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Abstract. In this paper we describe the pattern recognition methods
used for the identification of coins in the new coin recognition and sorting
system Dagobert developed at the ARC Seibersdorf research centre. The
purpose of Dagobert is to sort high volumes of coins. In particular the
coin detection task, the features used to pre-select meaningful potential
master coins for the verification process and the verification/rejection
method itself will be detailed. Some recognition results are given at the
end of the paper, indicating that the approach fulfils the given task ef-
fectively.
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1 Background and Introduction

The changeover from 12 European currencies to the Euro created a unique situa-
tion. Great volumes of money had to be physically returned to the national banks
of the member states. Charity organisations took the opportunity to appeal for
funds.

In Austria alone, by European standards a medium sized country with a
population of 8 million, the charitable donations amounted to several hundred
tons of cash. Unfortunately, the coins could only be collected as a potpourri of
currencies. Quite often donors would generously contribute their left over holiday
money accumulated over several years or their entire small cash collections. The
sheer volume of material rules out any attempt to separate the money manually
and calls for an automatic processing device.

Existing coin sorting machines usually work with only one currency at the
time and therefore, cannot be used. Statistics evaluated on a small fraction of the
material showed that more than 100 currencies are to be expected. This means
that potentially two to three thousand different coin faces have to be recognised.
Throughout this paper, by coin face we refer to the obverse and reverse side of
the coin.

In general the material is not in mint condition. Circulation over decades has
caused abrasion and dirtiness. Surprisingly, we found in addition that the mint
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process itself is less accurate in many cases than one might expect. Out of centre
imprints occur frequently as well as noticeable changes of the coin die over the
years.

In this paper we will describe the pattern recognition approach used for the
coin recognition and sorting system Dagobert designed and built at ARC Sei-
bersdorf research GmbH. Section 3 will introduce the problem in more detail as
well as the approach taken. Previous work is reviewed in Section 2. In Section
4 we will discuss some results based on data gathered in the laboratory as well
as data from the actual production. Concluding remarks and future work are
presented in Section 5.

2 Previous work

Several coin recognition approaches are mentioned in the literature.
Fukumi et al describe a system based on a rotation-invariant neural network

that is capable of distinguishing Japanese coins ([4]), a 500 yen and a 500 won
piece. Rotational invariance is achieved by explicitly generating the rotational
group for a coarse model of the coin in a preprocessing step and feeding the
results into a neural network. One drawback of the neural network approach is
that it is not apparently clear how rejection of coins should be expressed. It is
essential to be able to reject coins as it is impossible to know in advance which
types of coins will be presented to the system.

Davidsson ([3]) compares several strategies, namely induction of decision
trees ([10]), neural networks and Bayesian classifiers. He derives a variation of
the decision tree algorithm that will reject coins if their defining attributes are
outside an acceptance region. However, it is difficult to extend the approach to
images.

Finally, Adameck et al presented an interesting method for a coin recogni-
tion system based on colour images ([1]). Similar to our approach translational
invariance is achieved through segmentation, whereas rotational invariance is a
result of a polar coordinate representation and correlation. Their system uses
a special hardware to assure that no fraud coins are accepted by the system.
In our case there is no risk that fraud images of coins will be presented to the
system. Therefore, the use of colour seems to increase the computational costs
unnecessarily.

3 Dagobert approach

For the sake of brevity we will restrict ourselves to the pattern recognition prob-
lem resulting from the overall aim of separating high volumes of diverse coins.
For the recognition task, we assume that from a heap of money, coins are al-
ready singled out and put on a conveyor belt where a camera observes one coin
at a time. The grey level images define the input to the recognition system. The
major goals for the recognition task are:
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– Separate coins from at least 30 different currencies. The desired currencies
or more concrete the corresponding coin faces define the recognition pattern
set (RPS). False classifications should to be less than 0.01%.

– Reject coins that are not in the RPS.
– Real time performance. Real time in our case is defined by the performance

of the mechanical parts of the Dagobert system. At present five to six coins
per second can be loaded onto and taken from the conveyor belt.

