
Mathematical Foundations of Logic and Functional Programming
lecture notes

The aim of the course is to grasp the mathematical definition of the meaning (or, as we say,
the semantics) of programs in two paradigms: logic programming (a remarkable example is the
Prolog programming language) and functional programming (like Haskell or Scala).

Perhaps surprisingly, the mathematical framework for both of these paradigms is more or less
the same. Thus, the first part of the course (the one dealing with Logic Programming) is a bit
more involved in math – in the second part (dealing with Functional Programming) we will be
able to re-use most of the mathematic material covered in the first part.

Semantics of logic programs

As an introduction, we give some examples of logic programs and the intended semantics of
them. A logic program is simply a (not necessarily finite!) set of program clauses. That
is, there is no particular ordering of the clauses as in the case, say, imperative programs: a
program here is just a set of constraints, a set of logical formulas describing the world in which
the programming environment tries to derive facts, from a set of known facts, applying a set
of inference rules.

A program clause is a formula of the form p1 ∧ p2 ∧ . . . ∧ pn → q, where each pi and q are
atomic formulas. For those readers not involved with logic: in a structure, each of these pi and
q evaluate to either 0 (false) or 1 (true); the conjunction p1 ∧ p2 ∧ . . .∧ pn evaluates to 1 if and
only if all the pi are 1, that is, ∧ is the ,,minimum” operator1, and the implication F → G
evaluates to 1 if and only if the value of F is at most the value of G (that is, if F is true, then
G has to be true as well). Note that ∧ has a higher precedence than →: we have to evaluate
the body p1 ∧ . . . ∧ pn of the clause first, and then compare this value to the value of the head
q of the clause.

So a rule, or a formula of the form p1∧ . . .∧pn → q basically states that “if all of the statements
p1, p2, . . . , pn hold, then q holds as well”, and a program is simply a set of such rules.

It can happen that n = 0, that is, a clause can have an empty body which is written as
→ q. Note that the usage of the logical connectives and the direction of the implication is not
consistent in the literature: there are people writing q ← p1 ∧ . . . ∧ pn, or even q ← p1, . . . , pn;
in Prolog, these rules are written as q:-p1,...pn and when the head is empty, then it’s q.,
ending with a period instead of the :- sign but this is only a notational difference.

Now when the body is empty, that’s evaluated to 1 (for reasons becoming apparent later on),
thus if → q is true, then q is true as well. That’s why program clauses having an empty body
are called facts and clauses having a nonempty body are called inference rules, usually.

Consider the following example for a first-order logic program consisting of three clauses.

→ even(0)

even(x)→ odd(s(x))

odd(x)→ even(s(x))

1later on, we will be more precise with that and it’ll be called the infimum of the values

Szabolcs Iván, University of Szeged, Hungary 1 2016/11/26/20:04:00

Given a program, a structure is always some object which assigns “meanings” to the elementary
expressions present in the program; in the case of first-order logics, a structure consists of

• an universe, that is, some set A of objects;

• to each n-ary function symbol (i.e. a function symbol taking n inputs), there is an
associated function from An to A;

• to each n-ary predicate symbol there is an associated predicate, that is, a mapping from
An to {0, 1}, the set of truth values.

So the difference between functions and predicates is their output: each of these take n objects
as input, but while functions produce an object, predicates produce a truth value. For example,
when the set of objects is the set N = {0, 1, 2, . . .} of natural numbers (note: in this course, 0
counts as a natural number), then addition and multiplication are (binary) functions (mapping
pairs of naturals to naturals), the successor function n 7→ n+1 is also a (unary) function, while
equality, less-than and is-even are predicates: = (n,m) holds iff n == m (the equality relation
has this meaning in every possible structure), < (n,m) holds iff n < m (now the symbol < is
not necessarily defined in an arbitrary set: e.g. if we choose the set of complex numbers as
universe, then it’s not clear how should we interpret <), and isEven(n) is true if and only if n is
an even number. So the first two are binary predicates, while the last one is a unary predicate.

It also makes sense to use nullary functions and predicates: a nullary function is simply a
constant (mathematically, an A0 → A function, but such functions can be identified with their
unique image element), and a nullary predicate is a Boolean value. (This will be important
later on.)

Then, in turn, in the example above, even and odd have to be (unary) predicate symbols (since
their output is fed into an implication, so it has to be a Boolean value), while s and 0 have to be
(unary and nullary, respectively) function symbols (since their output is fed to some predicate,
thus it has to be an object as well). Also, x is an object-valued variable.

Continuing our example program above, we can interpret our program in the structure
where the universe is the set N of natural numbers; s is interpreted by the successor function
n 7→ n + 1; odd(n) holds for the number n if n is an odd number; and even(n) holds for n
if n is an even number. Also, let us interpret the constant 0 with the number 0. (Probably
this is the structure the programmer had in mind; but the virtual machine interpreting the
program has no clue about what the programmer had in mind, it can only see the function
and the predicate symbols and make formal, symbolic computations using them.)

Then the three rules state that i) 0 is an even number; ii) if x is an even number, then x+1
is an odd number; and iii) if x is an odd number, then x+ 1 is an even number. (Note that
the variables are implicitly quantified universally in a logic program.)

These statements hold in our structure, so this structure is a model of the program.

Another structure could be the one in which the universe is the set Z of the integers, 0 is
interpreted by the number 0, s is the negation x 7→ −x, even(n) holds if n ≥ 0, and odd(n)
holds if n ≤ 0. Then the clauses formalize the sentences i) 0 is a nonnegative number,
ii) if x is nonnegative, then −x is not positive and iii) if x is not positive, then −x is
nonnegative. All of the statements hold again in this structure, so this one is also a model
of the program.

Yet another structure is the one in which the universe is the set N of the natural numbers,

Szabolcs Iván, University of Szeged, Hungary 2 2016/11/26/20:04:00

s is the doubling function n 7→ 2n, even holds for even numbers, odd holds for the odd
numbers. Then the meaning of the clauses is i) 0 is even (which is true), ii) if x is even,
then 2x is odd (which is false), and iii) if x is odd, then 2x is even (which is true). Since
the second clause is not satisfied, this one is not a model of the program.

As we can see, there can be many models of a program. The question of semantics is the
following:

Among all the models of a program, which one should we choose?

The “chosen” model is called the semantics of a program.

Now the first transformation of a first-order logic program is called a Herbrand extension, which
turns the program into a propositional logic program – albeit the size of the resulting program
can be infinite (and it is infinite in most of the cases).

In order to define the Herbrand extension, we have to introduce the ground terms
first:

Definition: Ground term.

The set of ground terms is the least set such that

• constant symbols are ground terms,

• if f is an n-ary function symbol and t1, . . . , tn are ground terms, then f(t1, . . . , tn) is
a ground term.

Basically, any finite string that can be built up starting from constant symbols, applying func-
tion symbols (respecting their arity) is a ground term. For example, if f is a unary function
symbol, g is a binary function symbol, and 0 is a constant, then 0, f(0), f(f(0)), g(0, 0) and
g(f(0), f(g(0, 0))) are ground terms.

Definition: Herbrand extension.

Given a first-order logic program P , its Herbrand extension is the logic program we get by
substituting ground terms in place of its variables in every possible way.

Continuing our running example, the ground terms are 0, s(0), s(s(0)), and so on, in general
terms of the form sn(0) (as 0 is the only constant and s is the only (unary) function symbol).

Then the Herbrand extension of our first-order program contains the clauses

→ even(0)

even(0)→ odd(s(0))

odd(0)→ even(s(0))

even(s(0))→ odd(s(s(0)))

odd(s(0))→ even(s(s(0)))

even(s(s(0)))→ odd(s(s(s(0))))

. . .

Szabolcs Iván, University of Szeged, Hungary 3 2016/11/26/20:04:00

and much more, clearly an infinite number of them.

The reason why the Herbrand extension is preferred over the original logic program is that the
resulting clauses contain only ground formulas (that is, variable-free formulas) and thus the
atomic parts (that begin with a predicate) can be viewed simply as Boolean variables.

That is, in the example above, even(0), odd(0), even(s(0)) and so on are actually Boolean vari-
ables. Then, a model of the above program becomes simply an assignment of Boolean variables,
no fancy structures with some universe and interpretation for the function and predicate sym-
bols are needed. Instead, there might be an infinite set of Boolean variables and an infinite
number of clauses – which is still easier to manage in practice.

