Smartphone Imaging and Image Processing

Attila Tanács

Department of Image Processing and Computer Graphics University of Szeged

Mobile Devices Everywhere...

Mobile Devices

Penetration

- Billions of potentional users
- More SIM cards than people

🔊 Usage

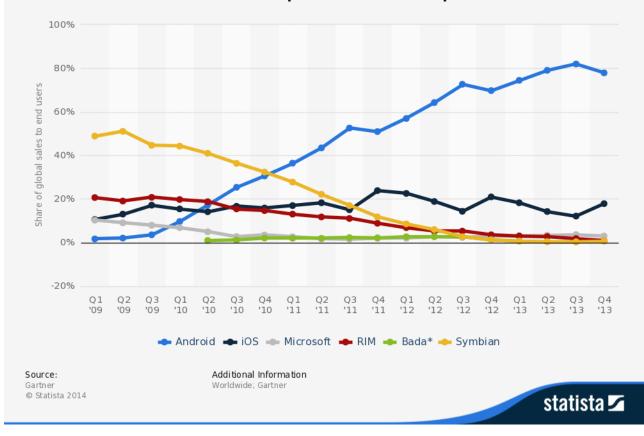
- Communication
 - Basic: voice, SMS
 - Internet-based: Facebook, messengers, email, ...
- Source of information
 - Weather, stock indices, exchange rate, news, navigation, ...
- Entertainment
 - Games, e-books, music, multimedia

∞ Feature phone

- Basic functions
 - Voice calls, SMS
- Closed system
- Limited developer possibilities

Smartphone

- Internet access
- Multitude of communication channels
- Expandable "knowledge"
- Open environment for developers
- App stores


History in a Nutshell

- **First mobile phone call** (1973)
 - Motorola (Martin Cooper \rightarrow Joel S. Engel)
- Manager calculators (1980s, 1990s)
 - EPOC
 - Personal digital assistant, no phone!
- Apple Newton platform (1987-1998)
 - Handwriting recognition, digital assistant, no phone!
- **PDA era** (1996-2008)
 - Palm, Windows CE, Windows Mobile
 - Still no phone, multimedia push
- Modern smartphones (2007-)
 - Convergence of mobile phones and PDAs
 - Nokia communicators (phone with data capabilities)
 - o RIM Blackberry, Symbian
 - Apple iPhone, Android, Windows Phone, ...
 - Radical market change from 2007!
- 5 Tablets
 - Decline of PCs

Smartphone Platforms

Global market share held by the leading smartphone operating systems in sales to end users from 1st quarter 2009 to 4th quarter 2013

Smartphone Platforms

Stormy and fast progression in the last decade

- Dominant platforms disappear abruptly
 - E.g., Palm, Windows Mobile, Symbian, RIM Blackberry
- Fast accommodation to user's need is essential!
- User's need should to be figured out beforehand

It's Not a Battle of Devices, It's a War of Ecosystems (S. Elop, Nokia)

- Main business is content service
 - Software, e-book, music, movies, ...
- Earlier
 - Usually no transitions between ecosystems
- Nowadays
 - Give service across the few platforms stayed alive
 - iOS, Android, Mac, PC, web

Hardware Progression

🔊 CPU

- Mainly ARM architecture (32 and 64-bits)
- \circ 16 MHz \rightarrow 2.3 GHz (quad and octa core)
- Dedicated GPU
- 50 Memory
 - \circ 1 MB \rightarrow 1-3 GB
- n Display
 - Resistive: stylus old technology!
 - Capacitive: multi-finger taps
 - Resolution: 160x160 black-white \rightarrow 4K, 2.55''-7''
 - Autostereoscopic 3D displays

New sensors

 Camera, GPS, accelerometer, magnetic compass, gyroscope, microphone, magnetic field, light sensor, barometer,, ...