As we could not find or access any substantial ground data, i.e. master coin col-
lections or catalogues covering all required currencies, a first and quite laborious
step was to gather the master data to build up the RPS.

The recognition process itself is roughly divided into three parts which are
described below:

1. Coin detection: detect the coin in the current image, separate it from the
background and determine the convex hull, centre of gravity and perimeter.

2. Coin pre-selection: for the current coin determine a short list SL of l objects
from the RPS that minimise a dissimilarity measure.

3. Coin verification: for all objects in SL calculate the distance (error) to the
current coin. Reject the current coin if the distance is too big, otherwise
classify the current coin as the object with the smallest distance.

Step 2 purely serves for computational efficiency. As will be seen below the verifi-
cation involves some computationally expensive algorithms that have to be per-
formed for all master coin patterns under consideration. Pre-selecting promising
candidates into the short list considerably reduces the costs for verification.

3.1 Coin detection

As long as the background conditions, i.e. the conveyor belt, can be controlled
sufficiently, the coin detection task becomes almost trivial. If the conveyor belt
is homogenous and always darker (brighter) than the coins, a simple (auto-
matic) threshold operation suffices for the separation. This will be the assump-
tion throughout this paper. Once the current coin is separated from the back-
ground we can calculate the centre of gravity, perimeter and convex hull.

But it should be noted that the coin detection may become the toughest part
of the recognition and will be subject to future work.

3.2 Coin verification

In general the appearance of one coin pattern varies considerably with respect
to its grey values. These variations frequently are inhomogeneous. This suggests
that for recognition purposes grey values by themselves will not give us appro-
priate results.

On the other hand edge information remains more or less stable or at least de-
grades gracefully. Therefore, we based the coin recognition algorithms of Dagob-
ert on edges. In principle any edge detector may be used for this purpose. But
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from our experience the Canny edge operator and the Laplacian of Gaussian me-
thod ([2], [8], [5]) work satisfactorily. As a result of the edge operator we either
get a binary (edge) image or a list of coordinates at edge pixel locations.

Let I : M × N −→ R[0,1] be an intensity image. M × N gives the index space
and R[0,1] the intensity values taken from the closed interval [0, 1].

E(x, y) =
{

1, if I(x, y) is an edge point;
0, else, (3.1)

is the binary edge image and Ec = {(x − xm, y − ym)|E(x, y) = 1} the list of
cartesian edge point coordinates with the centre of gravity (xm, ym) as origin.
The polar coordinate representation of Ec is given by:

Ep = {(θ, ρ)|(x, y) ∈ Ec}, (3.2)

where
θ = arctan y/x, x = ρ cos θ,

ρ =
√

x2 + y2, y = ρ sin θ.

Assume Em is a master edge image that corresponds to Ea, the current coin

            

Fig. 1. Polar coordinate representation of an edge image.

edge image. Then in general there is an unknown rotation φ around the centre
of gravity that aligns both edge images. In polar coordinates this rotation trans-
forms into a cyclic translation in the angular direction. To determine φ we may
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deploy a fast correlation method ([8], [5]) based on the edge images. Although
correlation methods based on the fast Fourier transformation perform efficiently,
there are some drawbacks using the edge images directly. First, to preserve the
visual information the resolution of the edge image cannot be too small. De-
pending on the diameter of the coin we typically get coin image resolutions from
100 × 100 to 300 × 300 pixel’s and the correlation would add significantly to
the overall computational costs. Secondly, the outer border, which in most cases
contains a substantial part of the edge points, usually does not help to find φ as
it comprises too many symmetries. To avoid both drawbacks we suggest calcu-
lating the correlation on a two dimensional edge density function restricted to
the inner part of the coin. This is given by:

Hd
i,j = |{(θ, ρ) ∈ Ep|θi−1 ≤ θ < θi, ρj−1 ≤ ρ < ρj}|,

Ed
i,j = Hd

i,j/N, i = 1, . . . , n; j = 1, . . . , l; N =
n,l∑
i,j

Hd
i,j . (3.3)

{θ0, . . . , θn} and {ρ0, . . . , ρl} are the discrete resolutions in angular and distance
directions, respectively. Now, we may estimate φ by correlating Ed

m and Ed
a .

