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Medical problem

• Hundreds of thousands die of brain tumor yearly

• Early detection in case of any cancer increases the 
chances of survival

• Detection vs Segmentation



Detection (in early stage)

• Main goal: screening patients 

• General philosophy:
• Classify image voxels into various tissue types
• Identify tissue types found
• Decision making: is there any continuous area suspected to 

be tumor?
• If so, point out the suspicious areas

• Procedure
• Reliable detection
• Fully automatic algorithm
• Handle huge image data volumes
• Runtime efficiency also matters



Segmentation

• Main goal: therapy planning; follow-up

• Difference from Detection
• We already know the tumor is present
• Differentiating between normal and tumor tissues 
• Identify various tissue types associated with tumors
• Find the boundary of the tumor, quantify its size

• Procedure
• Fine-tuned for tumor boundary detection
• Fully automatic algorithm
• Handle huge image data volumes
• Runtime efficiency also matters



What can we do better?

• Detection
• Early detection, better chances of survival

• Implement it into screening procedure

• Segmentation
• Radiation therapy can be designed to destroy tumor but 

not the surrounding normal tissues

• Exact segmentation and quantification can assist exact 
follow-up monitoring



MRI

• Magnetic Resonance Imaging (MRI)
• Paul Lauterbur, Peter Mansfield, 

• Imaging technique 1970’s

• Nobel Prize in Physiology/Medicine 2003

• Less harmful than X-Ray

• Better contrast

• Better resolution in intensity levels

• Multi-spectral: various weighting schemes



Difficulties

• Non-brain tissues (e.g. skull, eyes, etc.)

• Intensity non-uniformity or intensity inhomogeneity

• Absolute intensity values

• Registration of multiple data channels



Intensity non-uniformity (INU)
• Noise of low frequency and possibly high amplitude

• Compensation needed before or during segmentation

• Reviews: 
• Vovk et al, IEEE T Medical Imaging 26(3):405-421, 2007

• Sled, in Brain Mapping. An encyclopedic reference, Acad. Press, 2015



MICCAI BRATS Challenge

• Medical Image Computation and Computer Assisted 
Interventions

• Brain Tumor Segmentation Challenge
• http://braintumorsegmentation.org/

• Menze, Jakab, et al: IEEE T Med Imag 34:1993-2024, 2015

• 4 data channels
• T1, T2, T1C (contrast enhanced T1)
• FLAIR: Fluid-attenuated inversion recovery

• All channels registered to T1

• Resampled to cubic voxels of 1mm3 size

• Skull and other non-brain tissues removed

• Intensity non-uniformity not present

• One volume: 176 slices of (160-216 x 216-236 pixels)

• 1.5 liters of brain = 1.5 million voxels

http://braintumorsegmentation.org/


BRATS since 2012

• BRATS 2012: 
• 30 train volumes (20 high-grade, 10 low-grade)

• Ground truth: normal tissue or edema or tumor

• Report on BRATS 2012/13: Menze et al, 2015
• 2x10 methods provided by finalists, results

• BRATS 2015: 
• 200+ volumes 

• GT: differentiated tumor tissue types: tumor core, active 
tumor, necrosis



Impact of BRATS
• Random Forest 

• Tustison et al: Neuroinformatics 13(2):209-225, 2015

• Greedy algorithm 
• Kanas et al: Biomed. Signal Proc. Contr. 22:19-30, 2015

• Deep learning NN
• Havaei et al: Med. Imag. Analysis, in press

• CNN
• Pereira et al: IEEE T Med. Imag. 35(5):1240-1251, 2016

• AdaBoost
• Islam et al: IEEE T Biomed. Eng. 60(11):3204-3215, 2013

• Bayes network + EM 
• Menze et al: IEEE Trans. Med. Imag. 35(4):933-946, 2016

• Graph-based segmentation
• Njeh et al: Comput. Med. Imag. Graph. 40:108-119, 2015

• Tumor growth model
• Lê et al: IEEE T Med. Imag., in press

• Not yet: SVM



Input Data

Volume Size Pixel count Edema pixels Tumor pixels Missing data

HG01 160x216 1,435,938 52,073 56,743 428

HG02 160x216 1,533,860 39,672 9,029 598

HG03 176x216 1,702,191 133,029 20,558 66,402

HG04 160x216 1,198,268 46,054 60,635 62

HG05 160x216 1,469,666 35,545 24,659 4,215

HG06 216x236 1,577,073 103,781 75,337 538,771

HG07 176x216 1,569,615 60,181 28,156 150

HG09 160x216 1,255,130 135,135 83,564 44,426

HG11 176x216 1,333,310 98,356 45,806 81

HG12 176x216 1,508,141 13,928 6,577 106,754

HG13 176x216 1,451,294 6,350 4,537 65,428

HG14 176x216 1,590,059 26,081 115,286 198

HG15 160x216 1,617,051 108,706 72,310 214

13 selected volumes, each contains 176 slices, 4 data channels + ground truth



Single channel of a volume



Single slice in 4 data channels + GT

T1 T2 T1C

FLAIR Ground 
truth



Intensity histogram of HG01
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Intensity histogram of tumor pixels
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Handling variations in scanner 
sensitivity
• Histogram matching