Also, the original program P and its Herbrand extension P ′ are tightly related: a model of
P can be transformed into a model of P ′ and vice versa, so if we can choose a model for the
Herbrand extension, we also choose a model for the original program as well.

Viewing the Herbrand extension of our running example, a possible model is the assignment
which assigns 1 to the variables even(0), odd(s(0)), even(s(s(0))), . . . , and 0 to the others,
that is, odd(sn(0)) is true if and only if n is odd and even(sn(0)) is true if and only if n
is even. (The reader is encouraged to check that this assignment indeed satisfies all the
clauses above.)

This (Boolean) assignment corresponds actually to one of the two models of the origi-
nal program we’ve already seen: to the one in which we set the universe as the natural
numbers and interpret s with the successor function, and even, odd are interpreted by the
corresponding parity checker predicates.

Also, if we set the universe to be a singleton {0}, and interpret s(0) = 0, even(0) = odd(0) =
1 (that is, both predicates hold true for the single element of the universe), then it’s also
a model of our first-order program; that model corresponds in the Herbrand extension to
the satisfying assignment in which we set all the variables to true.

And again, there are many models of the transformed program.

It suffices to give a semantics for propositional logic programs (containing possibly an
infinite number of clauses and variables) – first-order programs will get their semantics
from that via the Herbrand extension.

Also, it’s worth observing that the assignment which sets every variable to 1 is always a sat-
isfying assigment (since if the head of a clause is true, then the clause is satisfied), but it’s
probably not the one the programmer had in mind.

So our primary aim is the following:

Given a propositional logic program, that is, a (possibly infinite) set P of clauses of the
form

p1 ∧ p2 ∧ . . . ∧ pn → q,

where each pi and q are Boolean variables from a (possibly infinite) set Z, give a “good”
model of P as “the” semantics of P .

Now we’ll see that in more complicated cases (in particular, in the case of generalized logic
programs) it’s not always clear what makes a model “good”. . .

One common thing shared by the experts of the field is that

Szabolcs Iván, University of Szeged, Hungary 4 2016/11/26/20:04:00

A “good” semantics minimizes the truth values.

But in order to understand this sentence, we’ll need to mathematically define what’s exactly
“minimized” here.

In general, we’ll work with partially ordered sets, or posets for short:

Definition: Poset.

A relation ≤ over a set P is called a partial order on P if it satisfies all the following
conditions:

• x ≤ x for each x ∈ P (reflexivity);

• x ≤ y and y ≤ z imply x ≤ z for each x, y, z ∈ P (transitivity);

• if x ≤ y and y ≤ x hold for x, y ∈ P , then x = y (antisymmetry).

In this case (P,≤) is called a partially ordered set, or simply a poset.

If the poset additionally satisfies that for each x, y ∈ P we either have x ≤ y or y ≤ x
(that’s called dichotomy), then (P,≤) is a linearly ordered set.

For examples: the set N of naturals with their standard ordering ≤ is a linearly ordered set,
and so are the sets Z of integers, Q of rationals and R of reals.

When X is a set, then P (X) is the power set of X, which consists of the subsets of X; then,
(P (X),⊆) is a poset which is not linearly ordered (apart from the cases when |X| ≤ 1). For
example, we can depict the “Hasse diagram” P (X) with X = {p, q, r} as

∅

{p} {q} {r}

{p, q}{p, r}{q, r}

{p, q, r}

So, P (X) has eight elements in this case. In a Hasse diagram, x ≤ y holds if and only if y
can be reached from x via some “elevating” path in the diagram. (Of course there might be
problems with this interpretation if the poset is infinite as it’s frequently the case.) Clearly, this
P (X) is not linearly ordered, since e.g. {p} and {q} (and many other pairs) are incomparable
elements of the poset, neither of them being a subset of the other one.

Another type of posets is the poset denoted X⊥ where X is some set: in this poset, the
underlying set is X ∪ {⊥} for the new element ⊥, and the ordering is that ⊥ ≤ x for every
member x of the poset, and all the other elements are incomparable. For example, with
X = {1, 2, 3}, the poset X⊥ is

⊥

1 2 3

Szabolcs Iván, University of Szeged, Hungary 5 2016/11/26/20:04:00

which is also not a linearly ordered poset (again, apart from the cases when |X| ≤ 1).

We will frequently use two particular posets: the first of them is the poset 2 of the Boolean
values, with {0, 1} as the set and 0 ≤ 1 as the ordering, that is,

0

1

Clearly, 2 is a linearly ordered set (being essentially the same as – isomorphic to – P ({1}), the
power set of a singleton set and also as {1}⊥, the pointed poset of a singleton set).

The other poset will be the poset of assignments. Let Z be the set of (Boolean) variables (once
and for all – note that it’s a set, without any particular ordering!) Then, an assignment is a
function u : Z → 2 – a mapping from the set of variables to the set {0, 1}. In general, when
X and Y are sets, then XY denotes the set of Y → X functions, thus 2Z stands for the set of
assignments.

Since 2 is a poset, we can turn 2Z into as poset as well, with the pointwise ordering. In general,
when P is a poset and I is a set, then P I (again: this is the set of functions I → P) is a poset
with the ordering u ≤ v if and only if u(i) ≤ v(i) for all i ∈ I. That is, if u and v are functions,
then we say u ≤ v if the value u(i) (which is an element of the poset P) is at most the value
v(i) for all possible inputs i ∈ I.

Suppose Z = {p, q, r}. Then the assignments in 2Z can be represented as vectors of length
three: (x, y, z) represents the assignment where the value of p is x, the value of q is y and
the value of r is z.

Then, (0, 0, 1) ≤ (1, 0, 1) since≤ holds on all three coordinates; but for example, (0, 1, 0) and
(1, 0, 1) are incomparable elements (since the first one is greater on the second coordinate,
while the second one is greater on the first and the third coordinate). Hence the poset P I

is usually not linearly ordered, even if P is.

In the case Z = {p, q, r}, the Hasse diagram of the poset 2Z is

(0, 0, 0)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1)

which is the same as P (Z)! This is true in general: the posets 2Z and P (Z) are always
isomorphic under the mapping u 7→ {p ∈ Z : u(p) = 1}. We will stick to the notation 2Z

since at some point later we’ll use logics with three or four possible truth values and it will
be more convenient to use notations like 3Z instead of “hacking” three possible values into
the lattice of P (Z).

So, 2Z is a poset with the pointwise ordering.

Szabolcs Iván, University of Szeged, Hungary 6 2016/11/26/20:04:00

We also need the following definitions in order to understand the part of “minimizing” the
truth values:

Definition: Minimal and least elements.

If P is a poset and X ⊆ P is a subset of the poset, then x ∈ X is. . .

• a minimal element of X if ∀y ∈ X y ≤ x⇒ y = x; (there is no element of X which
is strictly less than x)

• the least element of X if ∀y ∈ X x ≤ y; (x is less than all the other elements of X)

Dually, x ∈ X is. . .

• a maximal element of X if ∀y ∈ X x ≤ y ⇒ y = x; (there is no element of X which
is strictly greater than x)

• the largest element of X if ∀y ∈ X y ≤ x; (x is larger than all the other elements of
X)

Note that in a subset X of P there can be many minimal elements. For example, if we have
the formula F = p ∨ q ∨ r, then its models are (1, 0, 0), (0, 1, 0), . . . , (1, 1, 1), basically every
member of 2{p,q,r} is a model of F but (0, 0, 0). Then, the set of the models of F has three
minimal elements, (1, 0, 0), (0, 1, 0) and (0, 0, 1) (since there is no model of F which is strictly
less than any of them), but there is no least model of F . Of course it can also happen that
a set X has no minimal elements at all (e.g. when our poset is Z and X is the set of all the
negative numbers).

But the least element is always unique (meaning if it exists, then there is only one):

Proposition

If P is a poset, X ⊆ P and x, y are least elements of X, then x = y.

Proof

Since x is a least element of X and y ∈ X, we get x ≤ y. Similarly, since y is a least
element of X and x ∈ X, we get y ≤ x. Applying antisymmetry we get x = y.

Also, if there is a least element x, then x is the only minimal element.

So the “minimizing the truth value” part can be formalized as

A “good” semantics of P is an assignment which is a minimal model (according to the
pointwise ordering on 2Z).

So we should construct an assignment u which satisfies all clauses of P and there is no other
model v 6= u of P with v ≤ u. This is what we mean by “minimizing truth values”. Hence,
for our example formula F = p ∨ q ∨ r (which is not a logic program, only a formula) a good
semantics would be one of (1, 0, 0), (0, 1, 0) and (0, 0, 1) but not the other four models.