By choosing a high resolution in the angular direction (i.e. n ≥ 512) and a
coarse resolution (i.e. l ≤ 16) in the distance direction, omitting the coin borders
(ρl < cmax(θ,ρ)∈Ep(ρ), c ≈ 0.9), we found that φ usually may be determined up
to ±0.5◦. Once φ is known, we may align the current coin image with the master.
This is done efficiently by only calculating the rotated coordinates for the edge
points in Ec

a, resulting in the rotated current coin edge image Eaφ
. From here

we compute two distance measures:

eabrasion =
1

|Ec
m|

∑
(x,y)∈Ec

m

1 − Eds
aφ

(x, y), (3.4)

edirt =
1

|Ec
aφ
|

∑
(x,y)∈Ec

aφ

1 − Eds
m (x, y), (3.5)

where Eds is the result of applying s morphological dilation operations to the
binary edge image E in order to counteract the remaining uncertainty of the
angular position. eabrasion tells us how many expected (master) edge points are
missing, whereas edirt sums the additional edge points in the current edge image.
If these errors are higher than given thresholds we have to dismiss the match.

In general we cannot know which master coin corresponds to the current coin
image. Therefore, we have to calculate Equations 3.4 and 3.5 for all possible
master coin candidates. In the next subsection we will derive features that help
us to keep this set small.

3.3 Coin pre-selection features

The Dagobert system is equipped with two additional sensors measuring the
thickness as well as the rough diameter of the current coin. At the same time
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they are used to trigger the imaging process. For the main results in this paper
we did not use these measurements, but they deliver valuable information for the
pre-selection process as well. The production system uses these measurements
for a coarse pre-selection of potential master coins into the short list SL. In this
section we derive features that help us to refine this first pre-selection. Solely
based on the edge information we derive three additional types of features that
in turn are invariant against rotations of the coin. The first two use an edge
density function similar to the one given by Equation 3.3 in the polar coordinate
system whereas the third will be computed in cartesian coordinate space.

Let ρ0 = 0, ρl = max(θ,ρ)∈Ep(ρ) and choose ρ1, . . . , ρl−1 such that

ρ2
i − ρ2

i−1 = ρ2
i+1 − ρ2

i . (3.6)

By Equation 3.6 all circlets with inner and outer radius ρi−1, ρi, respectively
cover the same amount of area, a = 2π(ρ2

i − ρ2
i−1) and thereby, have an equal

probability for containing edge points. Let N = |Ep|. The distribution of edge
points F ρ over the distance may be expressed as

F ρ(i) = |{(θ, ρ) ∈ Ep|ρi−1 ≤ ρ < ρi}|/N, (3.7)

for i = 1, . . . , l. Likewise the distribution of edge points over the angles is given
by

F θ(i) = |{(θ, ρ) ∈ Ep|θi−1 ≤ θ < θi}|/N, (3.8)

for i = 1, . . . , n. F θ is not invariant against rotations of the coin, but the modulus
of the discrete Fourier transform, �θ = |DFT (F θ)|, is. F ρ naturally is invariant
against rotations.

