

Task-oriented Computer Vision in 2D and 3D: from video text recognition to 3D human detection and tracking

Csaba Beleznai

Csaba Beleznai Senior Scientist Video- and Safety Technology Safety & Security Department AIT Austrian Institute of Technology GmbH Vienna, Austria

Michael Rauter, Christian Zinner, Andreas Zweng, Andreas Zoufal, Julia Simon, Daniel Steininger, Markus Hofstätter und Andreas Kriechbaum

Austrian Institute of Technology

Contents

- Motivate & stimulate
- Algorithms through applied examples

2D

A frequently asked question

Google	why is computer vision	٩
	why is computer vision so difficult	
	Press Enter to search.	

Motivation

Why is Computer Vision difficult? (from a Bayesian perspective)

Primary challenge in case of Vision Systems (incl. biological ones):

? uncertainty/ ambiguity ?

Example for robust vision

Example: Crop detection

- Radial symmetry
- Near regular structure

Introduction

Motivation

- Challenges when developing Vision Systems:

 - Non-linear search for a solution

Motivation

Visual Surveillance - Motivating example

Algorithmic units:

 Object detection and classification

Tracking

Typical surveillance scenario:

- Who : people, vehicle, objects, ...
- Where is their location, movement? Activity recognition
- What is the activity?
- When does an action occur?

Motivation

Visual Surveillance - Motivating example

Typical surveillance scenario: Who : people, vehicle, objects, ... Where is their location, movement? What is the activity? When does an action occur?

Algorithmic units:

- Object detection and classification
 - Counting, Queue length, Density, Overcrowding
 - Abandoned objects
 - Intruders
- Tracking
 - Single objects
 - Video search
 - Flow
 - Activity recognition
 - Near-field (articulation)
 - Far-field (motion path)

Real-time optical flow based particle advection

Optical flow driven advection

Advection: transport mechanism induced by a force field

Particle advection with FW-BW consistency

• A simple but powerful test

Consistency check: $\Delta \varepsilon < \beta \overline{\Delta x}$ $\overline{\Delta x}$

Pedestrian Flow Analysis

Public dataset: Grand Central Station, NYC: 720x480 pixels, 2000 particles, runs at 35 fps

Wide-area Flow Analysis

Other examples: wide area surveillance (small objects, nuisance, clutter)

End-to-end video text recognition

Overview

The End-to-End Video Recognition Process

Evaluation: High accuracy at each stage is necessary Very high recall throughout the chain Increasing Precision toward the end of the chain

Algorithmic chain - Motivation

Main strategies for text detection:

What is text (when appearing in images)?:

An oriented sequence of characters in close proximity, obeying a certain regularity (spatial offset, character type, color).
Sample text region + complex background

BREAKING NEWS SOLDIER DEATHS

Algorithmic chain - Motivation

To detect \rightarrow Representing text appearance:

<u>Region based:</u>

- Binary morphology (outdated technique: trying to find nearby characters and segmenting lines)
- Statistics
 - Edge density, frequency, orientation (popular: HOG), ...
 - Texture representation: filter banks, co-occurrence, ...
 - \rightarrow Discriminative classifier \rightarrow relatively fast, but some hard-to-discriminate cases (vegetation, dense regular patterns /grids, gravel/) + poor region segmentation

• Analysis at character-level

- Requires a full or partial segmentation (a challenge itself) → character or stroke
- Highly specific (stroke width is uniform, shape is very specific)
- → Segmentation → **rather slow**, but yields accurate segmentation
- Analysis at grouped-character-level: a sequence of similar characters is specific
- Analysis at OCR-level: comparison to a pre-trained alphanumeric set → highly specific (slow!!)

Improved text detection – synthetic text generation / (Classification using Aggregated Channel Features)

1e[d Ua

@fW6

plEw9f

Video segment from CNN

Convolutional Neural Network based OCR - Training

Generated single characters (0-9, A-Z, a-z): include spatial jitter, font variations

role of jitter: characters can be recognized despite an offset at detection time

Convolutional Neural Network based OCR - Results

Analysis window is scanned along the textline, and likelihood ration ($score_1/score_2$) is plotted in the row (below textline) belonging to the maximum classification score.

