Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose?
000000	000000000	00	
0000	0000000	00000	
	000000000	0000	

Bio-inspired Metaheuristics and Image Processing

Daniela Zaharie

Department of Computer Science West University of Timisoara, Romania e-mail:daniela.zaharie@e-uvt.ro

SSIP 2016

Motivation 000000 0000	Metaheuristics and nature as a source of inspiration 000000000 00000000 000000000 000000	How to deal with 00 00000 0000 0000	Which method to choose?
.			

Outline

Motivation

A simple segmentation approach Optimization problems in image processing

Metaheuristics and nature as a source of inspiration

Search mechanisms Evolutionary Algorithms Swarm Intelligence

How to deal with ..

- ... premature convergence
- ... multiple optimization criteria
- ... constraints
- ... many variables

Which method to choose?

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with
00000 0000	00000000 0000000 000000000	00 00000 0000 00

Which method to choose?

A simple segmentation approach

Multilevel image thresholding

Main idea: find a set of thresholds $0 < t_1 < t_2 < \ldots < t_k < L-1$ s.t. the between class variance, V(t), is maximized

$$V(t_1, \dots, t_k) = \sum_{i=1}^k w_i (\mu_i - \mu)^2 \qquad w_i = \frac{1}{N} \sum_{j=t_{i-1}}^{t_i - 1} \operatorname{card}\{(x, y) | I(x, y) = j\}$$
$$\mu_i = \frac{1}{w_i} \sum_{j=t_{i-1}}^{t_i - 1} j P_j \qquad \mu = \sum_{j=0}^{L-1} j P_j \qquad P_j = \frac{1}{N} \operatorname{card}\{(x, y) | I(x, y) = j\}$$

Motivation	Metaheuristics and nature as a source of inspiration	How to
00000	000000000	00
0000	0000000	0000
	000000000	0000

Which method to choose?

A simple segmentation approach

Multilevel image thresholding (one threshold)

deal with ...

k = 1 - easy to compute Naive implementation: $\mathcal{O}(\max\{N, L^2\})$ N - image size (number of pixels) L - number of gray levels Plot: image histogram (blue), between class variance (red)

・ロト ・回ト ・ヨト ・ヨト

3

Motivation	Metaheuristics and nature as a source of inspiration	Н
000000	000000000	0
0000	0000000	0
	000000000	0

How to deal with ... 00 00000 0000 Which method to choose?

A simple segmentation approach

Multilevel image thresholding (two thresholds)

k = 2 - easy to compute Naive implementation: $\mathcal{O}(\max\{N, L^3\})$ N - image size (number of pixels) L - number of gray levels

・ロト ・四ト ・ヨト ・ヨト

э

Motivation	Metaheuristics and nature as a source of inspiration
000000	000000000 0000000 000000000

How to deal with ... 00 00000 0000 Which method to choose?

A simple segmentation approach

Multilevel image thresholding (three thresholds)

k = 3 - easy to compute Naive implementation: $\mathcal{O}(\max\{N, L^4\})$ N - image size (number of pixels) L - number of gray levels

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with
000000	000000000	00
0000	0000000	00000
	000000000	0000

Which method to choose?

A simple segmentation approach

Multilevel image thresholding (four thresholds)

Bio-inspired Metaheuristics

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 00 Which method to choose?

A simple segmentation approach

Multilevel image thresholding (five thresholds)

- multilevel thresholding leads to a combinatorial optimization problem
- brute force approaches generate large search spaces; it is not feasible for more than four thresholds
- thresholds obtained by using a population based metaheuristic (Particle Swarm Optimization)

Motivation	
000000	
●000	

How to deal with ... 00 00000 0000 00 Which method to choose?

Optimization problems in image processing

Image segmentation as an optimization problem

- threshold-based: estimate threshold values which maximize variance (Otsu) or entropy (Kapur) measures
 - combinatorial optimization problem with a large search space

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 00

◆□ > ◆舂 > ◆注 > ◆注 > ─ 注 …

Which method to choose?

Optimization problems in image processing

Image segmentation as an optimization problem

- threshold-based: estimate threshold values which maximize variance (Otsu) or entropy (Kapur) measures
 - combinatorial optimization problem with a large search space
- cluster-based: estimate centroids in the feature space which optimizes compactness and separation criteria
 - local optimization (e.g. kMeans) methods do not ensure a good exploration of the search space
 - ► multiple conflicting objectives → multi-objective optimization

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 00 Which method to choose?

Optimization problems in image processing

Image segmentation as an optimization problem

- threshold-based: estimate threshold values which maximize variance (Otsu) or entropy (Kapur) measures
 - combinatorial optimization problem with a large search space
- cluster-based: estimate centroids in the feature space which optimizes compactness and separation criteria
 - local optimization (e.g. kMeans) methods do not ensure a good exploration of the search space
 - ► multiple conflicting objectives → multi-objective optimization
- model-based: estimate model parameters which minimize an energy function
 - ► the energy function might have many optima → global/ multi-modal optimization
 - \blacktriangleright the parameters should satisfy some constraints \rightarrow constrained optimization

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Whi
000000	000000000	00	
0000	0000000	00000	
	000000000	0000	
		00	

Which method to choose?

Optimization problems in image processing

More on optimization in image processing

non-rigid multi-modal image registration¹

- find the parameters of a free form deformation model
- which minimize a similarity measure (e.g. mutual information)
- **>** problem size: for a $8 \times 8 \times 8$ mesh there are 1536 parameters;

 $^{^{\}rm L}$ Yang at al.,Non-rigid multi-modal medical image registration by combining L-BFGS-B with cat swarm optimization, Information Sciences 2015

²Zhang et al., PSO-EM: A Hyperspectral Unmixing Algorithm Based On Normal Compositional Model, TGRS 2014 💈 🖓 🔍 🔿

Motivation	Metabeuristics and nature as a source of inspiration	How to deal with	Which m
000000	000000000	00	
0000	0000000	00000	
	000000000	0000	
		00	

More on optimization in image processing

non-rigid multi-modal image registration¹

- find the parameters of a free form deformation model
- which minimize a similarity measure (e.g. mutual information)
- ▶ problem size: for a $8 \times 8 \times 8$ mesh there are 1536 parameters;

(hyper)spectral unmixing²

- find the abundancy values which maximizes the log-likelihood function from the E-step in an EM framework
- problem size: abundance map size = number of pixels × number of endmembers (750 for a 50 × 50 subimage and 3 endmembers)

 \rightarrow large scale optimization

ethod to choose?