For the third feature consider a function fc that is invariant against cyclic
rotations of binary strings of length d, i.e. for u, v ∈ {0, 1}d

fc(u) = fc(v) ⇔ ∃0≤t<d∀0≤i<d ui⊕t = vi, (3.9)

where ⊕ is the modulus d addition and {0, 1}d describes words of length d over
a two symbol alphabet. As an example consider two binary strings ’00101’ and
’10100’, d = 5, that are aligned by t = 2. fc defines an equivalence relation
on {0, 1}d as it is reflexive, symmetric and transitive. Therefore, it is complete,
i.e able to separate all patterns of binary strings of length d. If d is small (i.e.
d ≤ 16) the function can be realised as a function table and calculated explicitly
offline. See Figure 2 as an example. Let k be the number of equivalence classes
produced by fc and fc : {0, 1}d → {1, . . . , k}. Then

F c(i) = |{(x, y) ∈ Ec|fc(Cr(x, y)) = i}|/N, (3.10)

for i = 1, . . . , k, gives the distribution of binary strings on circles centred at edge
points of the edge image. Cr(x, y) determines the contents of the edge image on
a circle with radius r at centre (x, y) (cf. Figure 2). In order to represent the
given information r should be chosen in relation to k such that k ≈ 2πr. By
construction F c is invariant against rotations of the edge image.
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d #

1 2

2 3

3 4

4 6

5 8

6 14

7 20

8 36

9 60

10 108

11 188

12 352

13 632

14 1182

15 2192

16 4116

word class number

0000 1

0001 2

0010 2

0011 3

0100 2

0101 4

0110 3

0111 5

1000 2

1001 3

1010 4

1011 5

1100 3

1101 5

1110 5

1111 6

Fig. 2. Left: a binary string of pixels centred at each edge point is mapped to an
invariant class. Middle: number of equivalence classes (#) in relation to the length of
the binary string (d). Right: an example of a function table for d = 4.

F ρ, �θ and F c define density functions on binary images. In previous work
([7]) we showed that for given density functions p1, p2 of a probability variable
X with discrete events x1, . . . , xn, we may define a metric function Fsin by

F (p1, p2) =
∑
x∈X

√
p1(x)

√
p2(x),

Fsin(p1, p2) =
√

1 − F 2(p1, p2).

It is easy to verify that 0 ≤ Fsin(p1, p2) ≤ 1, as p1, p2 are density functions,
i.e.

∑
x∈X p1,2 = 1 (see [7] for further details). Moreover, Fsin(p1, p2) = 0 ⇔

F (p1, p2) = 1 ⇔ p1 = p2. Fsin can be used to compare discrete density functions.1

Let M be a set of master edge images that belong to the same coin face. If F ρ
a ,

F ρ
mi

and �θ
a, �θ

mi
and F c

a , F c
mi

are the density functions of the current coin Ea

and a master coin edge image mi ∈ M , respectively, we may define the distance
of the current coin and the master by

d(Ea,M) = min
mi∈M

(w1Fsin(F ρ
a , F ρ

mi
) + w2Fsin(�θ

a, �θ
mi

) + w3Fsin(F c
a , F c

mi
)),

1 =
3∑

i=1

wi. (3.11)

1 Other functions may be used as well for this comparison, like the χ2 ([9]) or Jenson
Shannon divergence ([6]). However, from our experience Fsin tends to give sharper
results if the density functions to be compared are quite close to each other.
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In the experiments we could not verify that different weights are advantageous.
Therefore, we used wi = 1/3, i = 1, 2, 3. By computing the distance from the
current coin to all master coins and selecting those l master coins with smallest
distance for the short list SL of hypothesis, we can effectively keep the list of
master candidates for the verification process small.

4 Results

As mentioned before additional thickness and area sensors are used for the
Dagobert system. Based on their measurements a first rough pre-selection of
potential master coins is determined. This provides us with a set of master coins
that have almost the same diameter and that have to be distinguished by the
methods given in the previous sections.

Test set one coins % coins % coins % coins %

Coin in RPS 214 l=1 214 l=2 214 l=3 214 l=6

recognised 196 91.59 202 94.39 205 95.79 205 95.79

rejected 18 8.41 12 5.61 9 4.21 9 4.21
(false negative)

not recognised 0 0 0 0 0 0 0 0

coins %

Coin not in RPS 334 l=1,. . . , 6

rejected 333 99.7

false positive 1 0.3

Table 1. Recognition (upper) and rejection (lower) results. l indicates the length of
the short list SL.