TURKEY TO RETURN PILOT'S BODY TO RUSSIA

_ _ _ _ _ _ _ _

2D + 3D

Left-item detection using depth and intensity information

- Composite task:
 - Static object detection
 - Human detection and tracking

What is a static object?

- "non-human" foreground which keeps still over a certain period of time
- Two fundamentally different approaches:
- 1. Background modeling (foreground regions becoming static)
 - +: simple, pixel-based
 - -: object removal, ghosts
- 2. Tracking detected foreground regions
 - +: many adequate tracking approaches (blob-based, correlation-based)
 - -: crowd, occlusion \rightarrow failure

Both techniques experience problems with illumination variations → motivation for depthbased sensing

A common approach

Temporal sub-sampling and combination procedure

Liao,H-H.; Chang,J-Y.; Chen, L-G. "A localized Approach to abandoned luggage detection with Foreground – Mask sampling", Proc. of AVSS 2008, pp. 132-139.

Obtaining stereo depth information

AUSTRIAN INSTITUTE OF TECHNOLOGY

Passive stereo based depth measurement

- 3D stereo-camera system developed by AIT
 - Area-based, local-optimizing, correlationbased stereo matching algorithm
 - Specialized variant of the Census Transform
 - Resolution: typically ~1 Mpixel
 - Run-time: ~ 14 fps (Core-i7, multithreaded, SSE-optimized)
 - Excellent "depth-quality-vs.-computational-costs" ratio
 - USB 2 interface

12 m

Advantage:

- Depth ordering of people
- Robustness against illumination, shadows,
- Enables scene analysis

Stereo camera characteristics

Trinocular setup:

- 3 baselines possible
- 3 stereo computations with results fused into one disparity image

Data characteristics

2.5D vs. 3D algorithmic approaches

2.5D == using disparity as an intensity image

Left Item Detection

Additional knowledge (compared to existing video analytics solutions):

- Stationary object (Geometry introduced to a scene)
- Object geometric properties (Volume, Size)
- Spatial location (on the ground)

Methodology

Left Item Detection – Demos

Quantitative evaluation

Detection results

Ground truth

Depth-based proposals Motion-based proposals

Human/Object detection as clustering

A Frequently Occurring Task

Analysis of discrete two-dimensional distributions

Task definition

Intermediate probabilistic representations

Local grouping

generate consistent object window hypotheses

prior, structure-specific knowledge

Challenge:

arbitrarily shaped distributions

multiple nearby modes

noise, clutter

Related State-of-the-Art

Weakly constrained structural prior:

Non-maximum suppression

Neubeck & Van Gool, 2006 R. Rothe et al., 2014

Mean Shift, CAMShift

Comaniciu & Meer, 2002 Bradski 1998

• Using structure information:

Local structural elements such as bricks, shapelets

local intensity and color distribution Jin&Geman2006

Implicit Shape Model B. Leibe et al. 2005

Structured random forests

edge structure

A. Neubeck, Van Gool. *Efficient non-maximum suppression*. ICPR 2006 R. Rothe et al., *Non-maximum suppression for object detection by passing messages between windows*, ACCV2014

D. Comaniciu, P. Meer. Mean shift: A robust approach toward feature space analysis., 2002

G. R. Bradski, Computer vision face tracking for use in a perceptual user interface, 1998

			_	κ.			
		_	-				
					~		
Chua et al., 2012							

B. Leibe et al. 2005

Dollar & Zitnick 2013 Kontschieder et al. 2011 semantic label distribution within local patches

Shape learning – Case: Compact clusters

- 1. Binary mask from **manual annotation** or from **synthetic data**
- 2. Sampling using an analysis window discretized into a $n_i \times n_i$ grid
- 3. Building a **codebook of binary shapes** with a coarse-to-fine spatial resolution

Spatial resolution of local structure

low mid

Mode-centered samples - - - + **Off-the-mode** samples $S = \{\{\mathbf{l}_i\}_{i=1..3}, \mathbf{v}, c\}$ **Codebook:**

high

Shape learning

Example Codebook – Case: Compact clusters

FULL TREE

Shape learning – Case: Line structures

Binary mask from **manually annotated** text lines

Spatial resolution of local structure

Codebook: $S = \{\{\mathbf{l}_i\}_{i=1..3}, \mathbf{t}, c\}$

Shape delineation – I.