Mobile Phone Cameras

- 1997: Sharp, Kyocera: initial experiments (in Japan)
- 2000: First phone camera
 - Sharp J-SH04, 0.1 MP resolution
- 2000: Eyemodule Digital Camera Springboard Module for Handspring Visor
 - 320x240 resolution
- 🔊 2002: Sony Ericsson T68i
 - First MMS-capable phone (with externally attachable camera)
- 50 2002: Sanyo SCP-5300
 - First camera phone in USA, VGA (0.3 MP) resolution
- ⁵⁰ 2003: more camera phones than digital cameras
- 2004: Nokia sells the most digital cameras
- ⁵⁰ 2006: half of the mobile phones have a camera
- 2008: Nokia is the biggest camera manufacturer (analogue and digital all together!)
- 2010: almost all phones have cameras

Mobile Camera Applicability Today

Huge social impact!

- o Family
 - Sending photos and videos to any distances
 - Instantly
- Politics
 - Broadcast events
 - News channels
- Science
 - Meteorology
 - Tsunami
 - •••

5 Taking notes

- Opening hours, advertisements
- ∞ Visual codes
 - Bar codes, QR codes

Photo processing and filtering

 Montage, HDR, time lapse, removing moving objects, ...

Photo sharing and upload

- o Instagram, Twitter
- Content-based image search, augmented reality
 - Client-server applications
- 🔊 Image analysis
 - Face detection, OCR, ...
- ∞ Video calls
- 80

Some Applications

Visual codes

- Product identification
- Business card scanning
- o URL
- General text

Complex imaging functions

- Smile/blink detection
- Post processing
- HDR imaging
- Panorama creation (even using sensor information)
- Taking 3D photos

Augmented Reality

so Combining the most capabilities of the smartphone

 Camera live view + location + orientation + location-based query + 2D/3D computer graphics

so Apps

- Layar (Android, iPhone)
- Wikitude World Browser
- o Games
 - Ingress
 - Pokemon GO

Example from Layar: In London at Abbey Road

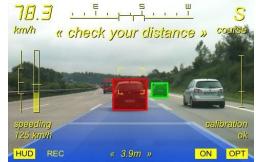
Image Search (Client-Server)

So Google Goggles (Android)

- Buildings, paintings
- Visual codes
- Business card
- Books, products
- Solving Sudoku

50 Google Cloud Vision API

- Opened Spring 2016!
 - https://cloud.google.com/vision/
 - Accessible from smartphone apps also
 - Gives description of image contents
 - »It quickly classifies images into thousands of categories (e.g., "sailboat", "lion", "Eiffel Tower"),detects individual objects and faces within images, and finds and reads printed words contained within images.«
- Try Google Photos!
 - Search for photos containing dogs, river, ... in your own photo library



Source: Google System BlogSpot

Computer Vision

Applications

- OCR (optical character recognition)
 - Scanning and recognizing text on the go
- Word Lens, CamTranslator, Google Translate
 - Translating words and phrases in camera live view
- Augmented Driving (iPhone)
 - Lane detection, approaching vehicle warning
- Doctor Mole
 - Analyzing skin pigments
- Motion detection
 - Security

0 ...

Mobile Image Processing

Native APIs available

- Camera handling (photo, live view), bitmap I/O and display
- Accessing pixel data \rightarrow mainly do it yourself processing!
 - Warning: Do not reinvent the wheel!
- Dedicated image processing libraries
 - o OpenCV
 - <u>http://www.opencv.org</u>
 - Open source (BSD licence) and multiplatform
 - Computer vision, machine learning functionality
 - FastCV
 - <u>https://developer.qualcomm.com/docs/fastcv/api/index.html</u>
 - From Qualcomm (the chip maker), mobile specific

>2500 optimized algorithms

- Basic algorithms
 - Filtering, edge detection, histogram, Hough-transform, ...
- Complex functionality
 - Face detection and recognition, movement classification, object tracking, image stitching, content-based image search, ...

⁵⁰ Multiple platforms and programming languages

- >10 years of development, numerous contributors
- C++ template interface
- Python, Matlab, Java bindings
- Windows, Linux, Mac OS, Android, iOS versions
 - Architecture-specific pre-built libraries

