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Introduction



Computerized Tomography (CT)



CT vs. Sparse (Low Dose) Data

I Conventional CT; high radiation dose due
to the very large number of projections→
usage limited by patient safety.

I Dose reduction a central design factor in
next generation scanners→ Allows
completely new applications.

I Dose reduction can be obtained by:
1. Short exposure time→ poor SNR
2. Using limited field of view (local

tomography)
3. Decreasing the number of projection

images



FBP reconstruction using full and sparse data

1200 projections 30 projections

The reconstruction of f from sparse projection data
becomes ill-posed problem⇒ Advanced reconstruction
methods needed.

This lecture: We describe a Bayesian approach for low
dose tomography problem and consider two test cases



Computational model of X-ray tomography



Tomography is based on measuring densities of
matter using X-ray attenuation data

Measured photon count

Ij = I0 exp

(
−
∫

Lj

f (s)ds

)
Transform to linear attenuation data by

− log
(

Ij
I0

)
=

∫
Lj

f (s)ds



Discretization of line integrals

mj =

∫
Lj

f (s)ds ≈
n∑

i=1

aji fi

where aji is the length of ray j in pixel i .
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A projection image is produced by parallel X-rays
and several detector pixels (here three pixels)

mj =

∫
Lj

f (s)ds ≈
n∑

i=1

aji fi

where aji is the length of ray j in pixel i .
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For tomographic imaging it is essential to record
projection images from different directions
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The direct problem of tomography is to find the
projection images from known tissue
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The inverse problem of tomography is to
reconstruct the interior from X-ray data
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When collecting sparse data, different objects may
produce the same data
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We write the computation model
in matrix form and assume Gaussian noise
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Our measurement model is m = Af + ε with independently distributed
Gaussian noise (white noise) with standard deviation σ > 0.

f =



f1
f2
f3
f4
f5
f6
f7
f8
f9


, m =



m1
m2
m3
m4
m5
m6

 ,

m = Af
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Bayesian inversion



Bayesian inversion complements measurement
data with a priori knowledge

Consider the model m = Af + ε, where m ∈ Rk and f ∈ Rn. The
inverse problem is to find f when measurement m is given.

We use probability theory to model our lack of information in
the inverse problem. The conditional probability

π(f |m) =
π(f )π(m | f )

π(m)

is called the posterior distribution.

In case of white noise εj ∼ N (0, σ2), the likelihood distribution is

π(m | f ) = C exp(− 1
2σ2 ‖Af −m‖22).



The result of Bayesian inversion is the posterior
distribution, but typically one looks at estimates

Maximum a posteriori
(MAP) estimate:
arg min

f∈Rn
π(f |m)

Conditional mean
(CM) estimate:∫
Rn

f π(f |m)df



Case 1: Limited angle tomography in dental
imaging



Application: dental implant planning, where a
missing tooth is replaced with an implant



Nowadays, a digital panoramic imaging device is
standard equipment at dental clinics

Panoramic images are not good
enough for dental implant planning
because of geometric distortion.



Our solution: Reprogram the panoramic X-ray
device so that it collects projection data for 3D
reconstruction

11 projection images
of the mandibular area

40 degrees angle of
view

1000×1000 image
size, formed by a
scanning movement



Can we obtain sufficient 3D reconstruction from
so limited data?

We seek solution by the Bayesian approach. Prior information
available in dental imaging:

I Different tissue types (enamel, bone, gum, pulp chamber)
and possible artificial materials (fillings, previous implants)
are approximately homogeneous

I Attenuation (density) of tissues is non-negative
(X-radiation does not intensify inside tissue)

I There are "crisp" boundaries between the different tissues



We model the prior knowledge by the following
quantitative and qualitative models:

Non-negativity prior

π+(f ) =

{
0 if fj < 0 for any j
1 otherwise.

Total variation (TV) - prior

π(f ) ∝ exp (−α {‖LHf‖1 + ‖LVf‖1})



Posterior model:

π(f |m) ∝ exp
{
− 1

2σ2 ‖m − Af‖2 − α {‖LHf‖1 + ‖LVf‖1}
}

Computation of the MAP estimate

fMAP = arg min
f≥0

{
1

2σ2 ‖m − Af‖2 + α {‖LHf‖1 + ‖LVf‖1}
}

Nowdays there is a large variety of optimization algorithms that
can be used for the solution of the MAP estimate (e.g. ADMM,
Chambolle-Pock, ...)