 $^{^{1}}$ Yang at al.,Non-rigid multi-modal medical image registration by combining L-BFGS-B with cat swarm optimization, Information Sciences 2015

² Zhang et al., PSO-EM: A Hyperspectral Unmixing Algorithm Based On Normal Compositional Model, TGRS 2014 🚊 🔗 🔍

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose?
00000 0000	000000000000000000000000000000000000000	00 00000 0000 00	

More on optimization in image processing

Another example:

- given a parameterized module for image registration encapsulated in a proprietary software
- find the parameters values which:
 - ensure that the registration error is smaller than a given threshold
 - the running time is as small as possible

 \rightarrow black box optimization problem

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ●

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose
000000	000000000	00	
0000	0000000	00000	
	000000000	0000	
		00	

More on optimization in image processing

Another example:

- given a parameterized module for image registration encapsulated in a proprietary software
- find the parameters values which:
 - ensure that the registration error is smaller than a given threshold
 - the running time is as small as possible

 \rightarrow black box optimization problem

Characteristics of the black box problems

- only partial/uncertain apriori knowledge on the search landscape
- only objective function values are known, no gradient information

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose?
00000 000•	000000000000000000000000000000000000000	00 00000 0000 00	

Summary of the problem characteristics

- partial or no knowledge on the search landscape (black box optimization)
- many local optima (global optimization)
- several conflicting optimization criteria (multi-objective optimization)
- constraints on the design variables (constrained optimization)
- many variables to estimate (large scale optimization)
- \rightarrow gradient-based methods unable to find efficiently the solution

 \rightarrow metaheuristics

Motivation 000000 0000	Metaheuristics and nature as a source of inspiration 000000000 00000000 000000000 000000	How to deal with 00 00000 0000 0000	Which method to choose?
• •			

Outline

Motivation

A simple segmentation approach Optimization problems in image processing

Metaheuristics and nature as a source of inspiration

Search mechanisms Evolutionary Algorithms Swarm Intelligence

How to deal with ..

- ... premature convergence
- ... multiple optimization criteria
- ... constraints
- ... many variables

Which method to choose?

<ロ> <四> <四> <四> <三</p>

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which
000000 0000	•00000000 0000000 000000000	00 00000 0000 00	

Which method to choose?

Search mechanisms

What is a metaheuristic?

It is a general-purpose (usually stochastic) procedure designed to solve difficult optimization problems³

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

³S. Luke, Essentials of metaheuristics, free online book, 2014

Motivation 000000 0000	Metaheuristics and nature as a source of inspiration • 000000000 000000000 00000000000	How to deal with 00 00000 00000	Which me
	00000000	0000	

Search mechanisms

What is a metaheuristic?

- It is a general-purpose (usually stochastic) procedure designed to solve difficult optimization problems³
- Main characteristics:
 - it does not require specific knowledge of the problem
 - they are appropriate to solve problems for which the search landscape is not well formalized
 - it mainly rely on two main mechanisms: exploration of the search space and exploitation of the knowledge collected during previous search steps

イロト 不得 とくき とくき とうき

thod to choose?

³S. Luke, Essentials of metaheuristics, free online book, 2014

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Whic
000000 0000	•00000000 0000000 000000000	00 00000 0000 00	

Which method to choose?

Search mechanisms

What is a metaheuristic?

- It is a general-purpose (usually stochastic) procedure designed to solve difficult optimization problems³
- Main characteristics:
 - it does not require specific knowledge of the problem
 - they are appropriate to solve problems for which the search landscape is not well formalized
 - it mainly rely on two main mechanisms: exploration of the search space and exploitation of the knowledge collected during previous search steps
- Types of metaheuristics:
 - trajectory based the search process describes a trajectory in the search space; only one "searcher" is used

 population based - they use a population of "searchers" which cooperate and compete

³S. Luke, Essentials of metaheuristics, free online book, 2014

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to cho
000000 0000	00000000 0000000 000000000	00 00000 0000 00	
Course mashanian			

Trajectory based metaheuristics

⁴T.G. Kolda et al., Optimization by direct search..., SIAM Review, 45(3), 2003 □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ose?

Motivation	
000000	
0000	

Metaheuristics and nature as a source of inspiration ○●●○○○○○○ ○○○○○○○○ ○○○○○○○○ How to deal with ... 00 00000 0000 00

Which method to choose?

Search mechanisms

Trajectory based metaheuristics

From local to global optimization:

- Perturbation: use (ocasionally) some large perturbations
- Random restart: new search process started from a random configuration
- Selection: accept (ocasionally) poorer configurations (e.g. Simulated Annealing)
 - inspired by thermodynamics of annealing process
 - objective function interpreted as an energy
 - control parameter T interpreted as temperature
 - From random search (T → ∞) to greedy search (T → 0)

Motivation	
000000	
0000	

Metaheuristics and nature as a source of inspiration ○●●○○○○○○ ○○○○○○○○ How to deal with ... 00 00000 0000 00 Which method to choose?

