

The part and the whole:

Simple rules on complex image structures

Tamás Szirányi

MTA SZTAKI

Budapest

MTA SZTAKI / EEE

• Robot vision around us

- Axiomatic rules in Computer Vision
- Scale space and anisotropic diffusion
- 3D modelling
- Markov Random Fields Models
- Stochastic image alignment

The robotic world on the street: the near future

Recognition and Clustering in Multimedia Databases:

- 1000-100.000 parameter,
- $10^5 10^7$ elements

Available input images

Semantic search

Y Apples

Image search

What is the graph-structure of elements? Which parameters can be best clustered?

× Result

Fitness: 99

Fitness: 94

Fitness: 89

Count: 1

Avg. Distance: 1.0

Avg. Distance: 4.110058

Count: 4

Avg. Distance: 0.5

Fitness: 98

Fitness: 93

Avg. Distance: 3.979317

Fitness: 88

Avg. Distance: 1.0

Count: 7

Count: 5

Avg. Distance: 1.0

Count: 2

Count: 2

Weight

Remove

Weigh

Remov

*

Selected index

color

Compute distance between sample and base points.
d d d
AVL1 AVL1 AVL2 AVL2 AVL2 AVL2 AVL2 AVL2 AVL2 AVL2
Find locations in distance trees of input data. Hash code calculation
240f6
Build index structure on disk drives

7/13/2016

normal

approximate

CrossModal Search

Search input

tagged with category

Search parameters nearestNeighbours: distLimit:

scalet imit:

distanceType:

emantic search templates free text search tagged with category

SZTAKI EEE

Fitness[,] 87

Count: 8

Fitness: 96

Fitness: 91 Count: 6

Fitness: 86

Count: 8

Avg. Distance: 1.0 Avg. Distance: 4.433537

Avg. Distance: 3.986795

Count: 3

Fitness: 97

Avg. Distance: 1.0

Fitness: 92

Avg. Distance: 1.0

Count: 5

Count: 3

Fitness: 95

Fitness: 90

Avg. Distance: 1.0

Count: 6

Fitness: 85

Count: 9

Avg. Distance: 1.0

Count: 4

Avg. Distance: 3.674035 Avg. Distance: 3.952446

Clustering behavior of big databases follows the Giant Components (Erdős-Rényi) for random geometric graphs *CLEF, 2012*

7/13/2016

Keszler A. & Kovacs L. & Sziranyi T.

5

Identification vs Recognition

Identification Recognition

- •**N** cardinality of the community (e.g. 200)
- •*E* false accept (e.g. 1%)
- •1 ε probability of right rejection (e.g. 99%): identification
- •(1 ϵ)^N probability of right rejection for N persons
- •1 $(1 \epsilon)^N$ probability that person N+1. (intruder) could go through
- •If $\varepsilon = 1/N$, then the probability of false accept

$$1 - (1 - 1/N)^N \longrightarrow 1 - 1/e = 63\%$$

prob. of false passing

"Scale-space" axioms

If zooming or rotating, the richness of details may change, but the essence not; give us rules:

- Linearity: $T_t(af + bh) = aT_tf + bT_th$
- Shift invariance
- Semi-group: $g(x,y,t_1) * g(x,y,t_2) = g(x,y,t_1 + t_2)$ (cascade filter)
- Local max/min relations do not change during scalig
- No new features (zero-crossings)
- rotation symmetry
- Lindeberg & Haar Romeny: "Linear Scale-Space", Kluwers, 1994
- Babaud et al: "Uniqueness of the Gaussian kernel for scale-space filtering", IEEE PAMI, 1986

A Scale-Space axioms to a new paradigm of image description

- Scale-Space theory: *scaling and* Gauss function
- Anisotropic diffusion \rightarrow de-noising
- *Wavelet* description and uncertainty principle
- Image structure from scales: Lindeberg' iterations
- Finding the most featuring scale
- Descriptors around the key-points in 128 dimesions: SIFT

- A Scale-Space axioms
- Lineariy
- Shift invariance
- Isotropy
- Causality
- Separability

lead to the Gaussian smoothing.

From fine details to overall features: Gaussian smoothing

Original

Gradient (scale 1 pixel)

Gradient (scale 4 pixels)

Scale induces an image hierarchy.

Looking for the most discriminative scale The position and the detailness fulfils the uncertainty discipline

Vision processes several scales as well

The edge transitions follow the axioms

Gradually smoothed signal

The positions of gradient-changes do not cross each other through scales

Scale space (Witkin 1983)

7/13/2016

MTA SZTAKI / DEVA

Defining edge, ridge and featuring scale

Tony Lindeberg: "Edge detection and ridge detection with automatic scale selection", IJCV, 1998

7/13/2016

Anisotropic diffusion (de-noising)

$\partial_t u = w_K \left(|\nabla G_{\sigma} * u| \right) \left((1 - \alpha) u_{\parallel} + \alpha u_{\perp} \right)$

- Perona & Malik: "Scale-space and edge detection using anisotropic diffusion", 1987
- Alvarez, Guichard, Lions, Morel: "Axioms and fundam. eqs. of image proc.", 1993

7/13/2016

Anisotropic diffusion in preporocessing for JPEG compression 1998 / 2005

Original

JPEG

AD prefiltered JPEG

7/13/2016 Kopilovic & Szirányi; Optical Engineering, 2005

7/13/2016 Cartoon/Texture separation with TotVar and adaptive anisotropic diffusion -2012 17

Scale Invariant Feature Transform

- Local features are specific for shape and less information loss in case of occlusion
- Main steps:
 - Keypont definitions,
 - Featuring areas,
 - **Descriptors**.