Szabolcs Iván, University of Szeged, Hungary 7 2016/11/26/20:04:00

The function TP

On possible approach to seek for a minimal model is the following:

1. Start from an initial assignment, say (0, 0, . . . , 0), setting all the variables to 0.

2. Evaluate all the bodies.

3. In the next iteration, set a variable q to 1 if and only if there is a clause which has q as
its head and whose body is evaluated to 1 according to our current iteration.

4. Repeat Steps 2− 3 till all the clauses are satisfied.

As an example, when we have the following program

→ p p→ q p→ r p ∧ q → s

t→ s t→ q p ∧ t→ s

then in the first iteration (let us fix the order (p, q, r, s, t) in assignment) we start from the
assignment (0, 0, 0, 0, 0). Then we evaluate all the bodies: only the first rule → p has a
body with value 1 (since empty bodies always evaluate to 1), all the others are false. Since
the head of → p is p, p is set to 1 in the next iteration; all the other variables remain 0.
Then our new assignment is (1, 0, 0, 0, 0).

In the next step, the clauses → p, p→ q and p→ r have bodies evaluating to 1, thus their
heads, p, q and r are set to 1. Our new assignment (1, 1, 1, 0, 0).

In the next step, → p, p→ q, p→ r and p ∧ q → s have bodies evaluating to 1, thus their
heads, p, q, r and s are set to 1. Our new assignment is (1, 1, 1, 1, 0).

In the next step, t → s, t → q and p ∧ t → s still have bodies evaluating to 0, our new
assignment is still (1, 1, 1, 1, 0).

Actually, (1, 1, 1, 1, 0) is the least model of the program in the example, thus it’s the only
minimal model, meaning that this is the only possible semantics the program can have.

What we have just done: we iterated some function which took some assignment and produced
some other assignment. That is, a function from 2Z → 2Z .

Formalizing this function TP associated to the program P we get the following:

Definition: The function TP .

TP(u)(q) :=
∨

p1∧p2∧...∧pn→q∈P

u(p1) ∧ u(p2) ∧ . . . ∧ u(pn).

That is, if u ∈ 2Z is the current assignment, then TP(u) is the new assignment; the formula
says that the value of a variable q in the new assignment should be calculated as follows: first
we collect all the clauses in P having q as head, then we evaluate their bodies (that’s the
u(p1) ∧ . . . ∧ u(pn) part), and then take the disjunction of the values – if there is at least one
evaluated to 1 according to the current assignment, then the new value of q will be 1, otherwise
it’s set to 0.

Szabolcs Iván, University of Szeged, Hungary 8 2016/11/26/20:04:00

Suprema and infima

In the definition of the function TP we used the symbols
∨

and
∧

– the question is, how should
we interpret these operations when there is e.g. an infinite number of values inside the

∨
(that

is, when q appears as the head of infinitely many clauses)? Or the case when we have an empty
conjunction (when the body is empty) or an empty disjunction (when there are no clauses
having the head q)?

To give a mathematically supported answer to these questions, we recall the following no-
tions:

Definition: Lower and upper bounds, infima and suprema.

When P is a poset and X ⊆ P , then an element y ∈ P is. . .

• an upper bound of X, denoted X ≤ y, if ∀x ∈ X x ≤ y;

• the supremum of X, denoted y =
∨
X, if it is the least upper bound of X;

• a lower bound of X, denoted y ≤ X, if ∀x ∈ X y ≤ x;

• the infimum of X, denoted y =
∧
X, if it is the greatest lower bound of X.

It can happen for a set X ⊆ P that X has absolutely no lower or upper bounds, and also that
X does have upper bounds but there is no least upper bound etc.

Consider the pointed poset {1, 2, 3}⊥. There, the set {1, 2} has the lower bound ⊥, which is
its infimum as well, but there is no upper bound of this set (and thus it has no supremum).

For another example, considering the poset Q of rationals, equipped with their standard
ordering, and setting X = {x ∈ Q : x ≤

√
2} as the set of those rationals being smaller than√

2 (which is known to be an irrational number but it still can be compared to rationals of
course), then X has infinitely many upper bounds (any rational number larger than

√
2 is

an upper bound) but there is no least of them (among the rationals of course).

Also, if we take the poset N with the standard ordering, then any nonempty subset X ⊆ N
has a least element, so nonempty subsets have infima. Also, finite sets have suprema
(namely, their largest element), but infinite subsets of N have no upper bounds at all. If
we enrich N with the additional element ∞ and setting n ≤ ∞ for each n ∈ N, then the
resulting poset N∪ {∞} is so that every subset has a supremum (finite nonempty subsets’
suprema is their largest element; infinite subsets’ suprema is ∞ and for ∅, we will get back
to it in a moment).

It is worth to study the case X = ∅ separately. First, it holds for any y ∈ P that ∅ ≤ y since
the claim ∀x ∈ X x ≤ y is vacuously satisfied. Hence every member of the poset P is an upper
bound of ∅, thus the least upper bound has to be the least element of P .

That is,
∨
∅ is always the least element of the poset, which is usually denoted ⊥; if there is no

least element of P , then
∨
∅ does not exist. Similarly,

∧
∅ has to be the largest element of P .

Thus, the ∨ and ∧ operations on 2 are actually the supremum and infimum operators: ∨{0} =
∨∅ = 0 and ∨{1} = ∨{0, 1} = 1 and similarly, ∧{0} = ∧{0, 1} = 0 and ∧{1} = ∧∅ = 1. This
last one explains why should we evaluate empty bodies to 1: an empty conjunction has to have

Szabolcs Iván, University of Szeged, Hungary 9 2016/11/26/20:04:00

the value 1, and an empty disjunction has to have the value 0. Also, the definition also makes
it clear that an “infinitary disjunction” should be handled as follows: first, we collect all the
values appearing in the disjunction into a single set, and then we take the supremum of this
given set.

We write X ≤ Y if ∀x ∈ X∀y ∈ Y x ≤ y, that is, every member of Y is an upper bound of
every member of X.

The following fact is easy to check:

Proposition

Assume X ≤ Y for the subsets X, Y of P .

i) If
∧
Y exists, then X ≤

∧
Y ≤ Y .

ii) If
∨
X exists, then X ≤

∨
X ≤ Y .

iii) If both
∧
Y and

∨
X exist, then X ≤

∨
X ≤

∧
Y ≤ Y .

Proof

It is clear that X ≤
∨
X since

∨
X is an upper bound (namely, the least one) of X by

definition and similarly for
∧
Y ≤ Y .

Now let X ≤ Y and assume
∨
X exists. Then for each y ∈ Y , we have X ≤ y, that is, y

is an upper bound of X. Since
∨
X is the least upper bound of X, we get

∨
X ≤ y for

every y ∈ Y , which is the same as writing
∨
X ≤ Y .

Similarly, if
∧
Y exists, then each x ∈ X is a lower bound of Y , thus x ≤

∧
Y , implying

X ≤
∧
Y .

Now if both
∨
X and

∧
Y exist, then we already know

∨
X ≤ Y . Applying i) with {

∨
X}

playing the role of X there we get
∨
X ≤

∧
Y ≤ Y .

It is also clear that if one drops several non-maximal elements of a set (in such a way there is
at least a retained upper bound of any dropped element), then the set of upper bounds do not
change:

Proposition

Suppose X, Y are subsets of the poset P such that for any element x ∈ X there exists an
element y ∈ Y with x ≤ y.

Then any upper bound of Y is also an upper bound of X.

Proof

Assume Y ≤ z. We have to show that X ≤ z. For this, let x ∈ X be a member of X. By
the condition on X and Y , there is an element y ∈ Y with x ≤ y. Since Y ≤ z, we also
have y ≤ z, and by transitivity we get x ≤ z.

Thus, in particular, if P has the least element ⊥, and X ⊆ P , then the set of upper bounds of
X and X ∪ {⊥} coincide, and thus if

∨
X exists, then

∨
X =

∨
(X ∪ {⊥}). Indeed: since to

Szabolcs Iván, University of Szeged, Hungary 10 2016/11/26/20:04:00

each x ∈ X there is the same x in X ∪ {⊥}, this shows any upper bound of X ∪ {⊥} is also
an upper bound of X; and to each x ∈ X ∪ {⊥}, either x ∈ X or x = ⊥, and in the latter case
there is an upper bound of x in X, if X is nonempty. Finally, if X = ∅, then P is the set of
upper bounds of ∅ and {⊥} as well.

