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ENERGY-MINIMIZATION METHODS

Denoising example

E(u)

\ Global
\Optimum

=Y

\

* Model design: min E'(u)

L

* Minimization process




REGULARIZED ENERGY FUNCTION

Regularized energy function

A :
E(u) = 5 [ Au — b||* + T(u)
data fitting term regularization term

)\ > 0 - balancing parameter, A - linear operator

b - observed data

Applications: denoising, deblurring, discrete tomography,
classification, zooming, inpainting, stereo vision..



REGULARIZED ENERGY FUNCTION

1
f@) = 5|4z — b|]

Quadratic function, convex, but often not strictly convex.
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REGULARIZED ENERGY FUNCTION

E(u) = % [ Au — b||* + T (u)

Example. Rudin et al. (1992) introduce the Total variation
based reqgularization for denoising problem, where

N

U(u) =) [IV(u)ll.

=1



REGULARIZED ENERGY FUNCTION

Discrete gradient

V('U,-.E') — [-u”r — Uy, Up — 'u.i']T

[V (up)ll < [V (u)l]




WHY WE USE THE GRADIENT?

In continuous case, we can consider the directional derivative:

o . . L
% = Vu -1 =||Vul| - |[l]] - cos <(Vu, 1), Ji]] = 1

max

—

[

or



IMAGE DENOISING

Noise clearly visible in an image from a digital camera.
Wikipedia



IMAGE DENOISING

Image noise is random (not present in the object imaged)
variation of brightness or color information in images.

Random variation in the number of photons reaching the
surface of the image sensor at same exposure level
may cause noise (photon noise).

Incorrect lens adjustment or motion during the image
acquisition may cause blur.



IMAGE DENOISING

The degradation model is given by
b=u" 4+ w
Reqgularized energy-minimization model:
h\ N
min | Zflu— b+ (I Vuil]
i=1

Minimization has several challenges:

large-scale problem, the objective function is non-differentiable
at points where ||V (u;)|| = 0, and it is convex only when ¥ is convex.



POTENTIAL FUNCTIONS

©o(t) conve
total variation pot. fun.
ol(t) =1 yes
smoothing pot. fun.
W20t) =t 1<a<?2 yes
©3(t) = 12, ves

edge preserving pot. fun.

12 t < a
od(t) = ’ : - > ()
PA(t) {2&'1&—&2, t >« @ yes

oh(t) = Va+1t2, a >0 yes

©b(t) = Incosh(at), a >0 yes
. at?

k#ﬂlf(t) = m a >0 I

©8(t) = In(1 + at?), a > 0 1no

WI(t) = e o > () 1no

1 —
(at?), U{fiﬁ/“
{ sin(a 20 ov>0 no
2::1




POTENTIAL FUNCTIONS

0 _ t 0 t
Huber potential Geman & McClure potential

for high noise for low noise



IMAGE DENOISING

Several algorithms have proposed:

* Projection algorithm (PRO), Chambolle (2004), for TV only,

* Primal-Dual Hybrid Gradient (PDHG), Zhu and Chan (2008),
for TV only,

 Fast Total Variation de-convolution (FTVd), Wang et al. (2008),
for TV only,

« Spectral Gradient Based Optimization, Lukic et al. (2011),

« Elongation based image denoising model, Lukic and Zunic (2014).



IMAGE DENOISING

10dB " 15.68dB 16.57dB 16.37dB

noisy image el (TV) 4 ©7

w* — ||
I

e —wrl”

Signal to Noise Ratio (dB): SNR = 10 * log,,



DISCRETE TOMOGRAPHY

Tomography deals with the reconstruction of images, or slices of
3D volumes, from a number of projections obtained by
penetrating waves through the considered object.

Applications in radiology, industry, materials science etc.

CT scanner



DISCRETE TOMOGRAPHY

Tomography deals with the reconstruction of images from a number
of projections.

u’ b
u’y us u3 4 i
a4
*
ES L
Us aig 4 J* ut AT
A 7 8
L,I* lh"/-a/ i
9/// i,10 u* N &b
x 11 Uqo %,
/"/ dig| Y0 %
* ¥ * *
13 Uig U1s Ui

b; = a; au) + a; guf + a; 7us + a; sug + a; 9ug + a; 10U,

Reconstruction problem: Au = b, where the projection
matrix A € RM*Y and vector b € RM are given.



DISCRETE TOMOGRAPHY

DT deals with reconstructions of images that contain a small
number of gray levels from a number of projections:

Main issue in DT: how to provide good quality reconstructions
from as small number of projections as possible.