A closer analysis of the material showed that the biggest subclass of coins
we found so far is given by those with a diameter of 24mm. For this reason
some of the results presented in this section are based on images of 24mm coins
as collected in the laboratory. In particular we chose 39 master coin classes to
form the RPS. The master coin patterns are based upon five coin pictures (if
available) to keep accidental fluctuations small. Five or more additional pictures
per master coin class were taken for testing purposes. In total the experiments
were carried out on 214 coins that belonged to one of the master classes but
were not used for training. These together with 334 coins from 60 (unknown)
classes that had to be rejected form the test set one. All master coin patterns
are defined on (almost) the same number of coins and the distribution of test
coins is uniform with respect to the master coin classes. This insures that the
results have no accidental bias.

Table 1 summarises the results of the recognition experiments. The over-
all result is quite encouraging as almost 96% of the known coins are classified
correctly (l ≥ 3) and more than 99% of the unknown coins are correctly rejected.
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Test set two coins %

Coin in RPS 12192 l=6

recognised 10292 (10337) 84.42 (84.79)

rejected 1842 15.11
(false negative)

not recognised 58 (13) 0.48 (0.11)

coins %

Coin not in RPS 757 l = 6

rejected 736 (745) 97.23 (98.41)

false positive 21 (12) 2.77 (1.58)

Test set two sorting result [%]

Coins correctly sorted 99.24 (99.76)

Coins incorrectly sorted 0.76 (0.24)

(a)

            

(b)

Fig. 3. (a) Recognition (upper) and rejection (middle) results, sorting results (lower).
The numbers in brackets indicate the results if coins that are not distinguishable by
one face are grouped together in one class. (b) Example of a Spanish coin that exists
in an old (bottom) and new (middle) version. A current coin is given at the top.

The length of the short list has some influence on the recognition result.
d(Ea,M) necessarily is not as exact as eabrasion and edirt, as it does not take
the entire geometric relationship of the edge points into account. Therefore,
sometimes coins are accidentally ranked higher in the short list than they should
be. On the rejection results the length of the short list had no influence.

Most importantly the number of coins that were incorrectly sorted into the
valid set is very small. Additionally, coins were either recognised correctly or
rejected, which insures that sorted coin piles are ’clean’, i.e. almost all coins
belong to the same class.

To generate a bigger unbiased benchmark test set for this application has
proven almost impossible. Naturally, there are more local coins in the collec-
tions, in our case from Austria and the surrounding countries, than from further
abroad. The same is true for defining the master coin patterns unless data from
the coin producers is available, which usually is not the case. Therefore, the avail-
able training sets for some currencies contain a very limited number of coins.

As a second test set we took 12949 coin images and validated them manually.
They were tested against 913 master coin patterns of all diameters in the RPS.
Figure 3(a) shows the results. Again the set of incorrectly sorted coins is quite
small. Some of the coins can only be distinguished knowing both faces (see Figure
3(b)). The figures in brackets show the results when we combine the master coin
patterns of those coins into one. The number of incorrectly rejected coins seems
to be too high. This has to be analysed further.

So far the system has sorted several tons of coins and is able to meet the
realtime conditions, i.e. to process 5 to 6 coins per second. Using the obverse
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and reverse face for the recognition task, between 85% and 90% of the material
is sorted into classes defined in the RPS, which contains at present around 1500
patterns of coin faces. The rest is rejected. Random tests performed on classified
sets of coins indicate that we seem to meet the goal of having less than 0.01%
incorrect positive classifications.

5 Conclusion and future work

In this paper we described a new coin recognition and sorting system Dagobert
that is presently being built at the ARC Seibersdorf research GmbH. The system
is capable of sorting heaps of mixed coins. Thereby, coins from more than 30
countries can be recognised and separated. Unknown coins are rejected. Further
research will be carried out to improve the recognition result and speed.

Acknowledgement: We would like to thank Janice Knight and Ian Glendin-
ning for editing the manuscript and the helpful discussions.
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