Another handy fact on taking suprema is that suprema can be rearranged:

Proposition

Let P be a poset, I and J be index sets, and to each i ∈ I, j ∈ J let xi,j ∈ P be an
element. Then ∨

i∈I

∨
j∈J

xi,j =
∨

i∈I,j∈J

xi,j,

provided all suprema on the left hand side exist.

Proof

Suppose y is an upper bound of the set {xi,j : i ∈ I, j ∈ J}. Then for each i ∈ I, y is an
upper bound of {xi,j : j ∈ J} (since this latter set is a subset of the previous one). Since∨
j∈J xi,j is the least upper bound of this set, we get

∨
j∈J xi,j ≤ y for each i ∈ I. Hence y is

an upper bound of these suprema and hence y is also an upper bound of their supremum,
that is,

∨
i∈I
∨
j∈J xi,j ≤ y. Thus,

∨
i∈I
∨
j∈J xi,j is a lower bound for each upper bound y

of {xi,j : i ∈ I, j ∈ J}, hence in particular∨
i∈I

∨
j∈J

xi,j ≤
∨

i∈I,j∈J

xi,j.

For the other direction, suppose y is an upper bound of the suprema
∨
j∈J xi,j for each

i ∈ I. Then for each i ∈ I and j′ ∈ J we have xi,j′ ≤
∨
j∈J xi,j since xi,j′ is a member

of the set whose supremum is taken on the right side. Thus, xi,j′ ≤ y as well (since y
is an upper bound of

∨
j∈J xi,j) for each i ∈ I, j′ ∈ J , implying y is an upper bound of

{xi,j : i ∈ I, j ∈ J} as well. Hence, since
∨
i∈I
∨
j∈J xi,j is the least upper bound, we get

by choosing y =
∨
i∈I,j∈J xi,j that ∨

i∈I,j∈J

xi,j ≤
∨
i∈I

∨
j∈J

xi,j

, thus the two values indeed coincide.

Thus in particular,
∨
i∈I
∨
j∈J xi,j =

∨
j∈J
∨
i∈I xi,j if all the suprema on both sides exist.

Complete lattices

As we have seen, suprema do not necessarily exist. But when they do, that’s a “nicely ordered”
poset deserving a name:

Definition: Complete lattice.

A poset P is called a complete lattice if every subset of P has a supremum.

Szabolcs Iván, University of Szeged, Hungary 11 2016/11/26/20:04:00

For example, 2 is a complete lattice (since we already enumerated all four subsets of 2 and
calculated the supremum of each one).

In particular, every complete lattice has a least element, usually denoted ⊥, since
∨
∅ also has

to exist since ∅ is a subset of the poset, and we already argued that
∨
∅ is always the least

element of the poset.

A nice property of complete lattices is that infima also exist:

Proposition

If P is a complete lattice, then each X ⊆ P also has an infimum as well.

Proof

Let X ⊆ P be a subset of the poset. Let Y = {y ∈ P : y ≤ X} be the set of the
lower bounds of X. Then Y ≤ X and since P is a complete lattice,

∨
Y exists. Thus,

Y ≤
∨
Y ≤ X. We claim that

∨
Y =

∧
X.

Indeed, since
∨
Y ≤ X, we have that

∨
Y is a lower bound of X. But then,

∨
Y ∈ Y

since Y contains all the lower bounds of X. Thus, since
∨
Y is an upper bound for Y , we

have that y ≤
∨
Y for each y ∈ Y , along with

∨
Y ∈ Y we get that

∨
Y is the greatest

element of Y , that is, the greatest lower bound of X, thus
∨
Y =

∧
X.

Of course,
∨
P is the greatest element of P , so a complete lattice always has a greatest element

which is usually denoted >.

Now since 2 is a complete lattice, the right-hand side of the function TP is well-defined for any
program P since it consists of evaluations, mapping 2Z to 2, then taking infima and suprema
within 2, which always exist.

Next, we show that 2Z , the poset of assigments, is also a complete lattice. We do it a bit more
general way:

Proposition

If P is a complete lattice, then so is P I for any index set I.

In particular, suprema are to taken pointwise: if U ⊆ P I is a set (of functions from I to
P), then their supremum is the function

∨
U : I → P with (

∨
U)(i) =

∨
u∈U u(i) for each

i ∈ I.

Proof

Let U be a subset of P I . Since P is a complete lattice, the suprema
∨
u∈U u(i) indeed exist

for each i ∈ I, since {u(i) : u ∈ U} is a subset of P which always have a supremum in
a complete lattice. So let u∗ be the function defined as above: u∗(i) :=

∨
u∈U u(i) for all

i ∈ I.

We claim that u∗ is indeed the least upper bound of U .

First we show that u∗ is an upper bound. Let u ∈ U , we have to show that u ≤ u∗. Since
P I is equipped with the pointwise ordering, this is equivalent to u(i) ≤ u∗(i) for each i ∈ I.
But this is clear since u∗(i) is the suprema of the set {v(i) : v ∈ U} and u(i) is a member
of this set since u ∈ U . Thus u∗ is indeed an upper bound.

Next we show that if v is an upper bound of U , then u∗ ≤ v. That is, we have to show

Szabolcs Iván, University of Szeged, Hungary 12 2016/11/26/20:04:00

u∗(i) ≤ v(i) for each i. Since U ≤ v, we get that u ≤ v for each u ∈ U , yielding u(i) ≤ v(i)
for each u ∈ U and i ∈ I.

This means that v(i) is an upper bound of {u(i) : u ∈ U} and since u∗(i) is the least upper
bound of this set, we get u∗(i) ≤ v(i) for each i ∈ I, hence u∗ ≤ v. Thus u∗ is indeed the
supremum of U .

Thus, 2Z is also a complete lattice. (And since 2Z is isomorphic to P (Z), so is each poset of
the form P (Z).)

Models of P are the pre-fixed points of TP

The reason why we study the function TP is its intimate relation to the set of models of the
program P :

Proposition

The assignment u ∈ 2Z is a model of P if and only if TP(u) ≤ u.

Proof

Let u ∈ 2Z be an assignment.

Then, u is not a model of P if and only if there is a clause p1 ∧ . . . ∧ pn → q ∈ P which is
false under u.

This is further equivalent to stating that there is a clause p1 ∧ . . . ∧ pn → q ∈ P with
u(p1) ∧ . . . ∧ u(pn) = 1 and u(q) = 0.

This is further equivalent to stating that there is a variable q and a clause p1 ∧ . . .∧ pn →
q ∈ P with u(p1) ∧ . . . ∧ u(pn) = 1 and u(q) = 0.

This is further equivalent to stating that there is a variable q such that
∨

p1∧...∧pn→q
u(p1) ∧

. . .∧u(pn) = 1 and u(q) = 0, since this supremum is 1 if and only if there is a clause whose
body evaluates to 1.

By the definition of TP , this is further equivalent to stating that there exists a variable q
such that TP(u)(q) = 1 and u(q) = 0. Since in 2 there are only these two possible truth
values, this is equivalent to stating that TP(u)(q) 6≤ u(q) for some variable q, which means
exactly that TP(u) 6≤ u, as needed.

The property “f(x) ≤ x” for some function f is again a nice property deserving a
name:

Definition: Pre-fixed, post-fixed and fixed points of a function.

When P is a poset and f : P → P is a function, then x ∈ P is. . .

• a pre-fixed point of f if f(x) ≤ x;

• a post-fixed point of f if x ≤ f(x);

Szabolcs Iván, University of Szeged, Hungary 13 2016/11/26/20:04:00

• a fixed point of f if x = f(x).

So once again, we can reformulate our aim:

If P is a logic program, then its semantics should be a minimal pre-fixed point of the
function TP .

Indeed: we know that the semantics should be a minimal model of P , and models of P are
precisely the pre-fixed points of TP .

In the following, we will show several smaller facts, which together give us a unique semantics
for a logic program:

1. We will show that TP is a so-called “continuous” function.

2. We will show that whenever f : P → P is a continuous function, with P being a complete
lattice, then f has a least pre-fixed point.

These two statements together with 2Z being a complete lattice give us the answer, namely:
the semantics of P has to be this least pre-fixed point of TP , since if there is a least pre-fixed
point, then it is the only minimal one.

Monotone and continuous functions

There are two important properties of functions, monotonicity and continuity, which give us
methods to calculate (pre-)fixed points.