DT reconstruction problem can be formulated as a constrained
minimization problem:
A o
min Epr(u; ) == —H Au — b||* + Z IV () ||

AN ._.
UEC i1

where A = {1, jio. ... . i},



DISCRETE TOMOGRAPHY

For binary tomography, Schile et al. (2005) introduce
the convex-concave regularization:

min_(Epp(u; \) +p(u, 7 —uw)), p=>0

ue[0,1]N

where 7 = [1.1...., 1]7.

In general case:

N
111&11 Eprw(u; A\, p) := Epr(u; A) + p Z Wi(u;)), A,p>0

i=1

where 1V 1s a multi-well potential function. The proposed energy,
Eprw s differentiable and guadratic.



DISCRETE TOMOGRAPHY

Construction of the multi-well potential function.




DISCRETE TOMOGRAPHY

Minimization strategies

Stochastic approach Deterministic approach
(Simulated Annealing) (gradient based)



DISCRETE TOMOGRAPHY

Proj. PHI PH2 PH3

PH1 PH2 PH3

Phantom (original) images, N=256x256.
3 intensity levels,




DISCRETE TOMOGRAPHY ON TRIANGULAR GRID
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DISCRETE TOMOGRAPHY
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125-141, 2016.



REGULARIZATION

We 3always looking for new regularizations...

SHAPE DECRIPTORS ARE POSSIBLE REGULARIZATIONS.

» Elongation

e % N 6

» Compactness (circularity)
» Ellipticity

e @ S N

» Convexity

® e % N

The shape, as an object property, allows a wide spectrum of
Numerical characterizations or measures.



SHAPE DESCRIPTORS

Basic requirements: invariance with respect to translation,
Rotation, and scaling transformations.

The same numerical value should be assigned to all the shapes.



SHAPE DESCRIPTORS

Shape measures

» Compactness/Circularity:
"Among all shapes with the same perimeter, the circle has the
largest area.”

4.7 - Area_of .S
(Perimeter_of _S)?

" Circle minimizes the average distance of shape points to the
shape centroid.”

110,0(S5)*
2m (p12,0(S) + po,2(5))

» Convexity:

Area_of _S Per_of _CH(S)

but also

Area_of _CH(S) Per_of _S




SHAPE DESCRIPTORS

Most common requirements for shape measures are:

(a) D(S) € [0,1]
(h) D(S) =1
emphif and only if S satisfies a certain property (here called a shape de-
scriptor) for which, actually, the shape measure D(S) 1s designed.
(c) D(S) 1s invariant with respect to the similarity transformations.
(d) For any 0 > 0 there is a shape S such that D(S) < 4
(e.g., 015 the best possible lower bound for D(S).)



SHAPE DESCRIPTORS

Geometric (area) moments of order p+q:

My g(S) = // rPyldx dy.

The approximation is very simple to compute,
and it is very accurate:

Mpq(S) = [[ rPyidr dy = Z it - g1

pixel (i, j) belongs to dig( 5)

[ R. Klette, J. Zunié, On Discrete Moments of Unbounded Order, LNCS 4245 (2006), 367-378.]

Moments are very desirable operators in discrete space,
because no infinitesimal process required, in opposite to gradient:

Vulx ) =[ dulx, v) du(x, v) ]

dv T dy
[ i (x+Ax,¥)—ulx,y) | wlx.y+4ay)—uixy
=1 .

Im . him
AT} Ax Ay—D Ay



SHAPE DESCRIPTORS

Central moments are translation invariant:
Tip,q (S // z —x.(5))" (y — ye(S))? da dy

- S S
where (z.(S),y.(S)) = (23255; ZEE;ESD IS the centroid of S.

Normalized moments are also scaling invariant too:

Mp.q(S)
I[qu[:'gj — 2 1 -;m—q
mo.o(S)1 T2
thatis fipq(S) = ppg(r-S) .

Normalized moments are translation + scaling invariant.



SHAPE DESCRIPTORS

Hu moments (algebraic invariants)
are also rotational invariant:

My = piag + poz

My = (120 — prog)” + 41

My = (pt30 — 3pt12)” + 3(ja1 + f103)
My = (pts0 + pa2)” + (pta1 + pos)’
Ms = (p30 — 3p12) (30 + p2)[(z0 + pea2)* — 3(pr + pos)?] +

(391 — pros) (pe21 + o) [3(pes0 + ;11-3]? — (21 + proa)”]

2

3 .':, P

Mg = (a0 — po2)[(ftso + p112)” — (o1 + ftos)”] + Apan (o + pao) (peor + fos)
M- = (3121 — jios) (s + pta2)[(ptso + f112)* = 3(po1 + f.m:ﬂ"}] +

" _} " _}

(130 — 3pea2) (pa1 + prog) 3 (s + pag)”™ — (po1 + pos)”)
Hu moments are translation, scaling and rotation invariant.