Hessian detector (Beaudet, 1988)

•Search for strong derivatives in two orthogonal directions:

7/13/2016

MTA SZTAKI / DEVA

Automatic scale selection: LOG

• Function response of scale signature

SIFT descriptor (Lowe, ICCV, 1999)

- Histogram of oriented gradients
- Captures important texture information
- Robust to small translations and affine deformations

Remote sensing:

Fusion MRF model for multi-time image segmentation and change detection

<u>Tamás Szirányi</u> and Maha Shadaydeh IEEE GRSL 2014

7/13/2016

MTA SZTAKI / DEVA

2000

2005

2007

7/13/2016

MTA SZTAKI Fused segmentation of the different subclasses

More images More information

More complex details

Markov Random Field Optimization Local steps – global optimum

MRF models and segmentation levels:

- Single layer

single year - some supervision is needed

- *Multiple layers* (stack of years' layers):

the source of supervision for single layer step

$$\widehat{\Omega} = \operatorname{argmin}_{\Omega} \sum_{s \in S} \underbrace{-\log P(\overline{x}_s | \omega_s)}_{\epsilon_{\omega_s}(s)} + \sum_{r,s \in S} \Theta(\omega_r, \omega_s)$$
$$\Theta(\omega_r, \omega_s) = \begin{cases} 0 & \text{if } \omega_r = \omega_s \\ +\beta & \text{if } \omega_r \neq \omega_s \end{cases}$$

Local Similarity Measure Estimation

Cluster Reward Algorithm (CRA) Similarity Measure

 $CRA(I, J, s) = \frac{\sum_{i,j} p_{IJ}^2(i, j, w_s) - \sum_i p_I^2(i, w_s) \sum_j p_J^2(j, w_s)}{\sqrt{\sum_i p_I^2(i, w_s) \sum_j p_J^2(j, w_s)} - \sum_i p_I^2(i, w_s) \sum_j p_J^2(j, w_s)}}.$

Joint local histogram h(i, j) of the two corresponding windows in images I and J

Problem: Choice of window size N.

- Large window provide better estimation for the pdfs, but can not detect smaller changes.
- Small window gives large estimation error.

Multi-Layer Fusion MRF Model¹

¹ Sziranyi & Shadaydeh, IEEE GSRS Letters, 2014

Forest / Meadow changes: 2000 - 2005 - 2007

Unsupervised segmentation and change detection by using CRA cross-layer measure and color info

7/13/2016

SZTAKI EEE

What is in the background?

Stochastic and physical models for background discrimination:

- Gaussian models
- Doppler measurement for passive radars

Stauffer and Grimson IEEE Tr. PAMI, 2000 Benedek and Szirányi, IEEE Tr. IP, 2008

- Mixture of Gaussians
- On-line k-means

Background filters

7/13/2016

MTA SZTAKI / DEVA

Passiv reflections

Background filter from "radar" signatures

Doppler effect helps to find motion Target signal $E_{L} = \left(\rho_{L}, \phi_{EL}, \vartheta_{EL}\right)^{*}$ Interferences Hot clutter 茶鳥 $E_2 = \left(\rho_2, \phi_{E2}, \theta_{E2}\right)$ Direct signal Multipath Ground clutter 券 $E_{1}=\left(\rho_{1},\phi_{E1},\mathcal{G}_{E1}\right)$ Array received signal vector $S(\mathbf{r}_{k},t) = S(t)e^{i2\pi f_{0}(t-\tau_{k})}$ $\tau_k = \frac{k(\phi, \theta)\mathbf{r}_k}{c} = \frac{\cos(\phi)\sin(\theta)x_k + \sin(\phi)\sin(\theta)y_k}{c}$ х

APIS (EDA) Project - ISAR SYSTEM GEOMETRY

Ambiguity function describes how correlated a signal is with itself delayed in time by τ and shifted in Doppler (Sinsky and Wang, 1974).