Definition: Monotonicity.

A function f : P → Q from a poset P into a poset Q is monotone if x ≤ y implies
f(x) ≤ f(y).

The definition of continuity is somewhat more involved. Recall that from calculus, a function
f : R → R is called continuous, if the image of some limit is the same as the limit of the
images, i.e., limn→∞ f(xn) = f(limn→∞ xn), provided the sequence x1, x2, . . . is convergent.
Our definition of continuity is very similar to that one: in this field, suprema play the role of
limits, so image of the supremum should be the same of the supremum of the images. Instead
“convergence” we have “if the supremum exists”. Also, the set of real numbers forms a linear
order, which is not necessarily true for a poset. Thus, we include an addigional assumption,
requiring the “sequence” (rather, a set) to be linearly ordered.

The definition is the following:

Definition: Continuity.

A function f : P → Q from a poset P into a poset Q is continuous if whenever X ⊆ P is
so that

• X is nonempty,

• X is linearly ordered,

• and
∨
X exists,

Szabolcs Iván, University of Szeged, Hungary 14 2016/11/26/20:04:00

then f(
∨
X) =

∨
x∈X f(x).

We will shortly see that continuity implies monotonicity. The following observation comes
handy in proving this (and a couple of things later):

Proposition

When P is a poset and x, y ∈ P , then x ≤ y if and only if y =
∨
{x, y}.

Proof

Assume x ≤ y. Then by y ≤ y we have that y is an upper bound of {x, y}. It is also the
least upper bound since if z is also an upper bound in {x, y}, then in particular y ≤ z,
thus y is a lower bound of any upper bound. Thus, y =

∨
{x, y}.

For the reverse direction, if y =
∨
{x, y}, then y is an upper bound of {x, y}, in particular

x ≤ y.

Now we are ready to show that continuity is stronger:

Proposition

If a function f : P → Q is continuous, then it is also monotone.

Proof

Assume f : P → Q is continuous and let x ≤ y be elements of P . We have to show that
f(x) ≤ f(y). Now if x ≤ y, then {x, y} is a nonempty (it has either one or two elements,
one iff x = y), linearly ordered (by x ≤ y, each pair of elements are comparable of {x, y})
subset of P , and its supremum exists:

∨
{x, y} = y. Then, since f is continous,

f(y) = f(
∨
{x, y}) =

∨
{f(x), f(y)},

so f(y) is an upper bound of the set {f(x), f(y)}, implying f(x) ≤ f(y).

The Tarski Fixed Point Theorem

Having a monotone function f : P → P is good for various reasons: one of them is that the
image of a pre- or post-fixed point remains a pre- or post-fixed point:

Proposition

Assume f : P → P is a monotone function. If x is a pre- or post-fixed point of f , then so
is f(x).

Proof

From x ≤ f(x) we get that (applying monotonicity on both sides) f(x) ≤ f(f(x)), that
is, if x is a post-fixed point, then so is f(x).

Similarly, if x is a pre-fixed point, then f(x) ≤ x, which in turn implies by monotonicity

Szabolcs Iván, University of Szeged, Hungary 15 2016/11/26/20:04:00

that f(f(x)) ≤ f(x), thus f(x) is a pre-fixed point as well.

Given a poset P having a least element ⊥, it is always a post-fixed point, since ⊥ ≤ f(⊥),
whatever f(⊥) is (since ⊥ is the least element). Applying f on both sides we get f(⊥) ≤ f 2(⊥),
then again applying f we have f 2(⊥) ≤ f 3(⊥) and so on (more formally: from fn(⊥) ≤ fn+1(⊥)
we get fn+1(⊥) ≤ fn+2(⊥) by one application of f , and since the statement holds for n = 0,
we get by induction that it holds for all integers n ≥ 0).

Thus when f : P → P is monotone for the poset P having the least element ⊥, we have

⊥ ≤ f(⊥) ≤ f 2(⊥) ≤ f 3(⊥) ≤ . . .

(which is usually called an ω-chain).

We claim that the supremum of this chain is the least pre-fixed point of f , moreover, it is even
a fixed point:

Proposition: Tarski Fixed Point Theorem.

Suppose P is a poset having the least element ⊥, f : P → P is a continuous function and
the supremum x∗ of the set {fn(⊥) : n ≥ 0} exists.

Then x∗ is the least pre-fixed point of f , and moreover, it is also a fixed point. (So it is
the least fixed point as well, since fixed points are pre-fixed points themselves.)

Proof

First we show that the x∗ above is a lower bound for any pre-fixed point. So let x be a
pre-fixed point of f . We show that {fn(⊥) : n ≥ 0} ≤ x.

To show this, we have to prove that fn(⊥) ≤ x for each n ≥ 0, which can be done via
induction on n. For the base case n = 0 the statement holds since f 0(⊥) = ⊥, and ⊥ ≤ x,
whatever x is.

Assume the claim holds for n: fn(⊥) ≤ x. Since f is continuous, it is also monotone.
Hence we can apply f on both sides and get fn+1(⊥) ≤ f(x). But since x is a pre-fixed
point, we also have f(x) ≤ x, thus fn+1(⊥) ≤ x also holds, which proves that x is an
upper bound of {fn(⊥) : n ≥ 0}. Since x∗ is the least upper bound of this set, we get that
x∗ ≤ x, i.e., x∗ is a lower bound of any pre-fixed point.

Next we show that x∗ is a fixed point of f . We have already seen that {fn(⊥) : n ≥ 0}
is a linearly ordered (and of course nonempty) set, moreover, its supremum (that is, x∗)
exists. Thus, applying continuity of f we get

f(x∗) = f(
∨
{fn(⊥) : n ≥ 0}) =

∨
n≥0

f(fn(⊥)) =
∨
n≥0

fn+1(⊥)

=
∨
{f(⊥), f 2(⊥), . . .} =

∨
{⊥, f(⊥), f 2(⊥), . . .} = x∗,

so x∗ is indeed a fixed point.

(Note that in the last step we used the fact
∨
X =

∨
(X ∪ {⊥}) we have seen earlier.)

Szabolcs Iván, University of Szeged, Hungary 16 2016/11/26/20:04:00

Hence, if f : P → P is a continuous function with P being a complete lattice (in which case the
supremum above exists) then the least (pre)fixed point of f can be “computed” via a fixed-point
iteration: we start from the element ⊥, and repeatedly apply f on the result of the previous
step, finally we take the supremum of all these values (technically, this “computation” may not
terminate since we have to produce the infinite sequence ⊥, f(⊥), f 2(⊥),. . . first).

We have seen that the least pre-fixed point of the above f is a fixed point as well. This is true
in a more general setting:

Proposition

Assume f : P → P is a monotone function and x is a minimal pre-fixed point of f . Then
x is a fixed point of f .

Proof

Since x is a pre-fixed point, we have f(x) ≤ x. Since f is monotone, appyling f on both
sides we get f(f(x)) ≤ f(x). Thus, f(x) is also a pre-fixed point of f , moreover, f(x) ≤ x.
Since x is assumed to be a minimal pre-fixed point of f , it has to be the case f(x) = x,
that is, x is a fixed point.

TP is continuous

In this part we show that the function TP defined earlier is a continuous function. We’ll break
the proof in several parts.

Definition: Projections.

When P is a poset, I is some set, and i ∈ I, then the ith projection from P I to P is the
function πi : P I → P defined as

πi(u) := u(i).

That is, we evaluate the ith coordinate of the function u.

For example, π2(x, y, z) = y, π1(1, 0, 1) = 1 and πq(u) = u(q), when q ∈ Z and u ∈ 2Z . That is,
if u is a variable assignment, then a projection is simply the value of a single variable according
to the given assignment. Such guys u(pi) are building block of the definition of TP . And they
are continuous:

Proposition

Projections are continuous.

Proof

Let P be a poset, I be a set and i ∈ I. We want to show that πi : P I → P is continuous.
To this end, let U ⊆ P I be a nonempty, linearly ordered set of functions whose supremum
u∗ =

∨
U exists. We have to show πi(u

∗) =
∨
u∈U πi(u).

But this is clear, since we already know that in P I , suprema are to be taken pointwise,

Szabolcs Iván, University of Szeged, Hungary 17 2016/11/26/20:04:00

i.e.,

πi(u
∗) = u∗(i) = (

∨
U)(i) =

∨
u∈U

u(i) =
∨
u∈U

πi(u).