3D Mobile Computer Graphics

∞ Hardware

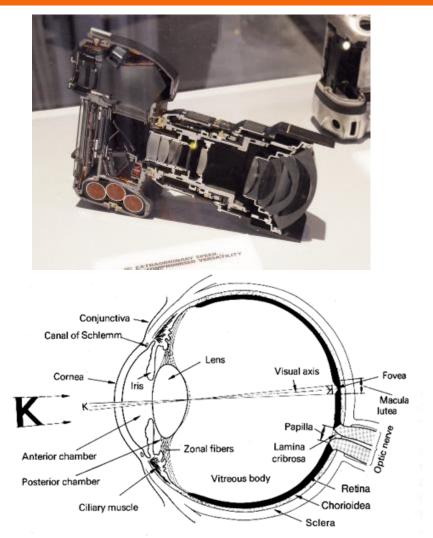
- Dedicated GPUs
 - E.g., Nvidia Tegra platform, Qualcomm Adreno
- Android-based Game Consoles
 - Nvidia Shield, Ouya, ...

50 Software API: OpenGL ES

- ES = Embedded System
 - Redundant functions are eliminated
- Open standard for 3D graphics
- Almost all mobile platforms support it (iOS, Android, Java ME)
 - Except Microsoft...
- OpenGL ES 1.1: Fixed rendering pipeline
- OpenGL ES 2.0: Vertex and fragment shaders, programmable pipeline
- OpenGL ES 3.0: above Android 4.4 KitKat
- 🔊 Coming: Vulkan API

Image Acquisition

Imaging sensor

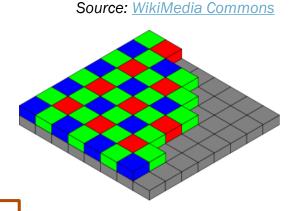

- Sensitivity (ISO)
- Resolution (MP)
- o Size, type

50 Lens

- Shutter speed
- Focal length
 - Zoom
- o Aperture

🔊 Illuminance

- Amount, evenness
 - \rightarrow HDR (High Dynamic Range)
- Color temperature



Source: Stanford University

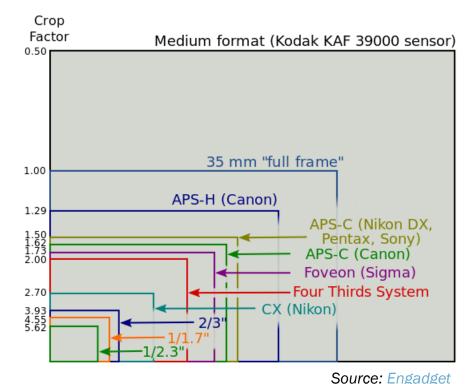
Imaging Sensors

So CCD

- Charge-Coupled Device
- Since 1969
- Good quality images with low noise
- Expensive manufacturing
- Significant power need

∞ CMOS

- Complementary Metal Oxide Semiconductor
- Mediocre image quality, noise sensitivity
- Cheaper technology
- Low power consumption


Imaging Sensor Size

\bowtie Larger sensor size \rightarrow

- Less noise
- Better depth of field
- Better photos
- But larger lens needed!

50 Few examples

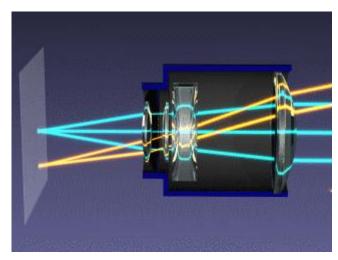
- o 35 mm: DSLR
- APS-C: DSLR, MILC
- 4/3": MILC
- 1/1.8'': top compact
- 1/2.3": compact, better mobile
- 1/3.2": ordinary mobile

Imaging Sensor Size

In mobile devices

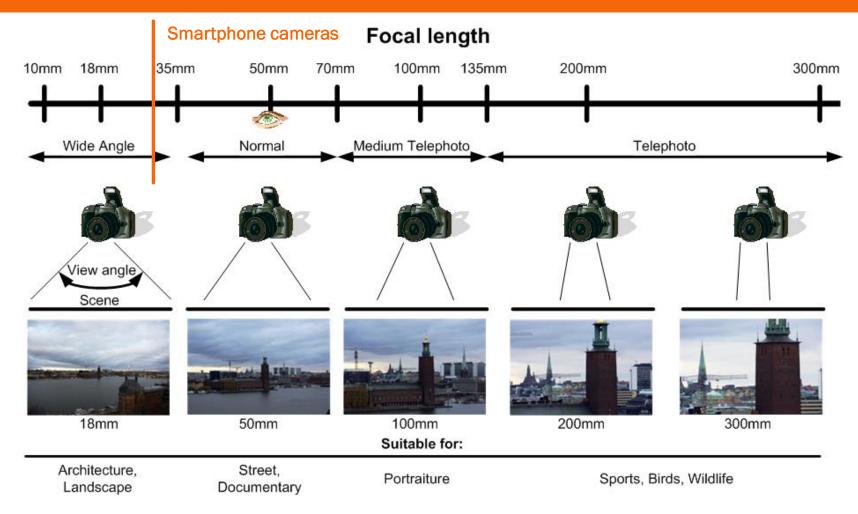
- Usually small sized sensors
- Comparable to average P&S cameras