Search mechanisms

Trajectory based metaheuristics

From local to global optimization:

- Perturbation: use (ocasionally) some large perturbations
- Random restart: new search process started from a random configuration
- Selection: accept (ocasionally) poorer configurations (e.g. Simulated Annealing)
 - inspired by thermodynamics of annealing process
 - objective function interpreted as an energy
 - control parameter T interpreted as temperature
 - From random search (T → ∞) to greedy search (T → 0)

- 1: $s \leftarrow s_0$; $t \leftarrow 0$; $T(0) \leftarrow T_0$
- 2: *best* \leftarrow *s*
- 3: while \langle NOT stopping \rangle do
- 4: $s' \leftarrow \text{perturb}(s)$
- 5: **if** $rand(0,1) < min\{1, exp(-\frac{f(s') f(s)}{T(t)})\}$ then
- 6: $s \leftarrow s'$
- 7: end if
- 8: $t \leftarrow t+1$
- 9: compute T(t) (cooling schedule)

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 16/58

- 10: **if** f(s) < f(best) then
- 11: $best \leftarrow s$
- 12: end if
- 13: end while
- 14: return best

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose?
000000 0000	00000000 0000000 000000000	00 00000 0000 00	
Course most anions			

Population based metaheuristics

... a population of searchers (candidate solutions)

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to
000000 0000	000000000 0000000 000000000	00 00000 0000 00	
C			

Search mechanisms

Population based metaheuristics: overall structure

- 1: Initialize a population of *m* candidates $(P = (x_1, x_2, ..., x_m))$
- 2: while \langle Not stopping condition \rangle do
- 3: Evaluate the population (compute $(f(x_1), f(x_2), \dots, f(x_m))$)
- 4: Apply explorative/exploitative mechanisms
- 5: end while

choose?

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 Which method to choose?

Search mechanisms

Population based metaheuristics: search mechanisms

Overall goal: find the trade-off between

Exploration (diversification) = explore the search space on a global scale

► (large) perturbation of the elements in the current population → discover new promising regions in the search space

Exploitation (intensification) = focus the search in promising regions

- good elements have higher chance to be preserved in the population
- (small) guided perturbation of good elements → local improvement

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 00 Which method to choose?

Search mechanisms

Population based metaheuristics: design aspects

The design of a metaheuristic is a decision process. Several questions should be answered:

- How should be encoded the population elements?
 - binary vectors, vectors of integer values (e.g. multilevel thresholding), vectors of real values (e.g. registration, deformable models)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ●

Motivation	
000000	

How to deal with ... 00 00000 0000

Search mechanisms

Population based metaheuristics: design aspects

The design of a metaheuristic is a decision process. Several questions should be answered:

- How should be encoded the population elements?
 - binary vectors, vectors of integer values (e.g. multilevel thresholding), vectors of real values (e.g. registration, deformable models)
- Which exploration / exploitation mechanisms should be used?
 - perturbation based on distribution probabilities not related to the population
 - perturbation based on the distribution of the population elements

Motivation	
000000	

How to deal with ... 00 00000 0000

Search mechanisms

Population based metaheuristics: design aspects

The design of a metaheuristic is a decision process. Several questions should be answered:

- How should be encoded the population elements?
 - binary vectors, vectors of integer values (e.g. multilevel thresholding), vectors of real values (e.g. registration, deformable models)
- Which exploration / exploitation mechanisms should be used?
 - perturbation based on distribution probabilities not related to the population
 - perturbation based on the distribution of the population elements
- How much randomness?
 - \blacktriangleright purely random perturbation or random control parameters may help to preserve/ increase the diversity of the population \rightarrow avoid stagnation

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 20/58

Motivation	
000000	

How to deal with ... 00 00000 0000 00 Which method to choose?

Search mechanisms

Population based metaheuristics: design aspects

How many elements in the population?

- sometimes related to the problem size
- adaptive population size

Motivation	
000000	

How to deal with ... 00 00000 0000 Which method to choose?

Search mechanisms

Population based metaheuristics: design aspects

- How many elements in the population?
 - sometimes related to the problem size
 - adaptive population size
- When should be stopped the iterative process?
 - pre-specified number of iterations or objective function evaluations
 - until there is no progress

Motivation	
000000	
0000	

Metaheuristics and nature as a source of inspiration ○○○○○○○●○ ○○○○○○○○○ How to deal with ... 00 00000 0000 00 Which method to choose?

Search mechanisms

Nature as source of inspiration

Evolution by natural selection

- Main idea: evolution can produce highly optimised processes and structures by
 - reproduction = creation of new elements based in existing ones and on random events
 - selection = survival of the fittest
- Example: evolutionary algorithms (EA)

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 00 Which method to choose?

Search mechanisms

Nature as source of inspiration

Evolution by natural selection

- Main idea: evolution can produce highly optimised processes and structures by
 - reproduction = creation of new elements based in existing ones and on random events
 - \blacktriangleright selection = survival of the fittest
- Example: evolutionary algorithms (EA)

Intelligent collective behavior (swarm intelligence)

 Main idea: cooperation between agents following simple rules may lead to complex behavior

Examples:

- particle swarm optimization (PSO)
- ant colony optimization (ACO)
- artificial bee colony (ABC)
- firefly algorithm (FA), cuckoo search (CS), flower pollination algorithm (FPA), bat algorithm (BA), bacterial foraging (BFOA) etc.

Motivation	Metaheuristics and nature as a source of inspiration	H
000000	00000000	0
0000	0000000	0
	000000000	0
		0

How to deal with ... 00 00000 0000 0000

くロン 不得 とくほう くほう 二日

Which method to choose?

Search mechanisms

Nature as source of inspiration

Applications in image processing:

- image enhancement: PSO, ABC, DE
- multi-level thresholding ⁵: ACO, PSO, DE, FA, BA, CS
- image registration: DE, BFOA
- segmentation by deformable models⁶: EA, ACO, PSO, CMA-ES, DE

 $^{^{5}}$ T. Kurban et al, Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding, ASOC 2014

⁶P. Mesejo et al, A survey on image segmentation using metaheuristic ..., ASOC 2016

⁷A. Sorensen, Metaheuristics - the metaphore exposed, ITOR 2013

Motivation	Metaheuristics and nature as a source of inspiration	How to dea
000000	00000000	00
0000	0000000	00000
	000000000	0000
		00

l with

Which method to choose?