Simple experiment using a 2D model

Experimental setup
I Dental x-ray source
I intraoral CCD detector
I A rotating platform
I Target: a tooth specimen



Projection geometry

Data from a tooth specimen
I 23 projections from full angle (187 deg)
I 9 projections from limited angle (68 deg)



Sinograms



Comparison of Bayesian inversion (MAP-TV) and
tomosynthesis (backprojection)

Left: MAP-TV (full angle), Middle: Backprojection (limited
angle), Right: MAP-TV (limited angle)



First experiment from a dry skull using panoramic
device

11 projection images
of the mandibular area

40 degrees angle of
view

1000×1000 image
size, formed by a
scanning movement



First result from the dry skull (tomosynthesis left,
MAP-TV right)



Computational considerations:

I Number of data ∼ 1 million, number of unknowns ∼ 7
millions.

I 3D implementation
I Clinically acceptable computation times could be obtained

by optimized implementation. We investigated parallel
CPU computing and GPU based computation.



Finally, here are example images of a patient:

Kolehmainen, Vanne, Siltanen, Järvenpää, Kaipio, Lassas & Kalke
2006,
Kolehmainen, Lassas & Siltanen 2008, Cederlund, Kalke & We-
lander 2009,



This low-dose 3D imaging technique has been
commercialized by Palodex Group

The VT device has been in
the market from year 2007.

Remarkably, an existing 2D
panoramic imaging device
becomes a 3D imaging
product just by a software
update.

The core of that update is
an inversion algorithm that
can provide sufficient recon-
struction from the sparse
data.



The radiation dose of the VT device is the lowest
among 3D dental imaging modalities

Modality µSv
Head CT 2100
CB Mercuray 558
i-Cat 193
NewTom 3G 59
VT device 13

Ludlow, Davies-Ludlow, Brooks & Howerton 2006



Case 2: Local tomography

Prototype of a dental CBCT device



Local tomography problem:

roi

x−ray source

x−ray detector plane

Principle of local
tomography.

I Let image domain Ω s.t. D ⊂ Ω, where D denotes
the body.

I Decompose to disjoint subdomains

Ω = Ωroi

⋃
Ωout

where Ωroi represents the region of interest that
is present in all the projection images.

I The objective in local tomography is to find
accurate reconstruction of

f |Ωroi

using (truncated) x-ray projection data.



Image reconstruction in Local tomography

roi

x−ray source

x−ray detector plane

Principle of local
tomography.

I Fine scale details cannot be reconstructed in Ωout .

I The contribution of f |Ωout has to be taken into
account in the projection model→ large number
of unknowns.

I We propose a multiresolution approach;
Attenuation function f is represented in a reduced
wavelet basis with finer scale repsentation
available only inside Ωroi and coarse
representation in Ωout

→ Significant model reduction while accuracy is
retained in the ROI.



Wavelet expansion of f

I The wavelet functions in 2D:
I Scaling function φjk (x) = 2jφ(2jx − zjk )
I Wavelet function ψjk`(x) = 2jψ`(2jx − zjk ),

where j ∈ Z refers to the scale, k ∈ Z to the location zjk in
space and ` the wavelet type.

I The wavelet expansion of a function f : [0,1]2 → R

f =

KJ0∑
k=1

〈f , φJ0k 〉︸ ︷︷ ︸
cJ0k

φJ0k +
J−1∑
j=J0

Kj∑
k=1

3∑
`=1

〈f , ψjk`〉︸ ︷︷ ︸
wjk`

ψjk`.

I Formally, we write matrix form:

f = Bw = B
[

(cJ0k )
(wjk`)

]



Example of wavelet expansion:

I Original image and the wavelet coefficients using 3 scaling
levels.

I Wavelet types (` = 1,2,3):

φ(x) = φ(x1)φ(x2) (scaling) ψ2(x) = ψ(x1)φ(x2) (vertical)
ψ1(x) = φ(x1)ψ(x2) (horizontal) ψ3(x) = ψ(x1)ψ(x2) (diagonal)



Besov space norm of f :

I The Besov norm of a function f can be expressed with
wavelet coefficients

‖f‖Bsq
p

= ‖cJ0k‖`p +

J−1∑
j=0

(
2jp

(
s+1− 2

p

)
‖wjkl‖`p

)q
 1

q

.

I Regularity controlled by p,s and q.