Average Point&Shoot cameras


50 Brightness

- Amount of light getting through the lens
- Aperture (F-stop) and shutter speed play role

50 Focal length


- Determines the angle of view
- Fixed
 - Mobile or "pancake" lens (MILC, DSLR)
 - Simpler buildup \rightarrow smaller lens
- o Zoom
 - 3x-5x: compact, MILC, DSLR
 - 5x-40x: ultrazoom (compact) cameras
 - Only very few smartphones have zoom!

Source: Camera Lenses Research Project

Lens Angle of View

Source: http://www.digital-photography-student.com/lens-focal-length-explained/

Mobile Phone Camera Overview

High enough megapixel count, but

So Cheap and small sized sensors

Low power consumption and price is dominant

🔊 Weak lens

- Longer shutter speeds
 - Blurry photos, especially in low light situations
- Weak flash or lack thereof
 - Works acceptably only in good illuminance
- Miniaturized size
 - Geometric distortions

Limited parameter settings

• Automatism, slow!

Megapixel count alone is not a good indicator of imaging quality!

Mobile Phone Camera Overview

Advantages

- Small, always at hand, easily available
 - "The best camera is the one that's with you!" (Chase Jarvis)
- Might replace low-end compact cameras
- Photos can be edited and shared instantly
- Good quality video

Distinguishing factor for manufacturers

- OS and other phone features are mainly similar
- Manufacturers pay attention to camera capabilities
 - Especially in high-end devices

Progress in Mobile Imaging

Better sensors

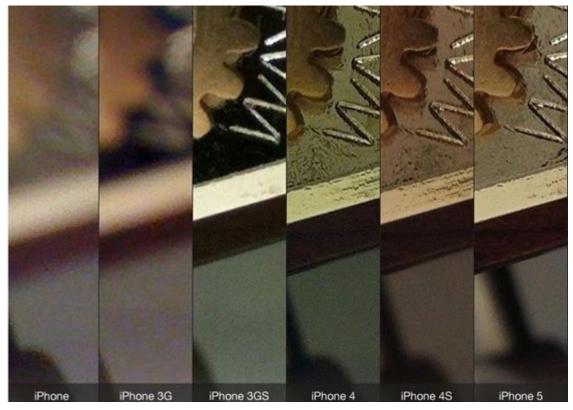
- BSI, Exmor, IsoCell, Ultrapixel, ...
- Megapixel war is (mainly) over!
- Dedicated processing chip
- OIS (optical image stabilization)

50 Camera function

- Zoom lens (thicker device)
- Faster and more precise focusing using laser light
- Dual-lens systems (with different parameters)
- Better front side camera module ("selfie" camera)

Software photo processing

- HDR
- Simulate depth-of-field
- Sensor-based panorama


Kép forrása: PixInfo

iPhone Camera Progress

Source: CameraTechnica

iPhone Camera Progress

Source: iPhone Informer

Digital Cameras with Android OS

- Nikon Coolpix S800c
- 🔊 Samsung Galaxy Camera

Bulkier, but better lens, in place photo processing and sharing.

- Samsung Galaxy NX (interchangeable lens!)
- Panasonic Lumix CM1 (1'' sensor, Leica lens)

Lens-only Cameras

∞ Sony QX10 and QX100

- Lens only, no display and buttons
- Wifi connection to smartphone
 - Viewfinder, control
- Can be attached to mobile device

Better lens, but cumbersome usage!

Source: Sony

Lens Clips

Easy usage but questionable quality!