Search mechanisms

Nature as source of inspiration

Applications in image processing:

- image enhancement: PSO, ABC, DE
- multi-level thresholding ⁵: ACO, PSO, DE, FA, BA, CS
- image registration: DE, BFOA
- segmentation by deformable models⁶: EA, ACO, PSO, CMA-ES, DE

A word of caution⁷: just the fact that a method tries to mimick some behavior which proved to be successful in nature does not ensure the success as an optimization method; in many cases they are just new ways of selling existing ideas - most important is to identify the appropriate search mechanisms

⁵T. Kurban et al, Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding, ASOC 2014

⁶P. Mesejo et al, A survey on image segmentation using metaheuristic ..., ASOC 2016

⁷A. Sorensen, Metaheuristics - the metaphore exposed, ITOR 2013

Motivation	
000000	

How to deal with ... 00 00000 0000 Which method to choose?

Evolutionary Algorithms

Population based metaheuristics: Evolutionary Algorithms

- Source of inspiration: evolution of biological species
 - inheritance of the ancestors characteristics → crossover (recombination)
 - ► unexpected influence of the environment and errors in the DNA transcription/ translation processes → mutation
 - ► survival of the fittest → selection
| Motivation | |
|------------|--|
| 000000 | |
| 0000 | |

How to deal with ... 00 00000 0000 00 Which method to choose?

Evolutionary Algorithms

Population based metaheuristics: Evolutionary Algorithms

- Source of inspiration: evolution of biological species
 - inheritance of the ancestors characteristics → crossover (recombination)
 - ► unexpected influence of the environment and errors in the DNA transcription/ translation processes → mutation
 - ► survival of the fittest → selection
- Encoding
 - ▶ vector of binary values → Genetic Algorithms
 - ▶ vector of real values → Evolutionary Strategies
 - ► tree/graph-like structures → Genetic Programming

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose?
000000 0000	00000000 0000000 00000000	00 00000 0000 00	
Evolutionary Algo	withms		

Problem to be solved: maximize $f : [a_1, b_1] \times \ldots \times [a_n, b_n] \rightarrow \mathbb{R}$

EA building blocks

- Crossover: two or several parents \rightarrow one or several offsprings
 - Parents: $(x_1, x_2, ..., x_n)$, $(x'_1, x'_2, ..., x'_n)$
 - ► Uniform crossover: $y_i = x_i$ with probability p and $y_i = x'_i$ with probability 1 p
 - Arithmetic recombination: $y_i = (x_i + x'_i)/2$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ のへ()・

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose?
000000 0000	00000000 0 000000 000000000	00 00000 0000 00	
Evolutionary Algo	rithms		

Problem to be solved: maximize $f : [a_1, b_1] \times \ldots \times [a_n, b_n] \rightarrow \mathbb{R}$

EA building blocks

- Crossover: two or several parents \rightarrow one or several offsprings
 - Parents: $(x_1, x_2, ..., x_n), (x'_1, x'_2, ..., x'_n)$
 - ► Uniform crossover: y_i = x_i with probability p and y_i = x'_i with probability 1 p
 - Arithmetic recombination: $y_i = (x_i + x'_i)/2$
- \blacktriangleright Mutation: one element and a perturbation model \rightarrow one perturbed element
 - Purely random perturbation: $z_i^j \sim \mathcal{U}(a_j, b_j)$
 - ► Additive perturbation: z_i ← y_i + ξ_i, ξ_i random variable (e.g. uniform, normal, Cauchy, Lévy distributions)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ のへ()・

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose
000000 0000	00000000 0000000 00000000	00 00000 0000 00	
Evolutionary Algo	rithms		

Problem to be solved: maximize $f : [a_1, b_1] \times \ldots \times [a_n, b_n] \rightarrow \mathbb{R}$

EA building blocks

- Selection: construct a new generation from the population of parents and/or offsprings
 - Proportional: random sampling with replacement based on a distribution probability related to the elements quality (*Prob*(x_i) ~ *Fitness*(x_i)) known as "roulette wheel" procedure
 - Tournament: repeated random sampling of small population subsets
 + selection of the best element of the subset
 - Truncation: select the best elements out of the joined population (parents and offsprings)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ●

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose?
000000 0000	000000000 0000000 000000000	00 00000 0000 00	
Evolutionary Algo	prithms		

Problem to be solved: maximize $f : [a_1, b_1] \times \ldots \times [a_n, b_n] \rightarrow \mathbb{R}$

EA building blocks

- Selection: construct a new generation from the population of parents and/or offsprings
 - Proportional: random sampling with replacement based on a distribution probability related to the elements quality (*Prob*(x_i) ≈ *Fitness*(x_i)) known as "roulette wheel" procedure
 - Tournament: repeated random sampling of small population subsets
 + selection of the best element of the subset
 - Truncation: select the best elements out of the joined population (parents and offsprings)
- Elitism: preserve the best element(s) in the new population

Viotivation	Metaheuristics and nature as a source of inspiration	How to
000000	000000000	00
0000	0000000	00000
	000000000	0000
		00

Which method to choose?

leal with ...

Evolutionary Algorithms

Population based metaheuristics: CMA-ES

- mutation based on multi-variate normal distribution with adaptive covariance matrix
- the perturbation used to guide the search exploits the correlation between variables - appropriate in the case of nonseparable problems
- currently the most effective Evolution Strategy ⁸

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 00 Which method to choose?