• Wang et al: Magn. Res. Med. 39(2):322-327, 1998
• Nyúl et al: IEEE T Med. Imag. 19(2):143-150, 2000

• Gaussian mixture estimation
• Hellier: ICIP 2003, pp. 1109-1112

• Histogram warping
• Cox et al: ICIP 1995, pp. 2366-2369

• Kullback-Leibler divergence
• Weisenfeld et al: ISBI 2004, pp. 101-104

• Symmetry-based criteria
• Tustison et al: Neuroinformatics 13(2):209-225, 2015



A simple two-step alternative

• Treat each data channel (T1, T2, …) separately

• Linear transformation of voxel intensities
• X becomes aX+b

• Definition of a and b: middle fifty percent of voxel intensities 
would fall in a predefined interval, e.g. [600,800] 

• Set up a lower and upper intensity limit, e.g.
• All intensities below 200 are rounded up to 200

• All intensities below 1200 are rounded down to 200

• Extreme (possibly noisy) data will not affect 
segmentation

• Easy to implement, quick, and it does help



Feature extraction
• Feature vector: size does matter

• 4 intensity values is not enough

• Neighborhood information
• Average filters, median filters, gradients
• Morphological operations
• Wavelet transform based texture descriptors

• Demirhan et al: IEEE J BHI 19(4):1451-1458, 2015
• Bendib et al: Pattern Analysis Applic. 18:829-843, 2015

• Symmetry based features
• Tustison et al: Neuroinformatics 13(2):209-225, 2015

• Fractal based texture descriptors
• Islam et al: IEEE T Biomed. Eng. 60(11):3204-3215, 2013

• The actual structure of the feature vector is usually not 
given by authors



Decision making

• Virtually any machine learning algorithm is suitable

• Mostly supervised learning
• SVM, RF, CNN, DNN, ANN, etc. 

• Some semi-supervised learning
• e.g. based on SOM 

• Vishnuvarthanan et al: Appl. Soft. Comput 38:190-212, 2016

• Demirhan et al: IEEE J Biomed. Health. Inform. 19(4):1451–
1458, 2015



Binary decision tree at Kindergarten
+ Is it red?

Y-+ Is it circle?

| Y-+ Is it large?

| | Y-> Leaf 1

| | N-> Leaf 2

| N-+ Is it square?

|   Y-> Leaf 3

|   N-> Is it large?

|     Y-> Leaf 7

|     N-> Leaf 8

N-+ Is it large?

Y-+ Is it green?

| Y-+ Is it triangle?

| | Y-> Leaf 9

| | N-> Leaf 10

| N-> Leaf 4

N-+ Is it square?

Y-> Leaf 5

N-> Leaf 6



Rules of binary decision tree
• Each node compares a single feature with a threshold

• Two branches correspond to: >= or <

• Learning
• Each decision locally minimizes an entropy function

• We get trees of reduced depth

• Testing
• Start from root and follow the decisions made at each node 

until a leaf is reached

• Leaf assigns the label to test data



Forests
• Can a single tree learn a whole volume?

• Train several trees using randomly chosen small data set
• Same amount of negative, edema, and tumor voxels

• Variable sample size from 3x30 to 3x5000 voxels

• How many trees in the forest?

• Testing
• Each voxel receives a vote from each tree

• Label assigned according to majority of votes

• Post-processing needed



Measuring accuracy

• TP, TN, FP, FN

• Sensitivity: TP / (TP + FN)

• Specificity: TN / (TN + FP)

• Jaccard Index 
• JI = TP / (TP + FP + FN)

• Dice Score
• DS = (2 x TP) / (2 x TP + FP + FN) = (2 x JI) / (1 + JI)



All DS(i→j) values



Grand mean of DS(i→j) values



DS(i→j) values



Randomness vs Reproducibility  



Classification result



Validating tumor voxels

• Neighborhood of voxel

• Consider 7x7x7 neighborhood

• Euclidean distance < sqrt(15)

• 250 such neighbors: (5x5x5-1) + 6x(5x5-4)

• How many of them are labeled as tumor or edema?

• Threshold between 0 and 250

• Above threshold: tumor voxel validated

• Below threshold: tumor voxel discarded



Post-processing



Post-processing



DS vs Tumor Size



Final Segmentation



Further development

• Build a single decision making system trained on several 
volumes
• Choose the most independent volumes

• Each tree should contain samples from several volumes

• Hierarchical forest?

