

Medizinische Universität Graz

SELECTED TOPICS ON BIOMEDICAL IMAGE PROCESSING

Erich Sorantin

Division of Pediatric Radiology Research Unit for Digital Information & Image Processing Department of Radiology, Medical University Graz/A Email: <u>erich.sorantin@medunigraz.at</u>

Skype: guru-graz

WHO IS E.S.

Medizinische Universität Graz

• Follow me.....

Directory

Medizinische Universität Graz

- Images in Medicine
- Examples:
 - Image Enhancement
 - Image Processing for LTS
 - Virtual Dissection of the Colon
 - Computer Aided Diagnosis
 - Detection of breast cancer
 - Virtual Reality
 - Virtual Liver Surgery Planer

Medizinische Universität Graz

Medizinische Universität Graz

E.Sorantin "Selected Topics Biomedical Image Processing", SSIP Szeged 2016

Medizinische Universität Graz

Medizinische Universität Graz

Medizinische Universität Graz

Medizinische Universität Graz

Medizinische Universität Graz

Medizinische Universität Graz

Medizinische Universität Graz

Medizinische Universität Graz

Radiology - Tomorrow

Medizinische Universität Graz

Tracking of Respiration

E.Sorantin: Peti Sorantin Selected Topics Biomedical Image Processing", SSIP Szeged 2016

Own Development

Medizinische Universität Graz

Tracking of Respiration

Own Development

Medizinische Universität Graz

Tracking of Respiration

E.Sorantin: Peti Sorantin Selected Topics Biomedical Image Processing", SSIP Szeged 2016

Own Development

Medizinische Universität Graz

E.Sorantin: Petisterantin Selected Topics Biomedical Image Processing", SSIP Szeged 2016

Medizinische Universität Graz

PulmoVista 500

E.Sorantin: Petistric Radio Selected Topics Biomedical Image Processing", SSIP Szeged 2016

EIT

Medizinische Universität Graz

E.Sorantin: Petistric Radio Selected Topics Biomedical Image Processing", SSIP Szeged 2016

Image Enhancement

Medizinische Universität Graz

• Image Processing for LTS

Image Enhancement

Medizinische Universität Graz

Virtual Dissection of the Colon

Image Enhancement

Medizinische Universität Graz

Computer Aided Diagnosis

Medizinische Universität Graz

Automated Detection of Breast Cancer

Medizinische Universität Graz

• Virtual Liver Surgery Planer

ColonCa – Medical Background **3.** Most common Ca \checkmark complete a erioratio CA

3D Visualization of the Colon:

CT Pneumocolon
"Interactive Slicing"
"Fly through" (CT-colonoscopy
Virt. Dissection

"Fly Through"

UnivALLEND Grau A Much CT-Colography Much Siemens Spiral-CT Inducate line 3.8 m Inch 1/h uniu MAACE Siz

Problems - General:

Post processing of cross sectional data:

- time consuming
- hardware intensiv (expensive!)
- specialized staff necessary

Problems - CT colonoscopy

Path planning for automated "fly through" complicated and even operator dependent

Endoscopic view display just a small proportion of the colonic surface -> Ante and - retrograde views necessary

What do you wanna have for CT - colonoscopy?

Inspection of total colonic surface
Fast tool
Minimal interaction
No operator influence
Easy and quick to report
(Hardware independent)

"Virtual dissection"

Stretch the colon and cut it along it's longitudinal axis similiar to the pathologist's table

"Virtual dissection" – How to do?

 Data aquisition
 Segmentation - Fuzzy connected
 Extraction of the centerline (Skeletonisation - Thining)
 Calculation of the cross sections
 "Remapping" to 2D

Virt. Diss. - Data Aquisition

MRDCT

- Slice thickness 2.5mm

 Reconstruction: 1.25mm slice thickness, increment 0.5
 1.0mm (~600-700 image)

Virt.Diss. - Remapping

Constant Angle Sampling

- No distortion in the y direction but adds area distortion.
- Can miss objects.
- No sense of "size".
- The surface is not sampled uniformally

Virt.Diss. - Remapping

Perimeter Sampling

- Surface Sampled uniformally.
- No missing elements. If sample step small enough.
- Area Preservation.
- Deformation in the y direction-Shrinking
- Deformation increasing with distance to the vertical center line.

Phantoms - Cadaveric Artific. Polyps (n=13)

Filename: Table Position: Size(Trans, Cor, Sag): Protrusion(Trans, Sag, Cor): image.691 -506.09 12.9 * 15 * 11.4 13.8 * 13.8 * 11.2

Phantoms - Cadaveric Artific. Polyps (n=13)

Filename: Table Position: Size(Trans, Cor, Sag): Protrusion(Trans, Sag, Cor): image.580 -450.09 6.8 * 4.8 * 3.6 2.6 * 1.6 * 0

Results - Techn. Phantom

Univ Klinik, Graz Div. of Dig. Inf. and Image Proc. Name: COLON PHANTOM Birthday: Study Date: 20000413 Files: image.001-image.136 Nr. of Slices: 136 Univ Klinik, Graz Div. of Diq. Inf. and Image Proc.

