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ENERGY-MINIMIZATION METHODS

Denoising example

* Model design:

* Minimization process



REGULARIZED ENERGY FUNCTION

Regularized energy function

data fitting term regularization term

- balancing parameter, - linear operator

- observed data

Applications: denoising, deblurring, discrete tomography,  

classification, zooming, inpainting, stereo vision..



REGULARIZED ENERGY FUNCTION

Quadratic function, convex, but often not strictly convex. 



REGULARIZED ENERGY FUNCTION

Example. Rudin et al. (1992) introduce the Total variation

based regularization for denoising problem, where

.



REGULARIZED ENERGY FUNCTION

Discrete gradient



WHY WE USE THE GRADIENT?

In continuous case, we can consider the directional derivative:



IMAGE DENOISING

Noise clearly visible in an image from a digital camera.

Wikipedia



IMAGE DENOISING

Image noise is random (not present in the object imaged) 

variation of brightness or color information in images.

Incorrect lens adjustment or motion during the image 

acquisition may cause blur.

Random variation in the number of photons reaching the 

surface of the image sensor at same exposure level 

may cause noise (photon noise). 



IMAGE DENOISING

The degradation model is given by

.

Regularized energy-minimization model:

Minimization has several challenges:

large-scale problem, the objective function is non-differentiable 

at points where                  , and it is convex only when     is convex.



POTENTIAL FUNCTIONS



POTENTIAL FUNCTIONS

for high noise for low noise



IMAGE DENOISING

Several algorithms have proposed:

• Projection algorithm (PRO), Chambolle (2004), for TV only,

• Primal-Dual Hybrid Gradient (PDHG), Zhu and Chan (2008),

for TV only,

• Fast Total Variation de-convolution (FTVd), Wang et al. (2008),

for TV only,

• Spectral Gradient Based Optimization, Lukic et al. (2011),

• Elongation based image denoising model, Lukic and Zunic (2014).



IMAGE DENOISING

Signal to Noise Ratio (dB): .



DISCRETE TOMOGRAPHY

Tomography deals with the reconstruction of images, or slices of

3D volumes, from a number of projections obtained by

penetrating waves through the considered object.

CT scanner

Applications in radiology, industry, materials science etc.



DISCRETE TOMOGRAPHY

Tomography deals with the reconstruction of images from a number 

of projections.

Reconstruction problem: , where the projection

matrix and vector are given.



DISCRETE TOMOGRAPHY

DT deals with reconstructions of images that contain a small 

number of gray levels from a number of projections:

, .

Main issue in DT: how to provide good quality reconstructions 

from as small number of projections as possible.

DT reconstruction problem can be formulated as a constrained 

minimization problem:

where

,

.



DISCRETE TOMOGRAPHY

In general case:

where       is a multi-well potential function.  The proposed energy,

is differentiable and quadratic.

For binary tomography, Schüle et al. (2005) introduce 

the convex-concave regularization:

where



DISCRETE TOMOGRAPHY

Construction of the multi-well potential function.



DISCRETE TOMOGRAPHY

Minimization strategies

Deterministic approach

(gradient based)

Stochastic approach

(Simulated Annealing)



DISCRETE TOMOGRAPHY

Phantom (original) images, N=256x256.

3 intensity levels,



DISCRETE TOMOGRAPHY ON TRIANGULAR GRID

Reconstructions from

3 projections and

6 projections. 

x-z=1

y=2



DISCRETE TOMOGRAPHY

[ ]



REGULARIZATION

SHAPE DECRIPTORS ARE POSSIBLE REGULARIZATIONS.

The shape, as an object property, allows a wide spectrum of 

Numerical characterizations or measures. 

We 3always looking for new regularizations...



SHAPE DESCRIPTORS

Basic requirements: invariance with respect to translation,

Rotation, and scaling transformations.

The same numerical value should be assigned to all the shapes.



SHAPE DESCRIPTORS

Shape measures



SHAPE DESCRIPTORS

Most common requirements for shape measures are:



SHAPE DESCRIPTORS

Geometric (area) moments of order p+q:

The approximation is very simple to compute, 

and it is very accurate:

[ ]

Moments are very desirable operators in discrete space, 

because no infinitesimal process required, in opposite to gradient: 



SHAPE DESCRIPTORS

Central moments are translation invariant:  

where is the centroid of S.

Normalized moments are also scaling invariant too:

that is .

Normalized moments are translation + scaling invariant.



SHAPE DESCRIPTORS

Hu moments (algebraic invariants)

are also rotational invariant:

Hu moments are translation, scaling and rotation invariant.

Drawback: no clear “geometric” behavior.



SHAPE ORINETATION AS A REGULARIZATION

The shape orientation is an angle 

alpha which satisfies the formula: 

where,

Of course, shape orientation is translation invariant.



SHAPE ORINETATION AS A REGULARIZATION

Binary images (shapes) and their orientations.

Binary tomography energy model with orientation based regularization:



SHAPE ORINETATION AS A REGULARIZATION

Experimental results:



SHAPE ORINETATION AS A REGULARIZATION

more experimental results:

Noise sensitivity:



SHAPE ORINETATION AS A REGULARIZATION

Elongation (ellipticity) based image denoising.



SHAPE ORINETATION AS A REGULARIZATION

Instead of gradient we use the elongation operator.



SHAPE ORINETATION AS A REGULARIZATION
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