. 
1. Create R0 of size 1 x 1 from Z

(by averaging all the data points).
2. Create R1 of size 2 x 2 from Z by reduction.

Unknown pixels of R1 get initial values from R0.
Iterate for R1, the result is R1*.

3. Create R2 of size 4 x 4 from Z by reduction.
Unknown pixels of R2 get initial values from R1*.
Iterate for R2 , the result is R2*.

4. Continue the procedure until Rn=Z.
Unknown pixels of Rn get initial values from Rn-1*.
Iterate for Rn , the result is Rn*.



The multigrid method - 7

Conclusion:
• Only 10-40 iterations are needed at each multigrid level, 

even in the case of thin plate model! 
• Time and memory required: 

T = t + t/4 + t/16 + ... + t/4n < 4t/3



Variational spline interpolation 
with multigrid

Summary for thin plate: 
• Local maxima or minima may occur not only at 

given points.
• It is efficient if multigrid method is applied.
• Physical terrain features can be considered in some 

sense.
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