Results -Cadaveric Phantom

Name:	COLON	VIRTUELL
Birthday:	200004	06
Study Date:	200004	06
Files: ima	qe.002	-image.740
Nr. of Slice	s: 370	

Results - Cadaveric Phantom

Constant Angle Sampling

Perimeter Sampling

Results - Cadaveric Phantom

Polyps appear
as bumps
as asymmetric broadening of folds
Time:
Operator 10min

- Total time: 2h

Results - Medical Evaluation

2 Observer, 13 Polyps:

- Sensitivity: 12/13 = 92.3%
- Interob. Agreement: 11/13 = 84.6%
- Pos.pred.Value:
- Each Observer overlooked 1 Polyp:

75-80%

- 3.9 * 5.0mm
- 3.5 * 2.5mm

Virt. Dissection of the Colon seems to be possible within a reasonable timeframe

Operator interaction minimal (<10min), total time about 2h</p>

Graz enviroment plattform independent

Easy to report, performance excellent
 Clinical experience until now limited

Outlook

Using the depth map enhance the image using image processing. Contour detection. Curvature detection.

Outlook

 "Troubelshhooting Tool"
 "Fecal Tagging" – for easier patient preparation

Breast Cancer - FACTS:

Breast carcinoma leading cause of cancer death in womean

Every 8-10th woman affected during lifetime

About 4000 new cases/a in Austria

Clustered mircrocalcificat one of early sign's

Mammography -REPORTING:

Clsutered Microcalcifications are early sign's ofbreast cancer (bright spot's)

- Size: 0.2-0.5 mm search with a magnifying glass
- Difficult perception in low contrast areas
- Differentiate: cancerous vs non cancerous

Mammography -DILEMMA:

Special training of radiologists necessary
 Positive predictive value of radiologists: 20%
 "Double Reading" (independet reporting by 2 radiologists): improves accuracy by 5 - 15%

Artificial Intelligence in Mammography -HYPOTHESIS:

Clustered microcalcifications be found reliably found by a computer application

and a discrimination between cancerous and non cancerous microcalcifications be done usin neuronal nets Mammography -VISION

CAD System (Computer Aided Diagnosis) can act as "never tired, second reader"

Variance of female FEATURES

ANN & Mammography -PATIENTS:

ORF

Patient Database:

- 100 patients = 272 Images
 with Mc's
- High resolution film digitalization: 8000x6000x15 -> about 90 Mbyte/image
- Resolution for image processing: 91.5 μm

ANN & Mammography -GROUNDTRUTH:

- All patients operated and biopsy reports availabale:
 - 54 malignant, 46 benign
- All patients rated to be
 - benign, indeterminate, malignant
- Manual marking of
 - 828 indiv. microcalcifications.
 - 735 artifacts

ANN & Mammography -HARD & SOFT:

Hardware:

- SunSparc20
- Neurocomputer Synapse-1 (SNAT):

Software:

- Image Processing: IDL 5.0, Creaso Research System
- ANN Synapse-1: <u>n</u>euronal <u>Application</u>
 <u>Language</u> (SNAT, Germany) - C++ libraries

ANN & Mammography -BACKGROUNDKORRECTION

ANN & Mammography -FEATURES FOR DETECTION:

☑ Linefeatures:

ANN & Mammography -FEATURES FOR DETECTION:

✓ Linefeatures:

ANN & Mammography -RESULTS DETECTION:

	12 1 6	6	1,00		
FEAT	URE	Az			
graylevel	min	0.769	0,90		
	max	0.836			
	mean	0.808	0.90	and the set of the set	
-46. JP/2 1/2	var	0.875	0,80		
edge gradients	min	0.817		Az=0.96	
	max	0.895	0,70 -	Sensitivity = 0.90	
	mean	0.920	500 · .	Specificity = 0.90	
	var	0.755	0,60	and the second second	
line feature	min	0.651	and the second second		
and the second	max	0.608	0,50	States and set	
	mean	0.636			
	var	0.557	0.40		
local contrast (object)		0.930	0,40	0,20 0,40 0,60 0,80 1,	

✓ Mean vector of population: m_x = E{x}
 ✓ Covariance matrix: C_x = E{(x - m_x)(x - m_x)^T}
 ✓ Calculate eigenvectors of C_x, and transformationmatrix A