Step 1: Fast Mode Seeking

Three integral images: $I, I \cdot x$ and $I \cdot y$

Mode location:
$$x' = \frac{\sum_{a} K''(a-x)ii_x(a)}{\sum_{a} K''(a-x)ii(a)}$$

COMPACT CLUSTERS

LINE STRUCTURES

Step 2: Local density analysis

Density measure D for each resolution level i for the binary structure $oldsymbol{l}_i$

$$D_{i}(l_{i} | I) = \frac{1}{A_{F}} \sum_{\{x, y \in C | l=1\}} I(x, y) - \frac{1}{A_{B}} \sum_{\{x, y \in C | l=0\}} I(x, y)$$

Enumerating all binary shapes at each resolution level → Finding best matching entry:

$$oldsymbol{l}_{i}^{*} = rg\max_{oldsymbol{l}} D_{i}\left(oldsymbol{l}_{i} \left| I
ight)$$

Shape delineation – II.

Recursive search for end points, starting from mode locations:

Line-centered structures

Off-the-line structures

Relative line end locations define:

- Search direction
- Line end positions

Human detection by **occupancy map** clustering:

Passive stereo depth sensing → depth data projected orthogonal to the ground plane

Occupancy map (1246 ×728 pix.) clustering: **56** *fps*, overall system (incl. stereo computation): **6** *fps*

Experimental results - Case: Compact clusters

Performance measure	Binarization	Mean Shift	Cam Shift	Proposed
Recall (R)	0.52	0.95	0.81	0.92
Precision (P)	0.86	0.76	0.89	0.87
F-measure (F)	0.65	0.84	0.85	0.89

Experimental results - Case: Line structures (Text line segmentation)

Experimental results - Case: Text line segmentation

24

0:01

LOHOI

Queue length detection using depth and intensity information

Queue Length + Waiting Time estimation

What is waiting time in a queue?

Time measurement relating to last passenger in the queue

Waiting time

Why interesting?

Example: Announcement of waiting times (App) → customer satisfaction Example: Infrastructure operator → load balancing

Queue analysis

Challenging problem

Visual queue analysis - Overview

How can we detect (weak) correlation?

- Much data is necessary \rightarrow Simulating crowding phenomena in Matlab
 - Social force model (Helbing 1998)

goal-driven kinematics – force field

repulsion by "preserving privacy"

Queue analysis

Simulation tool \rightarrow Creating infinite number of possible queueing zones

Two simulated examples (time-accelerated view):

Queue analysis (length, dynamics)

Straight line

Meander style

Staged scenarios, 1280x1024 pixels, computational speed: 6 fps

Adaptive estimation of the spatial extent of the queueing zone

Estimated configuration (top-view)

Detection results

Left part of the image is intentionally blurred for protecting the privacy of by-standers, who were not part of the experimental setup.

Scene-aware heatmap

Implementation details and strategy

Our development concept

MATLAB:

- Broad spectrum of algorithmic libraries,
- Well-suited for image analysis,
- Visualisation, debugging,
- Rapid development \rightarrow Method, Prototype, Demonstrator
- C/C++
 - Real-time capability

Our development concept

Research methodology

Thematic areas and trends in Computer Vision also distributed *branch-and-bound*

- Balance: becoming a domain expert vs. being a "globalist"
- Researchers tend to favour certain paradigms Learn to outline trends, look upstream
- Revisit old problems to see them under new light
- Specialize the general & Generalize the specific
- Factorize your know-how (code, topics, ...) into components → sustainable, scalable

Thank you for your attention!

CSABA BELEZNAI

Senior Scientist Digital Safety & Security Department Video- and Security Technology

AIT Austrian Institute of Technology GmbH

Donau-City-Straße 1 | 1220 Vienna | Austria T +43(0) 664 825 1257 | F +43(0) 50550-4170 csaba.beleznai@ait.ac.at | <u>http://www.ait.ac.at</u>