Bayesian inversion with wavelets and Besov prior

I Measurement model

y = Af + ε = ABw + ε

I Besov space prior

π(w) ∝ exp
(
−α‖Bw‖p

Bsq
p

)
→ Posterior probability distribution model

π(w |y) ∝ exp
(
−1

2
‖ABw − y‖2

Γ−1
ε
− α‖Bw‖p

Bsq
p

)
,



MAP estimate

MAP estimate (red)

I The maximum a posterior (MAP) estimate

wMAP = arg min
w

{
1
2
‖ABw − y‖2

Γ−1
ε

+ α‖Bw‖p
Bsq

p

}
I MAP estimate computed using Polak-Ribière conjugate

gradient optimization method.



Multiresolution model for local tomography

I Basic idea:
1) Use all the wavelet coefficients up to the finest scale J in

Ωroi and
2) only a partial number of scaling levels (Jout < J) in

Ωout := Ω \ Ωroi

I Let w ∈ Rnf denote the full wavelet expansion when all the
J scales are used everywhere in Ω.

I Denoting by S ⊂ {1,2, . . . ,nf} the set of indices that
contain

i) all the scales up to J in ΩROI
ii) the scales up to Jout in Ωout

we can write reduced wavelet expansion

f = B̃w̃ , w̃ = Pw ∈ Rn, B̃ = BPT , n ≤ nf

for the multiresolution representation of f .



MAP estimate with the multiresolution model

w̃MAP = arg min
w̃

{
1
2
‖AB̃w̃ − y‖2

Γ−1
ε

+ α‖B̃w̃‖p
Bsq

p

}



Results using simulated local tomography data

I Simulated (2D) local tomography data of a jawbone
phantom (187 projections from total view angle of 187◦).

I Besov norm parameters (p,q, s): p = 1.5, q = 1.5 and
s = 0.5.



I Number of scaling levels in the ROI (marked with white
circle): Jroi = 5.

I Reconstructions (δΩROI is the relative L2-reconstruction
error in ΩROI w.r.t the original phantom).

I Middle: Jout = 1, number of unknowns n = 14070,
δΩROI = 19.3%.

I Right: Jout = 5, number of unknowns n = 76990,
δΩROI = 19.1%.



Comparision with the TV prior:

 

 

I Middle: MAP with the total variation (TV) prior. Number of
unknowns npix = 65536, δΩROI = 19.1%.

I Right: Multiresolution model with Jout = 1. Number of
unknowns n = 14070, δΩROI = 19.3%.



I Left: MAP with the TV-prior using truncated measurement
model (i.e., Ω = ΩROI )

y ≈ AROI fROI + ε.

Number of unknowns npix = 7484, δΩROI = 150.8%.
I Right: Multiresolution model with Jout = 1. Number of

unknowns n = 14070, δΩROI = 19.3%.



Experimental setup

I Data: 23 projections of a jawbone specimen from total
view-angle of 187◦.



Results with experimental data

I Data: 23 projections of a jawbone specimen from total
view-angle of 187◦.

I Left: MAP with the TV prior. Number of unknowns
npix = 248004, computation time 12 min 36 s.

I Right: Multiresolution model with Jroi = 6 and Jout = 1.
Number of unknowns n = 29130, computation time 2 min
14 s.



S-curve method



About selection of the prior parameter α

I In many applications, expected level of sparsity (e.g. #
non-zero wavelet coefficients, TV norm) ca be extracted
from anatomical atlases or previous CT-scans of the
patient (e.g. IMGRT). How could we utilize this information
in tuning the prior model?

I Let Ŝ denote the expected level of sparsity and let S(α)
denote the sparsity of the reconstruction fα. The idea in the
S-curve method is to select α such that

S(α) = Ŝ

I We tested the idea using sparse X-ray data from a walnut.
Sparsity level Ŝ was extracted from photographs.



We collected X-ray projection data of a walnut
from 1200 directions

The data was collected by Keijo Hämäläinen and
Aki Kallonen at University of Helsinki.



This is the reconstruction using all 1200
projections and filtered back-projection



We took photographs of walnuts cut in half

These photos are used for estimating the expected sparsity level Ŝ
in a two-dimensional tomographic reconstruction. Special thanks
go to Esa Niemi for his careful job in sawing the walnuts.



The S-curve method determines value of α giving
the right sparsity level Ŝ = S(α)
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S-curve for TV prior

I Sparsity measured directly in TV norm S(α) = TV (fα)

I The photographs were scaled by f̃p = ‖m‖
‖Afp‖ fp to intensity

levels that can be expected in the tomographic
reconstruction.



Filtered back-projection vs TV prior (90
projections)

FBP TV


	Introduction
	Computational model of X-ray tomography
	Bayesian inversion
	Case 1: Limited angle tomography
	Case 2: Local tomography
	Parameter choice: the S-curve method 