 $\left|\chi(\tau,\omega_d)\right|^2 = \left|\int_{0}^{\infty} u(l)e^{j\omega_d}u^*(l+\tau)dl\right|^2$

20 $|\chi_g(\tau, v)|, dB$ -40-60 -80 0.80.60.4 0.2 0 v, kHz (a) (c) (b) -0.8 0.2 0.4 0.6 0.8 frequency shift, d

Saini, Cherniakov, "DTV signal ambiguity function analysis for radar application", IEE Proc.-Radar Sonar Navigation 2005

Stochastic methods, correlation models

Bayes iterations

•Lucy-Richardson algorithm for blind deconvolution

Imsage registration through correlation calculus

Lucy-Richardson algorithm for blind deconvolution:

- Given observation g, give an estimation of the original image f and the blurring function (PSF) h: g = f * h
- Starting from Richardson's original formula based on Bayesians:

 $P(f_i|g) = [P(g|f)P(f_i)] / \sum_j [P(g|f_j)P(f_j)] \quad P(f|g) = P(fg)/P(g)$

$$P(f_i) = \sum_{l} P(f_i g_l) = \sum_{l} P(f_i | g_l) P(g_l) = \sum_{l} \frac{P(g_l | f_i) P(f_i) P(g_l)}{\sum_{j} P(g_l | f_j) P(f_j)}$$

$$P_{k+1}(f_i) = P_k(f_i) \sum_{l} \frac{P(g_l|f_i)P(g_l)}{\sum_{j} P(g_l|f_j)P_k(f_j)}$$

Lucy-Richardson algorithm for blind deconvolution:

- Probability is proportional to the luminance
- Conditional probability is prop. to the PSF

$$f_{i,k+1} = f_{i,k} \sum_{l} \frac{h_{i,l}g_l}{\sum_{j} h_{j,l}f_{j,k}} = f_{i,k} \sum_{l} h_{i,l} \frac{g_l}{\sum_{j} f_{j,k}h_{j,l}}$$

$$f_{k+1} = f_k \left(h_k \otimes \frac{g}{f_k \otimes h_k}\right)$$

$$f_{LENS} \xrightarrow{\text{OUTPUT}}_{PLANE}$$

The double iteration

$$\begin{cases} f_{k+1}(r) = f_k(r) \left[h_k(r) * \frac{g}{g_k}(r) \right] \\ h_{k+1}(r) = \frac{h_k(r)}{\gamma} \left[f_k(r) * \frac{g}{g_k}(r) \right] \end{cases}$$

$$g_k = f_k * h_k$$

• *f* and the PSF vary locally according to the amount of blur (distortion) present on the image locally

- •Stop the double iteration at a finite step (here #5) and check the **error between the measured and the estimated blurred image** blocks: $\|g - g_k\|$
- Is MSE usable for comparison the BD residual errors of different blocks?

Comparison of in-focus measures through convergence error

- •Comparison of blocks is based on the $||g g_k||$ error distance between the estimated g_k and measured gaverage values over a sample area
- •The greater the error distance, the better in the focus: more effort is needed for convergence from the stopped iteration
- Problem: The residual error makes the comparison unbalanced
- •A measure of zero theoretical residual is needed The independence of signal and noise makes the orthogonality criterion usable as an error measure itself

Т

ADE: angle deviation error Orthogonality criterion: signal and noise are independent

$$\arctan \frac{\langle g, g - g_k \rangle}{|g| |g - g_k|}$$

In case of g - g_k = [+1, -1, -1, +1, -1, +1 -1, +1]

g = [10, 10, 10, 10, 10, 10, 10, 10]

 $\|g - g_k\|$ is high, while

$$\langle g, g - g_k \rangle \rightarrow zero$$

Error curves for 8 neighboring blocks (each curve stands for one block) on a blurred texture sample (top) for the same blur with **ADE** (left), and **MSE** (right).

Ideally, curves of the same measure should remain close to each other.

43

Find relative focus map:

Stochastic methods, correlation models

Bayes iterations

Lucy-Richardson algorithm for blind deconvolution

•Image registration through correlation calculus

Stereo registration through random motion Szlavik, Sziranyi, Havasi - IEEE Tr. Image Processing, 2007

Ergodic regular Markov chain has a unique stationary distribution

$$\begin{pmatrix} p_1 & p_2 \end{pmatrix} = \begin{pmatrix} p_1 & p_2 \end{pmatrix} \prod_{i=1}^{k} P(m_{1i}) P(m_{2k}) \prod_{i=1}^{k} \frac{P(m_{2k} \mid m_{1i}) P(m_{2k})_i}{\sum_{j=1}^{k} P(m_{2k} \mid m_{1j}) P(m_{1j})_i}$$

$$P(m_{2k})_{r+1} = P(m_{2k})_r \sum_{i=1}^{k} \frac{P(m_{1i} \mid m_{2k}) P(m_{1i})_i}{\sum_{j=1}^{k} P(m_{1i} \mid m_{2j}) P(m_{2j})_i}$$

Bayesian iterations of Ergodic regular Markov chain

with a unique stationary distribution

49

Point pairs

7/13/2016

Multi-view scene reconstruction

Image based localization in the city

MAV image based 3D city reconstruction

Mono-camera SLAM Budapesti Régi Közvágóhíd

MAV camera positionKey positionTransition

Thank you for the attention !