The next construct used when building up TP is called a target tupling. Basically, if we have
a set of functions fi : P → Q, i ∈ I for some index set I, then we can make one single
function of them, which outputs the “tuple” or “vector” containing all the results of the fi
functions:

Definition: Target tupling.

If P and Q are posets, I is some set and to each i ∈ I, fi : P → Q is a function from P to
Q, then their target tupling is the function 〈fi〉i∈I : P → QI defined as

〈fi〉i∈I(x)(i) = fi(x)

for each x ∈ P and i ∈ I.

For example, when we take the (binary) conjunction and disjunction ∧,∨ : 22 → 2, then their
target tupling in this order is the function 〈∧,∨〉 is a function from 22 into 22, defined as

〈∧,∨〉(x, y) = (x ∧ y, x ∨ y).

(Note that this function sorts its input as (0, 0) 7→ (0, 0), (1, 0) 7→ (0, 1), (0, 1) 7→ (0, 1) and
(1, 1) 7→ (1, 1).)

Whenever we have a function f : P → Qn for some integer n ≥ 0 (that is, a function that
outputs an n-ary vector), it can always be written as f = 〈f1, . . . , fn〉, the target tupling of n
functions, each fi being a function from P to Q: f1 computes the first coordinate of the output,
f2 computes the second, and so on. As in the previous example, the result of sorting two bits
is a pair of bits, the first is the smaller value (that’s the infimum, computed by ∧), the second
is the greater value (computed by ∨).

When we evaluate te body of a clause, first we compute the values u(p1), u(p2),. . . , u(pn), then
(say) arrange them to a vector of the form (u(p1), . . . , u(pn)) (that’s done by target tupling of
the projections), and after that we apply the n-ary conjunction function ∧n : 2n → 2.

In the next step we show that the function u 7→ (u(p1), . . . , u(pn)) is continuous:

Proposition

The target tupling of continuous functions is continuous.

Proof

Let fi : P → Q, i ∈ I be continuous functions and let f : P → QI stand for their target
tupling 〈fi〉i∈I .

Let X ⊆ P so that X is nonempty, linearly ordered and has the supremum x∗ =
∨
X.

We have to show that f(x∗) =
∨
x∈X f(x). Since f is a function from P to QI , these

values are functions from I to Q; thus the above equality holds if and only if f(x∗)(i) =
(
∨
x∈X f(x))(i).

From the definition of target tupling we have f(x∗)(i) = fi(x
∗), which further equals to

fi(
∨
X) =

∨
x∈X fi(x) since fi is continuous. Writing back the definition of target tupling

we get this is
∨
x∈X(f(x)(i)) which is the same as (

∨
x∈X f(x))(i), since in the poset QI

Szabolcs Iván, University of Szeged, Hungary 18 2016/11/26/20:04:00

suprema are taken pointwise.

In the next step we will apply the n-ary conjunction ∧n which is also continuous:

Proposition

The function ∧n : 2n → 2 is continuous for any n ≥ 0.

Proof

Let X ⊆ 2n be a nonempty, linearly ordered subset of 2n having the supremum x∗. We
have to show ∧n(x∗) =

∨
x∈X ∧n(x).

Since 2n itself is finite, X is finite as well. Thus, it’s a finite, nonempty, linearly ordered
set, hence it can be written as X = {x1, . . . , xk} with x1 ≤ x2 ≤ . . . ≤ xk. In particular,
it has a greatest element xk, thus x∗ = xk.

Since ∧n maps into 2, we only have to show that ∧n(xk) = 1 if and only if
∨
x∈X ∧n(x) = 1.

But that’s clear since ∧n(xk) = 1 iff xk = (1, 1, . . . , 1). Since xk is the largest element of
X, and the largest element of 2n as well, this is further equivalent to (1, 1, . . . , 1) ∈ X,
which in turn is equivalent to

∨
x∈X ∧n(x) = 1.

Now we know that the function u 7→ (u(p1), . . . , u(pn)) is continuous, and so is
(u(p1), . . . , u(pn)) 7→ u(p1) ∧ . . . ∧ u(pn). The function u 7→ u(p1) ∧ . . . ∧ u(pn) is the com-
position of these functions which also preserves continuity:

Proposition

Composition of continuous functions is also continuous.

That is, if f : P → Q and g : Q → R are continuous functions, then so is g ◦ f : P → R
defined as (g ◦ f)(x) = g(f(x)).

Proof

Let X ⊆ P be a nonempty, linearly ordered subset of P , having the supremum x∗. We
have to show that (g ◦ f)(x∗) =

∨
x∈X(g ◦ f)(x).

First, let us observe the subset f(X) = {f(x) : x ∈ X} of Q. Since X is nonempty, f(X)
is nonempty as well. Also, if y1, y2 ∈ f(X), then y1 = f(x1) for some x1 and y2 = f(x2)
for some x2. Since f is monotone, x1 ≤ x2 implies y1 = f(x1) ≤ f(x2) = y2, and similarly,
x2 ≤ x1 implies y2 ≤ y1. Thus, since each x1, x2 ∈ X are comparable in P (because X
is linearly ordered), each y1, y2 ∈ f(X) are also comparable in Q. Thus, f(X) is also a
nonempty, linearly ordered subset of Q.

Now we can proceed as

(g ◦ f)(x∗) = g(f(
∨

X)) , now applying continuity of f

= g(
∨
x∈X

f(x)) , now since {f(x) : x ∈ X} is nonempty,

linearly ordered, has a supremum, and g is continuous,

=
∨
x∈X

g(f(x)),

Szabolcs Iván, University of Szeged, Hungary 19 2016/11/26/20:04:00

which is exactly we need.

Thus, we have that the functions of the form u 7→ u(p1) ∧ . . . ∧ u(pn) are continuous. In the
definition of TP , the supremum of such functions is taken. This, again, preserves continu-
ity:

Proposition

If I is a set and to each i ∈ I, fi : P → Q is a function, then their supremum
∨
i∈I fi :

P → Q, defined as

(
∨
i∈I

fi)(x) =
∨
i∈I

(fi(x)),

if exists, it is continuous.

Proof

Note that the supremum of functions does not always exist. For example, when P = 2,
and Q is the pointed poset {1, 2}⊥, then if f1(0) = 1 and f2(0) = 2, then (f1 ∨ f2)(0)
should be the supremum of {f1(0), f2(0)}, which is {1, 2} but in {1, 2}⊥, that supremum
does not exist.

But in the current case, when Q is a complete lattice, the supremum always exists.

So assume X ⊆ P is a nonempty, linearly ordered set having the supremum x∗. We have
to show (

∨
i∈I fi)(x

∗) =
∨
x∈X(

∨
i∈I fi)(x). Applying the continuity of each fi we get

(
∨
i∈I

fi)(x
∗) =

∨
i∈I

∨
x∈X

fi(x)

and ∨
x∈X

(
∨
i∈I

fi)(x) =
∨
x∈X

∨
i∈I

fi(x)

by the definition of the supremum function, and these two values coincide as we have seen
already.

So far we have shown that all the functions of the form

u 7→
∨

p1∧...∧pn→q∈P

u(p1) ∧ . . . ∧ u(pn)

are continuous. These functions map from 2Z → 2. The function TP : 2Z → 2Z is actually the
target tupling of such functions! To each variable q ∈ Z we have a function of the above form,
and we arrange the results into a “tuple” indexed by Z (that is, we get a function Z → 2,
an assignment). Since we have already seen that the target tupling of continuous functions is
continuous, we get that TP is continuous as well.

Summary: Logic Programs

1. A logic program is a set P of clauses of the form p1 ∧ . . . ∧ pn → q with each pi and q
being Boolean variables drawn from a set Z. Both Z and the number of clauses in P can
be infinite.

Szabolcs Iván, University of Szeged, Hungary 20 2016/11/26/20:04:00

2. A model of the program P is an assignment u : Z → 2, where 2 is the set {0, 1} with the
ordering 0 ≤ 1 of truth values, which satisfies all the clauses of P . The set of assignments
is also denoted 2Z .

3. We associated a function TP to a program P , which transforms assignments into assign-
ments: the new value of a variable q is 1 if and only if there exists a clause whose body
is 1 according to the old assignment, and whose head is q.