Drawback: no clear “geometric” behavior.



SHAPE ORINETATION AS A REGULARIZATION

The shape orientation is an angle
alpha which satisfies the formula:

sin(2o) 2. my q(u)
cos(2a)  myglu) —mga(u)

where,

a

Fig. 2. lllustration of a shape and its orientation «.

Mpg(U) = Z u(i, )i —xc)"(j —ye)’

(1.J)eb2

Of course, shape orientation is translation invariant.



SHAPE ORINETATION AS A REGULARIZATION

24 " | 0]%] S

PH1 o = 2938 ]-‘H'«‘ o = 62,767 PH3 o = 135" PH4 & = 4{'14! PH5 o = 145117 PHf o = 48.65"

PH7 a — 132.94° IHH i =4534"  PHO o =85340° PHI) o =13.181°

Binary images (shapes) and their orientations.

Binary tomography energy model with orientation based regularization:

1 N j |
E(WF”A” —b“% + Wy Z Z (uj — u;)* +wo(P(u) —ﬂ““llz)

i=1 jeT (i)



SHAPE ORINETATION AS A REGULARIZATION

Experimental results:

Tibor Lukic and Peter Balazs, Binary tomography reconstruction based on shape orientation, Pattern Recognition Letters, Vol. 79, pp. 18-

24 Elsevier, 2016,

Fig. 8. Reconstructions of the PH1 (left two columns) and PH2 (right two columns)

test images using only the horizontal projection direction.

Rec
Dift.

T.m, o i BT SP0 BT
PE/ME| 811/19.79% | 313/7.64% | 504/12.30% | 366/8.93%
FRE 7.54 3.00 547 2.44

Py G 5.53° 27.23¢ 1.26°




SHAPE ORINETATION AS A REGULARIZATION

more experimental results:

Noise sensitivity:

Rec.

Diff.
T, SPG BT SPG BTO
PE/ME | 1096/26.76% | 242/5.91% | 681/16.63% | 396/0.67%
PRE 5.63 3.29 6.08 2

ALF 133.39° .05° 144.54° 1.15°

Fiz. 9. Reconstructions of the PH4 (left nwo columns) and PHS (right nwo columns)
test images using only the vertical projection direction.

Fig. 12. Sensitivity of the shape orientation function to the degradation (caused by
holes) of the ohject.



SHAPE ORINETATION AS A REGULARIZATION

Elongation (ellipticity) based image denaoising.

& M, () +mg, (1) + 11-'4'(m|.1fﬂ}}2+(m:,¢|1“1_m<l.zlu;}:
u) = ,

My (W) + Mg, (U) — *."I‘jf -y, f”}}z + ':m:,-n{“}l - m-:l,:“‘-'}l]lz

0.2 : 0.5

03 04

0.8

08| 08 . : , . 0.5 0.2 H

a) b)

f)

Figure 1. Calculated values of the elongation and discrete gradient magnitude. (a)

E(2.2)=146, || Vu(2,2) |=0: (b) &(2.2)=125 || Vu(2.2) |=0;: (c)
E(2.2)=1.23|| Vu(2.2) | =0.71: (d) &(2.2) = 106, | vu{z 2) | = 0.71L: (e)
E(2.2) =126, Vu(z 2) | = 0.14: () &(2,2) = L|| V(2.2) || = 0. Elongation

E(2. 2), at the pixel (2, E} is computed as the elongation of the 3 x 3 block of the

surrounding pixels ((2.11) is used), while the gradient magnitude is computed by (1.7).
Pixel intensities u (x, v) are inscribed in the corresponding pixels.

Tibor Lukic and Jovisa Zunic, A non-gradient-based energy minimization approach to image denocising problem, Inverse Problems, Vol. 30
(095007), IOP Publishing, 2014.



SHAPE ORINETATION AS A REGULARIZATION

Instead of gradient we use the elongation operator.

Ec(w) = Y E(N(i.j)+L ¥ (ulivi)-g(if)),
| i.j)en T ij)ea

18

Avg. SNE (dB)
in

_—
=

16,5

™-D POT-DGa&NM) POT-D{Huber) ELOMG-D



SHAPE ORINETATION AS A REGULARIZATION
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