Olloclip 4-in-1 lens clip Source: <u>Engadget</u> Vktech 60x microscope clip for Samsung Galaxy S4 Source: <u>Android Central</u>

Software Photo Processing

Panorama creation

Horizontal and sphere (StreetView-like) panoramas

50 High Dynamic Range images

• Handling uneven lighting conditions

Artificial depth-of-field simulation ("lens blur")

- Highlight what is important in the scene
- Refocus: interactively select area after image capture

Uneven Illumination

HDR (High Dynamic Range)

- Difficult illumination situations (dark and bright regions in the image)
- Software solution
 - Series of photos with different exposure values (e.g., ±2 EV, 3-5 photos)
 - Fixed position, stand still scene
 - Photo fusion
 - Divide the photos to little squares
 - Select the one with highest information content
 - Entropy
 - Blending to get smooth boundaries

Artificial depth-of-field simulation

🔊 "Lens blur"

- Wide DoF: (almost) everything is sharp in the scene
 - "Documentary"
- Shallow DoF: only objects at a certain distance interval are sharp, others are blurred
 - Photographer can show what he/she thinks is important in the scene
 - Hard to obtain using mobile camera modules due to physical constraints

Photo without Lens Blur

Artificial depth-of-field simulation

🔊 Usage (Google Camera)

- Camera movement during exposition (small video)
 - See <u>YouTube video</u>
- Estimating distance of object points
- Follow-up interactive refocus using the depth map and blur strength

Source: Google Research BlogSpot

One of several input photos Depth map (black close, white far)

Photo by Colby Brown Photo with Lens Blur

Lens Blur Example

Lens Blur selfie, background focus

Photo by Rachel Been Lens Blur selfie, foreground focus

Source: Google Research BlogSpot

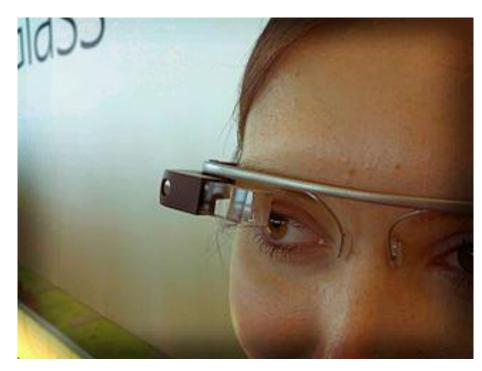
Recent Hardware Improvements

Dual lens cameras

- Lenses with two different focal lengths
 - Dual-lens smartphone cameras are coming, and this is why we want one
 - Can switch lenses to magnify more distant subjects without resorting to digital zoom
- Lenses with different aperture
 - Honor 6 Plus: F/2 and F/2.4 apertures
 - It uses both cameras at the same time to capture several photos at different apertures
 - Lets adjust the focal point and aperture after you've already taken a photo, as well as a choice of apertures — from f/0.95 to f/16

(Near) Future

RGB-D sensor


- Color + distance
 - Kinect-like sensor
- o <u>Google Project Tango</u>
 - Mapping 3D interior of rooms
 - Small distances (few meters)
 - No direct (sun)light
 - Development kit is available (in the USA)
 - <u>Lenovo Phab 2 Pro phablet is coming</u> (first commercial Tango device)
- o Official YouTube Video
- The next mobile imaging war won't be waged over megapixels
 - "Though Mountain View is focused on 3D mapping, so-called depth camera tech could dramatically improve all the pictures you take with your smartphone."

5 Smart Glasses

- E.g., Google Glass
- Experimental phase
- Features
 - Glass with miniature display
 - Voice control + touchpad
- Possibilities
 - Hands-free guidance
 - Location-based services
 - Camera
- Problems
 - Privacy concerns
 - Face recognition apps were forbidden from the official Glass app store!

Source: WikiMedia Commons

Research Projects

Related projects

- Car Recognition from Frontal Images in Mobile Environment
 - Viktor Varjas, Attila Tanács
- Evaluation of Point Matching Methods for Wide-baseline Stereo Correspondence on Mobile Platforms
 - Endre Juhász, Attila Tanács, Zoltan Kato
- Collaborative Mobile 3D Reconstruction of Urban Scenes
 - András Majdik, József Molnár, Attila Tanács, Levente Hajder, Rui Huang, Zsolt Sánta, Zoltan Kato

So Acknowledgments

 This work was partially supported by the European Union and the European Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).