\square Transform image: $\mathbf{y} = \mathbf{A}(\mathbf{x} - \mathbf{m}_x) - \text{Hotelling}$

Transformation

ANN & Mamography -FEATURES FOR CLASSIFICATIONS Extension in 8 directions , Minimum Enclosing Rectangle": - Center of gravity, excentricity, aspect-ratio

Features of individual microcalcifications:

- Meanvalue of greylevels of pixels within one mc
- Local contrast of one mc
- Border gradients
- Area, perimeter and compactness (P²/A)

 Clustering - recursive algorithm
 Area of the cluster - Convex Hull Procedure

Features from "Convex Hull":

- Number of mc's
- Area, perimeter and compactness of cluster
- Density (number of mc's/A)
- Inter mc distances
- descriptive statistics of individual mc features

 Total features: n=73
 Automatic selectionsprocess: patient based

" Leave-o every featu

10 suited for differentiation typical indeterminate

12 suited for differentiation benign malignant

Background

Imaging modalities (eg CT, MRI):

Data acquisition

Computers:

- Speed 🛧
- Graphics display

Availability from open operating systems

LINUX (http://www.linux.org)

challenging new applications

Question?

Can we (as radiologists) exploit these emerging technologies for improving patient care?

Image Guided Therapy... Robotics....

✓ Image guided therapy:

- almost everything
 - ✓ Segmentation
 - Registration Fusion
 - Quantification
 - ✓ Navigation
 - Virtual / Augmented Reality

Robotics:

- Interventions, CAS, Rehabilitation.....

Image Guided Therapy... Robotics....

Image guided therapy:

- almost everything

✓ Segmer

Registration – Fusion

Quantification

Navigation

Virtual / Augmented Reality

Robotics:

- Interventions, CAS, Rehabilitation.....

Registration
 What is Augmented Reality (AR)?
 "Ingredients" of AR - Systems
 Applications and first results
 Mobility

- Defniton
- Types
- Applications

Registration (Image Matching)

- Several images of the same object are taken:
 - using different imaging modalities
 - at different time instants
- It is necessary to compare two objects
 - Reality and Virtuality

It is desired to match an image to a model (e.g. digital atlas)

Registration – Problem:

To determine:

- an unknown geometric transformation:
- that maps one image into another (to a certain degree of accuracy)

✓ If registration problem is solved we know:

 for each pixel in the first image we know the corresponding pixel in the second image

This assumes that the images are:

 similar in the sense that both images contain the same (or similar) object, which may be rotated, translated, or elastically deformed

Registration - Classification

- **Dimensionality:**
 - of images that are registered (2-D, 3-D, 4-D methods)
- Image features being matched:
 - (extrinsic and intrinsic methods)
- Mechanism of interaction with the user
- Type of geometric transformation used for registration
 - rigid, affine, perspektive, elastic

Registration – Algorithms

 ✓ Using corresponding points identified in images
 ✓ Using corresponding surfaces
 ✓ Using voxel intensity values

> M. Sonka, J. M. Fitzpatrick, Eds., Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis, SPIE, 2000

 J. V. Hajnal, D. L. G. Hill, D. J. Hawkes, Eds., Medical Image Registration, CRC Press, 2001

Registration - Trackers

What is Augmented Reality (AR)?

- Overlay of artificial, target information" over real-worldview
- Virtual scenery adopts itself to the position of the viewer Technology:
 - Visualization devices such as head-mounted displays(HMD)
 - Position tracking or pose estimation
 - Interfacing to 3D-visualization systems

Visualization Devices

Features to consider:

- Optics
- Focal problems, display quality, parallax error, calibration
- Appropriate visualization, tracking, latency, weight
- Acceptance
- Appropriateness for given applications, acceptance of end users

Graz Approach

Features:

- Now fixed on operator's head
- 2 Monitors: 800x600 px (for every eye)
- infinitely variable
 Reality ← → Virtualit

Question?

Can we (as radiologists) exploit these emerging technologies for improving patient care?

Attack....

Computer-Assisted Tumor Ablation

- Usuage of an Augmented Reality System (AR) for:
 - ✓ Visualisation
 - ✓ Planing
 - ✓ Navigation
 - ✓ Success Control

Multidisciplinary Team

- Radiologists
- Surgeons
- Informatics / Telematics
- Biomedical Engineering / Image Procesing

HMD

- \

ology:

ns

Pencil

Graz Experience – "Virtual Liver Surgery"

Multidisciplinary team:

- Radiology, Surgery, Biomedical Engineering

Focus:

- Enhanced preoperative visualization
- Surgery Planning tool
- Future: functional assessement of postoperative remaining liver tissue

<u>http://liverplanner.icg.tu-graz.ac.at</u>

Virtual Planning - Idea

AR – Advantage?