Evolutionary Algorithms

Population based metaheuristics: CMA-ES

Simplest variant: rank-one update of the covariance matrix Notations: $x_{i:m}$ element with *i*th rank (out of the *m* elements of the population) in decreasing order of quality

Initialization: $\mu \in \mathbb{R}$, C = I (identity matrix), $\sigma = 1$, $c = 2/n^2$ while \langle NOT termination \rangle do

- ► Sampling (mutation): $x_i = \mu + \sigma y_i$, $y_i \sim N_i(0, C)$, $i = \overline{1, m}$
- Update mean (selection+recombination):

$$\mu_{new} = \sum_{i=1}^{k} w_i x_{i:m} = \mu_{old} + \sigma \sum_{i=1}^{k} w_i y_{i:m}, (w_1 \ge w_2 \ldots \ge w_k, \sum_{i=1}^{k} w_i = 1)$$

Update covariance matrix (selection+recombination):

$$C = (1-c)C + c\lambda_w y_w y_w^T, \quad \lambda_w = \frac{1}{\sum_{i=1}^k w_i^2}, \quad y_w = \sigma \sum_{i=1}^k w_i y_{i:m}$$

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to c
000000 0000	000000000 00000000 000000000	00 00000 0000 00	

Evolutionary Algorithms

Population based metaheuristics: CMA-ES

Improved variant (for large populations): rank-m update of the covariance matrix

Initialization: $\mu \in \mathbb{R}$, C = I (identity matrix), $\sigma = 1$, $c = k/n^2$ while \langle NOT termination \rangle do

▶ Sampling (mutation): $x_i = \mu + \sigma y_i$, $y_i \sim N_i(0, C)$, $i = \overline{1, m}$

Update mean (selection+recombination):

$$\mu_{new} = \sum_{i=1}^{k} w_i x_{i:m} = \mu_{old} + \sigma \sum_{i=1}^{k} w_i y_{i:m}, (w_1 \ge w_2 \ldots \ge w_k, \sum_{i=1}^{k} w_i = 1)$$

Update covariance matrix (selection+recombination):

$$C = (1-c)C + c \sum_{i=1}^{k} w_i y_{i:m} y_{i:m}^{T}$$

◆□ → ◆□ → ◆ 注 → ◆ 注 → ○ へ ○ 29/58

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method
000000 0000	00000000 0000000 00000000	00 00000 0000 00	

Evolutionary Algorithms

Population based metaheuristics: CMA-ES

Full version: cumulation-based update of C + adaptive sigma

Initialization: $\mu \in \mathbb{R}, \sigma \in \mathbb{R}_+$, $C = I, p_C = 0, p_\sigma = 0, c_C = c_\sigma = 4/n$, $c_1 = 2/n^2$, $c_m = 0.3m/n^2$ (s.t. $c_1 + c_m \leq 1$, $d_\sigma = 1 + \sqrt{m_w/n}$, $m_w = 0.3m$ while \langle NOT termination \rangle do

► Sampling: $x_i = \mu + \sigma y_i$, $y_i \sim \mathcal{N}_i(0, C)$, $i = \overline{1, m}$

• Update mean: $\mu_{new} = \sum_{i=1}^{k} w_i x_{i:m} = \mu_{old} + \sigma \sum_{i=1}^{k} w_i y_{i:m}$,

• Cumulation for *C* and
$$\sigma$$
 update:

$$p_C = (1 - c_C)p_C + \mathbf{1}_{\parallel p_\sigma \parallel < 1.5\sqrt{n}}\sqrt{1 - (1 - c_C)^2}\sqrt{m_w}y_w$$

$$p_\sigma = (1 - c_\sigma)p_\sigma + \sqrt{1 - (1 - c_\sigma)^2}\sqrt{m_w}C^{-1/2}y_w$$

• Update C and
$$\sigma$$
:

$$C = (1 - c_1 - c_m)C + c_1 b_c p_C^T + c_m \sum_{i=1}^k w_i y_{i:m} y_{i:m}^T$$
$$\sigma = \sigma \exp\left(\frac{c_\sigma}{d_\sigma} \left(\frac{\|p_\sigma\|}{E\|\mathcal{N}(0,l)\|} - 1\right)\right)$$

Remark: CMA-ES source code:

to choose?

Motivation	Metaheuristics and nature
000000	000000000
0000	00000000

ristics and nature as a source of inspiration ○○○○○ ○○● ○○○○○ How to deal with ... 00 00000 0000 00 Which method to choose?

Evolutionary Algorithms

Population based metaheuristics: CMA-ES

Successful applications in image processing:

- registration of intraoperative 3D ultrasound data of the spine with preoperative CT data⁹:
- ► multiple targets detection in image sequences ¹⁰ → fit a parameterized model (e.g. an ellipse) to the image data

⁹ S. Winter et al. Registration of bone structures ..., CARS 2005

¹⁰ J. Brunger et al. Randomized global optimization for robust pose estimation of multiple targets in image sequences, Mathematical Models and Computational Methods, 2015 $\Box \rightarrow \langle \overline{O} \rightarrow \langle \overline{E} \rightarrow \langle \overline{E} \rightarrow \rangle \in \mathbb{R}^{3} \land \mathbb{Q} \land \mathbb{Q}$

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 00 Which method to choose?

Swarm Intelligence

Particle Swarm Optimization

Source of inspiration: birds flocking, fish schooling¹¹

Initialization:

- ▶ particles position: $x_i^j = U(a_j, b_j), \quad i = \overline{1, m}, j = \overline{1, n}$
- velocity: $v_i = 0$, $i = \overline{1, m}$
- ▶ global and personal best position: *gbest*, (*pbest*₁,...,*pbest*_m)

while \langle NOT termination \rangle do

- Evaluation: compute (f(x₁),..., f(x_m); update (gbest) and (pbest₁,...,pbest_m)
- Velocity update:

$$v_i \leftarrow \gamma v_i + \underbrace{c_1 \cdot rand(0, 1) \cdot (gbest - x_i)}_{\text{social term}} + \underbrace{c_2 \cdot rand(0, 1) \cdot (pbest_i - x_i)}_{\text{cognitive term}}, \quad i = \overline{1, m}$$

▶ Position update: $x_i \leftarrow x_i + v_i$, $i = \overline{1, m}$

¹¹J. Kennedy, R. Eberhart, Particle Swarm Optimization, 1995

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 00 Which method to choose?

Swarm Intelligence

Particle Swarm Optimization

Remarks:

- γ ∈ (0, 1), c₁ ∈ (0, 4), c₂ ∈ (0, 4) are control parameters
- use a directed mutation (guided by the best element in the swarm and best experience of each agent)
- no selection
- randomness ensured only by the coefficients of the difference-based terms

00 00000000 00 0000000 000000 000000000	th
00000000000000000000000000000000000000	

Which method to choose?