4. We showed that TP is a “continuous function”.

5. We showed that 2Z is a “complete lattice”.

6. We showed that the models of P are exactly the “pre-fixed points” of TP .

7. We argued that we should seek for a “minimal” model of P .

8. We proved the Tarski Fixed Point Theorem which states that there is exactly one minimal
pre-fixed point of a continuous function f on a complete lattice; this minimal pre-fixed
point is actually a least pre-fixed point, moreover, it is also a fixed point as well and can
be constructed as the supremum of the sequence ⊥, f(⊥), f 2(⊥),. . . , where ⊥ denotes
the least element of the lattice.

9. Thus, there is only one choice for a “good” semantics of a program P : namely, we
start from the all-zero assignment ⊥, iterate TP and take the supremum of the resulting
sequence.

Summarizing the math results and introducing a name for this semantics,

To a logic program P , we associate the following function TP : 2Z → 2Z :

TP(u)(q) =
∨

p1∧...∧pn→q∈P

u(p1) ∧ . . . ∧ u(pn).

Then, the canonical semantics of P is ∨
n≥0

T nP(⊥)

with ⊥ being the all-zero assignment.

The canonical semantics is the least model of P . Moreover, it is additionally a fixed point
of TP . By the way, fixed points of TP are called supported models of P .

Szabolcs Iván, University of Szeged, Hungary 21 2016/11/26/20:04:00

Generalized Logic Programs

In this part we extend the framework developed in the previous part to generalized logic pro-
grams. Such a program is a (possibly infinite) set of clauses of the form

p1 ∧ p2 ∧ . . . ∧ pn ∧ ¬q1 ∧ ¬q2 ∧ . . . ∧ ¬qk → r,

where each pi, qj and r are variables, again drawn from a (possibly infinite) set Z. That is,
negated variables can appear in the body of a clause but the head is always a (positive) variable.

We want to retain most parts of the previous framework. So, we can define the function
TP : 2Z → 2Z similarly to the previous case:

TP(u)(r) =
∨

p1∧...∧pn∧¬q1∧...∧¬qk→r∈P

u(p1) ∧ . . . ∧ u(pn) ∧ ¬u(q1) ∧ . . . ∧ ¬u(qk).

Again, models of P are precisely the pre-fixed points of TP .

However, there are serious problems with continuity and even with monotonicity.

Consider the example program

¬p ∧ ¬q → r

¬q ∧ ¬r → p

¬p ∧ ¬r → q

Then, if we start from the assignment (0, 0, 0) (the ordering of the variables is p, q, r as in
the previous examples), then every body gets evaluated to 1 (as ¬0∧¬0 is 1), thus the new
value of all the variables is set to 1, that is, TP(0, 0, 0) = (1, 1, 1) which is a model of P , so
far so good.

But then, iterating TP once more, all the bodies are evaluated to 0 this time, thus each
variable is set to 0 again. That is, TP(1, 1, 1) = (0, 0, 0) which is not that good: this TP is
not a monotone function!

Another problem we face is that this program, viewed as the conjunction of its clauses, is
equivalent to the formula p∨q∨r – thus it has three minimal models as we have seen in one
of our starting examples, there is no least model. However, in this case these three minimal
models, (0, 0, 1), (0, 1, 0) and (1, 0, 0) are all fixed points of TP , so they are supported models
of P .

But, considering the even smaller program ¬p→ p, in that case TP(0) = 1 and TP(1) = 0,
thus the only model p = 1 is not a fixed point, it’s not a supported model.

So the main problems are: TP is not always monotone; it does not always have a least pre-fixed
point; it does not always have a fixed point at all.

The 4-valued logic

There are more options to resolve these issues. We choose the following path:

Szabolcs Iván, University of Szeged, Hungary 22 2016/11/26/20:04:00

Instead of the logical values 0 and 1, we assign intervals of truth values to the variables.

In general, when P is a poset, P 2 can be seen as the set of intervals of P , with (x, y) representing
the set {z : x ≤ z ≤ y} of elements of P between the two endpoints2.

That is,

Definition: Values of the 4-valued logic.

Elements of 4 = 2× 2 are denoted as follows:

• The element (0, 0) represents the set {0} “can be only false”, and is denoted f.

• The element (1, 1) represents the set {1} “can be only true”, and is denoted t.

• The element (0, 1) represents the set {0, 1} “unknown, can be both”, and is denoted
⊥.

• The element (1, 0) represents the empty set, “inconsistent, cannot be assigned”, and
is denoted >.

The first three elements are called the consistent elements of 4.

In general, an element (x, y) of P 2 for an arbitrary poset P is called consistent if x ≤ y.

We define two partial orders: the truth order ≤t and the precision order ≤p on P 2:

Definition: Truth order and precision order.

For a poset P we define the following partial orders ≤t and ≤p on P 2:

(x, y) ≤t (x′, y′) ⇔ x ≤ x′ and y ≤ y′

(x, y) ≤p (x′, y′) ⇔ x ≤ x′ and y′ ≤ y.

Basically, if x ≤ y denotes in P that y is “more true” than x, then (x, y) ≤t (x′, y′) denotes
(more or less) that the interval (x′, y′) is more true than the interval (x, y). For the order ≤p,
(x, y) ≤p (x′, y′) holds if the interval (x′, y′) is contained inside the interval (x, y), thus, in a
sense, (x′, y′) is a “more precise” interval than (x, y).

We will want to take suprema and infima of subsets of P 2 with respect to both orderings, hence
we have to use different notations for these operations in order to be distinguishable.

Definition: Infima and suprema in P 2.

In P 2,

•
∨

denotes the supremum operation with respect to ≤t;

•
∧

denotes the infimum operation with respect to ≤t;

•
⊕

denotes the supremum operation with respect to ≤p;

2Note that x and y are members of (x, y) in this formalism. In calculus, one writes [x, y] for intervals like
these

Szabolcs Iván, University of Szeged, Hungary 23 2016/11/26/20:04:00

•
⊗

denotes the infimum operation with respect to ≤p.

The following is clear3.

Proposition

When P is a poset and X = {(xi, yi) : i ∈ I} is a subset of P 2, then

•
∨
X =

(
∨ixi,∨iyi

)
,

•
∧
X =

(
∧ixi,∧iyi

)
,

•
⊕

X =
(
∨ixi,∧iyi

)
and

•
⊗

X =
(
∧ixi,∨iyi

)
.

Proof

The poset (P 2,≤t) is simply P 2 with the pointwise ordering, proving the first two items.
For the third item, (x∗, y∗) is an upper bound of X if (xi, yi) ≤p (x∗, y∗) for each i ∈ I,
that is, xi ≤ x∗ and y∗ ≤ yi for each i ∈ I. That is, if and only if x∗ is an upper bound of
the xi and y∗ is a lower bound of the yi. Hence

(
∨ixi,∧iyi

)
is an upper bound for X. Also,

if (x, y) is an upper bound of X, then {xi : i ∈ I} ≤ x, implying ∨ixi ≤ x and similarly,
y ≤ ∧iyi also holds, thus

(
∨ixi,∧iyi

)
is indeed the supremum with respect to ≤p. The

fourth item can be proven analogously.

Thus, if P is a complete lattice, then so are (P 2,≤t) and (P 2,≤p) (since in a complete lattice
all infima also exist, thus the right-hand sides of the previous Proposition are always defined).
That’s why structures of the form (P 2,≤t,≤p) are called bi-lattices.

Let us visualize the two orderings in 4 (using the aliases we introduced earlier: > for (1, 0), f
for (0, 0) etc):

f

t

⊥ >

≤t

⊥

f t

>

≤p

The ordering≤p makes clear why we use> for (1, 0) and⊥ for (0, 1): these are the greatest/least
elements of ≤p, respectively. Also, we use ∧ and ∨ for infimum and supremum with respect to
≤t since this makes t ∧ f = f and so on, so the “usual” semantics of ∨ and ∧ are retained for
these “point-like” intervals.

We already have the operations ∨ and ∧ within 4, now we’ll define negation on intervals.
But how should we do that? First, we should have ¬f = t and ¬t = f since we want to

3It would be even more clear if we introduced the product posets
∏
Pi and not only the special case P I . We

will see how it goes this way.

Szabolcs Iván, University of Szeged, Hungary 24 2016/11/26/20:04:00

extend the negation from 2 to 4. It also makes sense to define ¬⊥ = ⊥, since if we do not
know anything about a variable’s value (i.e. it can be either 0 or 1), then we do not know
anything about its negation. Similarly, it also makes sense to define ¬> = >, since if a value
is contradictionary, then so is its negation. It can be checked that the following definition
accomplishes this:

Definition: Negation on 4.

¬(x, y) = (¬y,¬x).