✓ 14 test cases:

Artificial objects:
✓ Segmented livers, tumors
✓ Portal trees

✓ Tasks:

- Volume estimations
- Volume measurements
- Distance measurements
- Evaluation systems
 - ✓ TIANI J-Vision (2D, 3D)
 - Liverplanner (AR)

AR – Test – Results

ERROR DEVIATION in %

AR – Test -> Results

TIME FOR ANALYSIS in s

AR – Test -> Results

RANGE OF ERROR DEVIATION in %

AR – Test -> Results ANOVA – Volume Error

Effect DF DF F-Value Pr > F

<.0001 58.22 **Display** 456 2 456 0.1596 ✓ User 1.98 4.82 14 0.0455 org. size 456 Display*User 0.2100 2 1.57 (0.0001)569.13 2 ✓ Org. size*Display 4 0.5881 ✓ org. size*user 456 0.29

AR – Test -> Results ANOVA – Time

Effect DF DF F Value Pr > F

✓ Display
2 352 95.92 <.0001
✓ User
1 352 1.24
0.2663
✓ Display*User 2 352 1.86
0.1579
✓ User*Szene 28 352 1.58
0.0333
✓ Org. size*user0...

Application	Simulation	Description
right-sided hemihepatec- tomy		In case of a right-sided hemihepatectomy, segment V, VI, VII, and VIII are removed.
resection of left liver lobe	C C C C C C C C C C C C C C C C C C C	In case of the resection of the left liver lobe, only segment II and III are removed.
left-sided hemi- hepatectomy		In case of a left-sided hemihepatectomy, segment IV is removed in addition to segment II and III.

anatomical resection

Application

If more than one tumor must be resected, specific liver segments are removed. In this particular case, segment II and VI are target for resection.

\square

extended right-sided hemihepatectomy

Simulation

Description

.

An extended right-sided hemihepatectomy is required if a larger tumor is located in the right liver lobe, which means that segment

IV must also be removed with segment V, VI, VII, and VIII. Only if segment II and III provide enough liver function, this type of resection can be carried out.

Resektion Tools:

- Hemihepatectomie

Wedge Resection

AR: Operation Planning

Information about d048		
# of tumors	1	
Volume of liver	1,376 ml	
Volume of tumor(s)	177 ml	
Initial $\#$ of tetrehedra	95k	
Final $\#$ of tetrehedra	115k	
Proposal, resected segments	II	
Surgical decision, resected segments	atypical	
Volume of resected tissue	397 ml (anatomical), 325 ml (atypical)	
Volume of remaining tissue	979 ml (anatomical), 1,051 ml (atypical)	
Resected tissue (in $\%$)	29 % (anatomical), 23 % (atypical)	
Time required for planning	15 min	

Robotics - Components

Mechanical structure (links, base, etc).

Required mass to provide enough structural rigidity to ensure minimum accuracy under varied payloads.

Actuators

Motors, cylinders, etc. that drive the robot joints. This might also include mechanisms for a transmission, locking, etc.

Main Controller

This computer interfaces with the user, and in turn controls the robot joints.

Effector, "End of Arm Tooling"

Designed for specific tasks.

Handheld Operation Unit, "Teach pendant"

Popular method for programming the robot. Small hand held device that can direct motion of the robot, record points in motion sequences, and begin replay of sequences.

Robots - Safety Regulations IR(EN 775)

Sc Industrial robots for medical Applications?

- Major design criteria IR: Working envelope û , Velocity û
 - SEVERE modifications for system safety (not only SW!)
- Application Example: Orthopedics, Radiation Therapy

AUSTRIAN RESEARCH CENTERS

Procedure

- 1. Imaging in VBH head holder
- 2. Planning
- 3. Registration
- 4. Sterile draping
- 5. Targeting
- 6. Puncture
- 7. Control-CT
- 8. Thermocoagulation

VBH head holder + SIP-Lab Innsbruck Frame (Medical Intelligence, Germany)

Procedure

1. Imaging in VBH head holder

2. Planning

- 3. Registration
- 4. Sterile draping
- 5. Targeting
- 6. Puncture
- 7. Control-CT
- 8. Thermocoagulation

Procedure

- 1. Imaging in VBH head holder
- 2. Planning
- 3. Registration
- 4. Sterile draping
- 5. Targeting
- 6. Puncture
- 7. Control-CT
- 8. Thermocoagulation

- More accurate than manual (esp. complex trajectories and/or exact positioning in 3D)
- Minimally invasive
- Robot guides / constrains (safer?)
- Consistent quality
- Repetitive motions without tiring
- History of motions recorded
- Small movements with small forces (scaling)
- "Indexing"
- Sterilisation, resistant against germs/radiation etc.