Swarm Intelligence

Motiv

Particle Swarm Optimization

/lotivation	Metaheuri
00000	000000
0000	000000
	000000

etaheuristics and nature as a source of inspiration ○○○○○○○○ ○○○○○○○○ ○○●○○○○○○○ How to deal with ... 00 00000 0000 00

《曰》《聞》《臣》《臣》 [] 臣

Which method to choose?

Swarm Intelligence

Ant Colony Optimization/ Systems

Source of inspiration:

- behaviour of ants when searching for food
- indirect communication between ants through pheromone trails (stigmergy)
- Main ideas:
 - describe the problem as search on a graph
 - several communicating agents (ants) are used to explore the search space and construct solutions in an incremental way
 - each agent visits several nodes in the graph using a probabilistic decision rule
 - good trajectories are enhanced

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choo
000000 0000	00000000 0000000 00000000	00 00000 0000 00	

Swarm Intelligence

Ant Colony Optimization/ Systems

Decision rule - transition probability from node i to node j for ant k

$$P_{ij}^{k} = \begin{cases} \frac{\tau_{ij}^{\alpha} \eta_{ij}^{\beta}}{\sum_{l \in N(k,i)} \tau_{il}^{\alpha} \eta_{il}^{\beta}} & j \in N(k,i), \text{not visited} \\ 0 & \text{otherwise} \end{cases}$$

 τ_{ij} - relevance of edge (i, j) based on previous experience (amount of pheromone)

 η_{ij} - relevance of edge (i, j) based on prior knowledge (heuristic incorporating particularities of the problem)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ●

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choo
000000 0000	00000000 0000000 00000000	00 00000 0000 00	

Swarm Intelligence

Ant Colony Optimization/ Systems

Decision rule - transition probability from node i to node j for ant k

$$\mathcal{P}_{ij}^{k} = \left\{ egin{array}{c} rac{ au_{ij}^{lpha} \eta_{ij}^{eta}}{\sum_{l \in \mathcal{N}(k,i)} au_{il}^{lpha} \eta_{il}^{eta}} & j \in \mathcal{N}(k,i), ext{not visited} \\ 0 & ext{otherwise} \end{array}
ight.$$

 τ_{ij} - relevance of edge (i,j) based on previous experience (amount of pheromone)

 η_{ij} - relevance of edge (i, j) based on prior knowledge (heuristic incorporating particularities of the problem)

m

Pheromone updating rule:
$$\tau_{ij}^{new} = \underbrace{(1-\rho)\tau_{ij}^{old}}_{\text{evaporation}} + \rho \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

- τ_{ii}^{k} contribution of ant k to the visited edge (i, j)
 - Evaporation: help forget previous bad decisions
 - Deposition: reinforce the influence of good decisions

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 0000 Which method to choose?

Swarm Intelligence

Ant Colony Optimization/ Systems

Overall structure

- 1: Initialize pheromone matrix (tau)
- 2: Initialize ants positions
- 3: for $g \leftarrow 1$, genMax do
- 4: for $s \leftarrow 1$, stepMax do
- 5: for $k \leftarrow 1, m$ do
- 6: move ant k
- 7: pheromone update (local)
- 8: end for
- 9: end for
- 10: evaluate the configuration
- 11: pheromone update (global)
- 12: end for

- each ant constructs a route
- $\eta_{ij} = 1/d(i,j)$

▲□ > ▲□ > ▲ □ > ▲ □ > _ □ □ -

 Δτ^k_{ij} related to the quality of the tour constructed by ant k

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with
000000	000000000	00
0000	0000000	00000
	0000000000	0000
		00

Which method to choose?

Swarm Intelligence

Ant Colony Optimization/ Systems

- 1: Initialize pheromone matrix (tau)
- 2: Initialize ants positions
- 3: for $g \leftarrow 1$, genMax do
- 4: for $s \leftarrow 1$, stepMax do
- 5: for $k \leftarrow 1, m$ do
- 6: move ant k
- 7: pheromone update (local)
- 8: end for
- 9: end for
- 10: pheromone update (global)
- 11: end for

- both the heuristic and pheromone information is associated to a node
- ► $\eta_{(x,y)} = |l(x-1,y-1) l(x+1,y+1)| + |l(x-1,y+1) l(x+1,y-1)| + |l(x-1,y) l(x+1,y)| + |l(x,y-1) l(x,y+1)|$
- ► the new position is searched amongst the neighbours in the image grid

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose
000000 0000	00000000 00000000 0000000000	00 00000 0000 00	

Swarm Intelligence

Differential Evolution

Problem to be solved: minimize $f : [a_1, b_1] \times \ldots \times [a_n, b_n] \rightarrow \mathbb{R}$

Main particularity: difference-based mutation¹²

Mutation:

$$y_i = x_{r_1} + F \cdot (x_{r_2} - x_{r_3}), \quad i = \overline{1, m}$$

Crossover:

$$z_i^j = \begin{cases} y_i^j & \text{if } rand(0,1) < CR \text{ or } j = j_0 \\ x_i^j & \text{otherwise} \end{cases}, \quad i = \overline{1, m}, j = \overline{1, m}$$

► Selection:

$$x_i(g+1) = \begin{cases} z_i & \text{if } f(z_i) \leq f(x_i(g)) \\ x_i & \text{if } f(z_i) > f(x_i(g)) \end{cases}, \quad i = \overline{1, m}$$

¹²R. Storn, K. Price, Differential Evolution, 1995

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

Motivation	
000000	
0000	

Metaheuristics and nature as a source of inspiration ○○○○○○○○ ○○○○○○○○○ ○○○○○○○●○ How to deal with ... 00 00000 0000 00 Which method to choose?