Research Projects

50 Car make and model recognition

• From frontal images of cars taken by mobile devices

⁵⁰ Refining a previous gradient-based approach

- Previous papers from literature
- Ground truth test + practical application with an outlier class
- Robustness test + semi- and fully automatic versions
- Image database having more samples per classes

Model and make recognition Peugeot 307

Car Model and Make Recognition

🔊 Basic idea

- Number plates are ususally in fixed position
- The size of the number plate is in most of the cases fixed (in a given country)
- The image content in a fixed (relative to the number plate size) neighborhood of the number plate describes well the car model and make

Evaluation scenarios

Number plate detection, rotation compensation, ROI extraction

- Using ground thruth data
 - Manually provided number plate corner points: good for classification evaluation
- Semi- and fully automatic approaches
 - Practical applicability

Collaborative Mobile Visual Computing

50 Mobile

- Smartphone explosion!
- Sensors on-board
 - Camera module + position, orientation, acceleration, ...
- Network connection
 - Wifi and/or mobile internet communication
- Capable and still increasing computing power
- Billions of potential users!

50 Collaborative

- Near synchronous imaging
- Decentralized, ad-hoc camera network
- Computation is done by the peers
- Data is shared among them by request

Collaborative Mobile Visual Computing

⁵⁰ High-level collaborative tasks

- 3D reconstruction of urban scenes
- Synthetic view generation
- Panorama generation

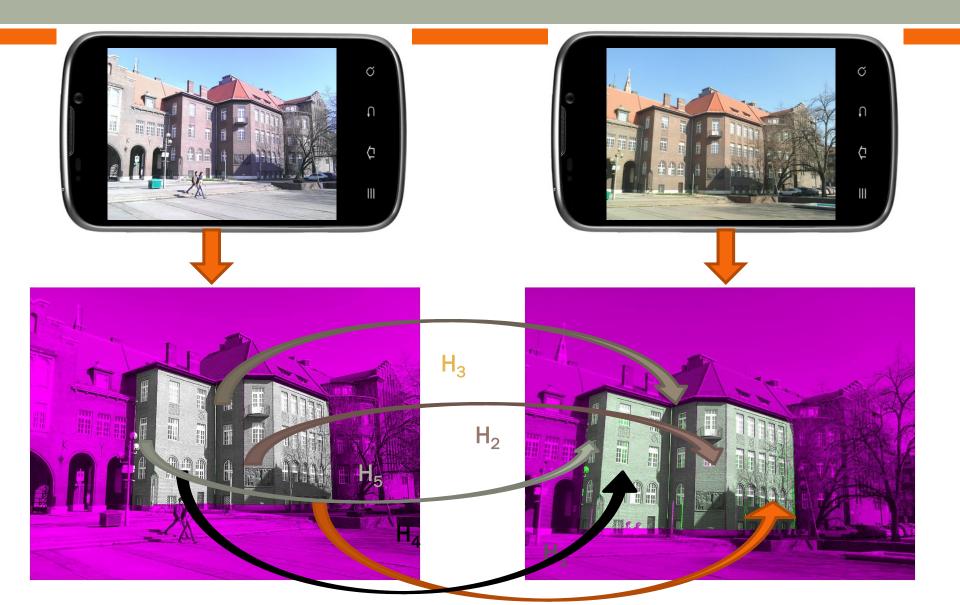
50 Fundamental algorithmic problems

- Wide-baseline stereo matching
- Correspondence (2 images)
 - Detect corresponding objects in the images
 - Erroneous correspondence detection
- Camera calibration
 - How the 3D scene is projected to a plane?
- Ad-hoc camera network calibration
 - Which cameras are close to each other?
 - Which cameras have a common view?
- Communication
 - Infrastructure for peer-to-peer data exchange

Stereo Reconstruction Pipeline

∞ Large, near planar regions

- Two images from different viewpoints
- Regions identified manually in one of the images


So Correspondence

- Find the pair of the regions in the other image
 - Planar homography

Reconstruction

 3D orientation and distance can be computed