• Reduced data

• Standalone application
• Should also treat INU

• Should also perform skull removal



Semi-supervised approach

• Clustering algorithm: fuzzy c-means (FCM)

• Cascade FCM

• Selection of clusters based on a decision tree

• Semi-supervised framework



Fuzzy c-means algorithm (FCM)

• Minimizes a quadratic objective function

• Constrained by: 

• Parameters: number of clusters c>1, fuzzy exponent m>1.0

• Problems: 
• fixed number of clusters, how many?
• depends on initialization  (seeding)
• depends on outliers
• sensitive to cluster sizes



FCM clustering outcome for single slice
c=10 classes, fuzzy exponent m=2.0

Cluster Cluster prototype intensities (log) Pixels in cluster

T1 T2 T1C FLAIR Normal Edema Tumor

1 6.094 5.767 6.414 5.874 5,627 1

2 5.599 6.621 5.681 5.194 773

3 4.099 3.955 4.779 3.669 88

4 5.303 6.842 5.171 4.361 546

5 6.027 5.982 6.278 5.996 3,816 9

6 5.265 6.838 5.204 3.668 416

7 5.976 6.713 6.155 6.532 207 1,149 256

8 5.995 6.215 6.254 6.120 2,758 236 27

9 5.814 6.379 6.095 5.774 1,522

10 3.180 0.477 5.203 2.554 24

Total 15,777 1,395 283



Cascade FCM algorithm

• First: apply FCM to whole volume
• fuzzy exponent m, c clusters

• Cluster selection: keep selected clusters, label as negative 
all others

• Second: apply FCM to pixels of kept clusters
• fuzzy exponent m’, c’ clusters

• Cluster selection: positive and negative ones

• Selection: decision tree built upon clusters found in 3 
further volumes

• Tests: m,m’=1.5:0.1:2.0 and c,c’=6:20



FCM initialization

• In every phase of the cascade, using actual data

• FCM clustering on each channel, c=3
• T1: v11, v12, v13    T2: v21, v22, v23

• T1C: v31, v32, v33    FLAIR: v41, v42, v43

• 34=81 cluster prototype candidates
• [v1α, v2β, v3γ, v4δ]T with α, β, γ, δ = 1…3

• Ranking prototype candidates
• Average distance to input vectors

• Select the best ranked c candidates



Outcome of Cascade FCM’s first step
c=6 classes, fuzzy exponent m=1.5



Outcome of Cascade FCM’s second step

c'=6 classes, fuzzy exponent m’=1.5



Measuring accuracy

• Based on ground truth
• TP, TN, FP, FN

• Jaccard Index  JI = TP/(TP+FP+FN)

• Dice Score DS = 2TP/(2TP+FP+FN) = 2JI/(1+JI)

• For each volume
• (6x15)2 = 8100 tests in unsupervised mode

• Best Jaccard Index (MAX), Average JI (AVG)



Average and maximum accuracy

Volume
Jaccard index Dice score

AVG MAX AVG MAX

HG01 0.7505 0.8058 0.8575 0.8925

HG02 0.3622 0.6097 0.5318 0.7576

HG03 0.7489 0.8155 0.8564 0.8984

HG04 0.6321 0.6498 0.7746 0.7878

HG05 0.2275 0.3143 0.3706 0.4783

HG06 0.5610 0.5969 0.7188 0.7476

HG07 0.3293 0.4358 0.4955 0.6070

HG09 0.3879 0.4929 0.5590 0.6603

HG11 0.4901 0.5954 0.6578 0.7464

HG12 0.0884 0.1422 0.1625 0.2490

HG13 0.2886 0.6073 0.4480 0.7557

HG14 0.5643 0.6468 0.7215 0.7855

HG15 0.7030 0.7343 0.8256 0.8468



Semi-supervised clustering

• Test parameters (c,m,c’,m’)

• 13 volumes divided to: train data and test data
• 213-2=8190 possible cases

• Best parameter set obtained for train data were fed to 
test data clustering

• Jaccard Index vs. AVG, MAX

• For each volume and every number of train volumes, 
extracted average JI



Histogram of Relative JI vs [AVG,MAX]
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Relative accuracy vs. Train volume count
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AVG & SD of accuracy vs. [AVG,MAX] interval
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Results in consecutive slices
Volume HG15, slices 96-120, TP: green, FN: red, FP: blue, TN: white



Some more references

• Review on tumor segmentation methods
• Gordillo et al.: Magn. Res. Imag. 31:1426-1438, 2013

• Two methods presented
• Szilágyi L, et al., ICONIP 2015, LNCS 9492:174-181

• Kapás Z, Szilágyi L, et al., MDAI 2016 (in press)



Conclusions

• Two approaches to tumor detection

• Preliminary results

• DS > 0.5 can detect most tumors

• Aim 
• High sensitivity utmost important 

• Specificity also matters 

• Detect smaller tumors

• Detect low-grade tumors



Any questions?