Swarm Intelligence

Differential Evolution

Decisions at design:

- mutation and crossover variants various explorative/exploitative abilities
- population size
- control parameters: scale factor (F), crossover parameters (CR)

イロト イポト イヨト ・ヨ

Remark: there exist various adaptive and (self)adaptive variants (e.g. jDE, JADE, SaDE, SHADE etc)

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose?
000000 0000	00000000 00000000 000000000	00 00000 0000 00	

Swarm Intelligence

Differential Evolution

DE taxonomy: DE/ base element/ no. of differences/ crossover type

- Base element:
 - random(x_{r1}): DE/rand/*/*
 - best (x_{*}): DE/best/*/*
 - combination of current and best elements (λx_{*} + (1 λ)x_i): DE/current-to-best/*/*
 - combination of random and best elements (λx_{*} + (1 λ)x_{r1}): DE/rand-to-best/*/*
 - combination of current and random elements (λx_i + (1 − λ)x_{r1}): DE/current-to-rand/*/*
- Number of differences: usually 1 (DE/*/1/*) or 2 (DE/*/2/*)
- Crossover type: binomial: DE/*/*/bin, exponential: DE/*/*/exp)

At least 20 DE variants ... currently the most effective are JADE, L-SHADE

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ のへ()・

Motivation 000000 0000	Metaheuristics and nature as a source of inspiration 000000000 00000000 0000000000	How to deal with 00 00000 0000 00	Which method to choose?
Outline			

Motivation

A simple segmentation approach Optimization problems in image processing

Metaheuristics and nature as a source of inspiration

Search mechanisms Evolutionary Algorithms Swarm Intelligence

How to deal with ...

- ... premature convergence
- ... multiple optimization criteria
- ... constraints
- ... many variables

Which method to choose?

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with	Which method to choose?
000000 0000	00000000 0000000 000000000	•0 00000 0000 00	
premature con	vergence		

... DE case

Example:

DE/rand/1/bin, Neumaier function, n = 2

Motivation	Metaheuristics and nature as a source of inspiration
000000 0000	000000000 0000000 000000000

... premature convergence

... DE case

- Main cause: loss of population diversity
- Solutions:
 - increase randomness
 - control the amount of perturbation (e.g.
 F > F_{low})
 - multiple subpopulations with limited communication between them

Which method to choose?

Motivation	Metaheuristics and nature as a source of inspiration	How to deal with
000000 0000	00000000 0000000 000000000	00 •0000 0000 00
multiple optim	ization criteria	

How to deal with multiple optimization criteria?

Motivation:

- the energy to be minimized in the case of segmentation based on deformable models contain several terms (e.g. $E(u) = \alpha E_{int}(u) + \beta E_{ext}(u)$) \rightarrow the appropriate weights depend on the image \rightarrow need for tuning ¹⁴
- clustering-based segmentation requires minimization of intra-cluster variance and maximization of inter-cluster variance (or optimization of connectedness and compactness)¹⁵

¹⁴J. Novo et al., Evolutionary multiobjective optimization for TANs, Patt Rec 2010

¹⁵C. Bong. Multi-objective nature-inspired clustering and classification techniques for image segmentation, ASOC 2011

IVIOLIVATION	
000000	
0000	

How to deal with ... ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

... multiple optimization criteria

How to deal with multiple optimization criteria?

Approach:

- if the components of the energy are conflicting then the problem can be formulated as a multiobjective optimization one
- multiobjective optimization = find the nondominated vectors (Pareto optimal set)
- ▶ concept of domination: $x \succ y$ (x dominates y with respect to r criteria $f_1,...,f_r$) if $f_k(x) \le f_k(y)$ for all $k = \overline{1,r}$ and there exists at least one $j \in \{1,...,k\}$ s.t. $f_j(x) < f_j(y)$

Motivation	Metaheuristics and nature as a source of inspiration
000000 0000	000000000 00000000 000000000

How to deal with ... 00000

Which method to choose?

... multiple optimization criteria

How to deal with multiple optimization criteria?

Which element is better?

- Strength-based score (SPEA*)
 - Strength of an element

$$S(x) = \sum_{y \in Dom(x)} s(y)$$

 $s(y) = \operatorname{card}(Dom(y))$

 $Dom(x) = \{y | y \succ x\}$

smaller S(x) means better x

Bio-inspired Metaheuristics

Motivation	Metaheuristics and nature as a source of inspira
000000 0000	000000000 00000000 000000000

How to deal with ... 00000

Which method to choose?

... multiple optimization criteria

How to deal with multiple optimization criteria?

Which element is better?

- Nondomination rank (NSGA*)
 - rank 1: elements of F₁ (nondominated) elements of a population P)
 - rank 2: elements of F₂ (nondominated) elements of $P \setminus F_1$
 - rank 3: elements of F₃ (nondominated elements of $P \setminus (F_1 \cup F_2)$
 - ► . . .
 - elements selected in increasing order of the ranks

Motivation	
000000	
0000	

How to deal with ... ○○ ○○○○● ○○○

イロト 不得 とくほと くほとう ほう

Which method to choose?

... multiple optimization criteria

How to deal with multiple optimization criteria?

Particularities of metaheuristics for multi-objective optimization

- Archiving: non-dominated elements are preserved in an archive
 - once a new element is added all those who are dominated are removed
 - the archive is periodically reorganized in order to keep its size under a given upper bound
- Diversity preserving: the approximation of the Pareto set should be diverse and it should "cover" in a uniform way the true Pareto set
 - crowding selection criteria: elements in less crowded regions are preferred

Motivation	
000000	
0000	

How to deal with ... 00 0000 0000 0000 Which method to choose?

... constraints

How to deal with constraints?

Bounding box constraints: $x \in [a, b]$

Repairing rules:

- iterate the reproduction operator until the offspring satisfies the constraint
- use a mirroring rule, i.e. when $x \notin [a, b]$ iterate:

$$x' = \begin{cases} b - (x - b) & \text{if } x > b \\ a + (a - x) & \text{if } x < a \end{cases}$$

until $x' \in [a, b]$.

select randomly an element in the search range

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

Motivation	
000000	
0000	

How to deal with ... ○○ ○○○○○ ○●○○ ○○ Which method to choose?

... constraints

How to deal with constraints?

Arbitrary constraints

Find x which minimizes f(x) subject to

- ▶ $g_i(x) \leq 0, \quad i = 1, \ldots, p$
- ▶ $h_j(x) = 0$, j = 1, ..., q (usually transformed in $|h_j(x)| < \epsilon$)

Penalty functions

minimize

$$lpha f(x) + eta \sum_{i=1}^p G(g_i(x)) + \gamma \sum_{j=1}^q |h_j(x)|$$
 $G(u) = \left\{egin{array}{c} 0 & u \leq 0 \ u & u > 0 \end{array}
ight.$

- Advantage: only the objective function is changed
- Disadvantage: it requires parameters

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

Motivation	
000000	
0000	

How to deal with ... ○○ ○○○○○ ○○●○ ○○ Which method to choose?

... constraints

How to deal with constraints?

Arbitrary constraints - feasibility rules

Deb's feasibility rule: use separate objective value (f) and penalty value (degree of constraint violation - ϕ) when compare two elements; x is better than x' if:

- x and x' are both feasible and f(x) < f(x')
- x is feasible and x' is not feasible
- ▶ x and x' are both unfeasible and $\phi(x) < \phi(x')$

Advantages:

- easy to implement and to combine with various search algorithms
- it does not require parameters

Disadvantages:

 separating the constraints and the objective function can lead to diversity loss (because they strongly favour the feasible solutions)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ のへ()・

Motivation	
000000	
0000	

How to deal with ... ○○ ○○○○ ○○○● ○○ Which method to choose?

... constraints

How to deal with constraints?

Arbitrary constraints - stochastic ranking

Main idea of stochastic ranking: decides randomly which selection criterion to use (objective or penalty function) x is better than x' if

 $\left\{ \begin{array}{l} ((\phi(x) = \phi(x') = 0) \text{ or } (\operatorname{rand}(0, 1) < P_f)) \text{ and } (f(x) < f(x'))) \\ \phi(x) < \phi(x') \end{array} \right.$

- Advantage: it limits the diversity loss (by accepting promising but unfeasible candidates)
- Disadvantage: it requires the specification of a parameter (P_f , e.g. $P_f = 0.45$)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

Motivation	
000000	
0000	

How to deal with ... ○○ ○○○○ ●○ Which method to choose?

... many variables

How to deal with large scale problems?

Cooperative coevolution: split the problem into smaller sub-problems

- a potential solution consists of several components
- evolve independently the population corresponding to each component (coevolution)

 \rightarrow assignment of the variables to components (correlated variables should be in the same component)^{16}

 each component is evaluated in the context of other components (cooperation)

 \rightarrow decision on the context selection (random vs. elitistic)

¹⁶ M. Omidvar et al., Cooperative co-evolution with delta grouping for large scale for non-separable function optimization, CEC 2010 🗠 54/5

Motivation	
000000	
00000	

How to deal with ... ○○ ○○○○ ○○○ ○○

Which method to choose?

... many variables

How to deal with large scale problems?

Parallelization models

- ▶ Objective function evaluation ⇒ master-slave model
 - the master process executes the iterative process
 - the slaves only evaluate the population elements (e.g. simulation of a process, costly computations)

Motivation	
000000	
0000	

How to deal with ... ○○ ○○○○ ○●

Which method to choose?

... many variables

How to deal with large scale problems?

Parallelization models

- ▶ Objective function evaluation ⇒ master-slave model
 - the master process executes the iterative process
 - the slaves only evaluate the population elements (e.g. simulation of a process, costly computations)
- ► Large size population ⇒ island model
 - the population is divided into several subpopulations on which the same or different algorithms are executed
 - the subpopulations communicate by transferring elements according to a given topology
| Motivation | |
|------------|--|
| 000000 | |
| 0000 | |

How to deal with ... ○○ ○○○○ ○● Which method to choose?

... many variables

How to deal with large scale problems?

Parallelization models

- ▶ Objective function evaluation ⇒ master-slave model
 - the master process executes the iterative process
 - the slaves only evaluate the population elements (e.g. simulation of a process, costly computations)
- ► Large size population ⇒ island model
 - the population is divided into several subpopulations on which the same or different algorithms are executed
 - the subpopulations communicate by transferring elements according to a given topology
- ► Costly reproduction operators ⇒ cellular model
 - each population element is assigned to a processor
 - the reproduction and selection are defined at a neighborhood level

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - のへで

Motivation 000000 0000	Metaheuristics and nature as a source of inspiration 000000000 00000000 000000000 000000	How to deal with 00 00000 0000 0000	Which method to choose?
• •			

Outline

Motivation

A simple segmentation approach Optimization problems in image processing

Metaheuristics and nature as a source of inspiration

Search mechanisms Evolutionary Algorithms Swarm Intelligence

How to deal with ..

- ... premature convergence
- ... multiple optimization criteria
- ... constraints
- ... many variables

Which method to choose?

Motivation
000000
0000

How to deal with ... 00 00000 0000 00 Which method to choose?

Summary: Pros and Cons

Pros:

- general purpose methods
- almost no requirements on the objective functions
- able to deal with multi-modal functions
- easy to be implemented
- implicit parallelism

Cons:

- mainly based on empirical validation
- limited theoretical results no guarantees concerning the behavior
- design based on (sometimes many) user decisions

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 00 Which method to choose?

Summary: Selection criteria

- appropriateness ability to deal with the problem characteristics
- competitiveness good behavior for similar problems
- simplicity easy to understand/ implement
- availability easy to find implementations

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

Motivation	
000000	
0000	

How to deal with ... 00 00000 0000 00

(日)

Which method to choose?

Summary: Selection criteria

- appropriateness ability to deal with the problem characteristics
- competitiveness good behavior for similar problems
- simplicity easy to understand/ implement
- availability easy to find implementations

Take home message: use bio-inspired metaheuristics only when traditional methods do not work or when there is limited knowledge on the particularities of the optimization problem