Then, we can define the following function ΦP : 4Z → 4Z as follows:

Definition: The function ΦP .

ΦP(u)(r) =
∨

p1∧...∧pn∧¬q1∧...∧¬qk→r∈P

u(p1) ∧ . . . ∧ u(pn) ∧ ¬u(q1) ∧ . . . ∧ ¬u(qk).

That is, syntactically the above function coincides with TP defined earlier. The difference
is the domain: while TP is a function over classical (binary) truth values, ΦP works with
assignments that assign intervals to each variable.

We have not defined the “truth table” for implication – it makes sense to define the value of
x → y as (¬x) ∨ y, the latter two operations being already defined for intervals. Or, it also
makes sense to set x → y to t if x ≤t y and f otherwise – both variants extend the classical
case. If we choose to do the latter, then again, pre-fixed points of ΦP , with respect to the truth
ordering ≤t, are exactly the models of P .

The current plan

We outline the steps we will make in order to have a semantics for generalized logic programs,
with assignments coming from 4Z :

1. We will transform ΦP to an equivalent form ΨP , which will compute the very same
function but which is easier to handle mathematically.

2. In particular, we will show that ΨP is a monotone function with respect to ≤p. It will
not be continuous, though.

3. We will prove the Kleene Fixed Point Theorem, stating that any monotone function
P → P has a least (pre)fixed point when P is a complete lattice. Moreover, this least
fixed point can be defined via some kind of fixed point iteration.

Then, we will call this least fixed point of ΨP the Kripke-Kleene semantics of the program P .
After that,

1. We will prove that the Kripke-Kleene semantics never has inconsistent values, so it’s
essentially a 3-valued model.

2. We will outline some problems with the Kripke-Kleene semantics: most notably, it min-
imizes only with respect to ≤p but not with respect to ≤t, which contradicts to the “a
good semantics minimizes the truth values” rule.

Szabolcs Iván, University of Szeged, Hungary 25 2016/11/26/20:04:00

3. We will introduce so-called stabilizer functions. Using these, we get from ΨP an “even
better” function, also having a least fixed point with respect to ≤p.

4. We will show that this least fixed point of the stabilizer function is also a fixed point of
ΨP which is also ≤t-minimal.

We will call this least fixed point the well-founded semantics of P , closing the part on Logic
Programming.

The function ΨP

In this section we convert our function ΦP , which is a 4Z → 4Z to another function ΨP , a
2Z × 2Z → 2Z × 2Z function. The intuition is the following: ΦP gets as input two separate
assignments, u and v, both coming from 2Z . These two assignment together determine an
interval-valued assignment in 4Z in the following way: for a variable q ∈ Z, u(q) gives the “left
end-point” of the interval, and v(q) gives the “right end-point” of the interval.

Also, the output value of ΨP(u, v) will be a pair (u′, v′) with u′ and v′ being assignments,
coming from 2Z : u′ will be the assignment computing the new left end-points, and v′ will be
the assignment computing the new right end-points.

Clearly, the function ΨP is basically the same as ΦP , only the domain is transformed into an
isomorphic one, from (2× 2)Z to 2Z × 2Z . But again, the difference is only that while in ΦP ,
the variables directly get an interval as value, in ΨP these intervals are decomposed to the two
end-points.

Since the ΨP we want to construct is a function from 2Z × 2Z to 2Z × 2Z , in particular, the
output of the function is a pair of assignments, ΨP is the target tupling of two functions: let us
call the function computing the new left end-points fP , and the function computing the new
right end-points gP . Then, fP and gP are 2Z × 2Z → 2Z functions.

Observing the function

ΦP(u)(r) =
∨

p1∧...∧pn∧¬q1∧...∧¬qk→r∈P

u(p1) ∧ . . . ∧ u(pn) ∧ ¬u(q1) ∧ . . . ∧ ¬u(qk),

how is the new left end-point of the interval assigned to r calculated? It’s the left end-point of
the interval ∨

p1∧...∧pn∧¬q1∧...∧¬qk→r∈P

u(p1) ∧ . . . ∧ u(pn) ∧ ¬u(q1) ∧ . . . ∧ ¬u(qk).

Since in P 2 we have seen that
∨
i∈I(xi, yi) is

∨
i∈I xi, we have to compute the left end-points of

the intervals
u(p1) ∧ . . . ∧ u(pn) ∧ ¬u(q1) ∧ . . . ∧ ¬u(qk)

and take their supremum. Also, the left end-point of ∧ of intervals is the ∧ of the left end-points
of the same intervals, so we have to take the set of left end-points of the intervals

u(p1), . . . , u(pn),¬u(q1), . . . ,¬u(qk)

and take their infimum. Now ΨP takes as input two functions (assignments from 2Z): u1 and
u2 such that u(p) = (u1(p), u2(p)) for each p ∈ Z. Thus, the left end-point of u(pi) is u1(pi)
for each 1 = 1, . . . , n. What’s the situation with the intervals of the form ¬u(qj)? Well, since

Szabolcs Iván, University of Szeged, Hungary 26 2016/11/26/20:04:00

u(qj) = (u1(qj), u2(qj)), we have that ¬u(qj) = (¬u2(qj),¬u1(qj)) (plugging in the definition of
negation in 4), hence the left end-point of ¬u(qj) is ¬u2(qj). Thus,

fP(u1, u2)(r) =
∨

p1∧...∧pn∧¬q1∧...∧¬qk→r∈P

u1(p1) ∧ . . . ∧ u1(pn) ∧ ¬u2(q1) ∧ . . . ∧ ¬u2(qk).

Using an analogous derivation for the right end-points we arrive to the following defini-
tion:

Definition: The function ΨP

Given a generalized logic program P , the function ΨP : 2Z × 2Z → 2Z × 2Z is defined as
ΨP = 〈fP , gP〉 with

fP(u1, u2)(r) =
∨

p1∧...∧pn∧¬q1∧...∧¬qk→r∈P

u1(p1) ∧ . . . ∧ u1(pn) ∧ ¬u2(q1) ∧ . . . ∧ ¬u2(qk)

and

gP(u1, u2)(r) =
∨

p1∧...∧pn∧¬q1∧...∧¬qk→r∈P

u2(p1) ∧ . . . ∧ u2(pn) ∧ ¬u1(q1) ∧ . . . ∧ ¬u1(qk).

Symmetric and approximation functions

Observing carefully the definitions of the functions fP and gP one can see that

fP(u1, u2) = gP(u2, u1)

which is again a nice enough property deserving a name:

Definition: Symmetric function.

A function f = 〈f1, f2〉 : P × P → P × P is symmetric if f1(x, y) = f2(y, x) for each
x, y ∈ P .

That is, if a function maps pairs into pairs, and swapping the input coordinates the output
coordinates also get swapped, then the function is called symmetric.

Thus, the function ΨP is symmetric.

Our current aim is to show that ΨP is also ≤p-monotone. That is, if (u, v) ≤p (u′, v′), then
ΨP(u, v) ≤p ΨP(u′, v′). (Note that this ≤p is the precision ordering on 2Z × 2Z , that is,
(u, v) ≤p (u′, v′) iff (u(q), v(q)) ≤p (u′(q), v′(q)) for each q ∈ Z. Technically, the precision
ordering ≤p is defined on 4 = 2 × 2, then it’s taken pointwise on 4Z , finally it’s transformed
by the isomorphism between 4Z and 2Z × 2Z .)

It turns out that it’s enough to show ≤p-monotonicity of fP since:

Proposition

A symmetric function f = 〈f1, f2〉 : P 2 → P 2 is ≤p-monotone if and only if so is f1.

Szabolcs Iván, University of Szeged, Hungary 27 2016/11/26/20:04:00

Proof

Note that f1 is a function from P 2 → P . For such functions, ≤p-monotonicity means that
if (x, y) ≤p (x′, y′), then f1(x, y) ≤ f1(x′, y′).

So assume f1 is ≤p-monotone and let (x, y) ≤p (x′, y′). Then,

f(x, y) = (f1(x, y), f2(x, y)) = (f1(x, y), f1(y, x)).

By ≤p-monotonicity of f1 and (x, y) ≤p (x′, y′) we get f1(x, y) ≤ f1(x′, y′). Also, (x, y) ≤p
(x′, y′) means x ≤ x′ and y′ ≤ y, thus it’s also the case that (y′, x′) ≤p (y, x). Again by
≤p-monotonicity of f1 we get f1(y′, x′) ≤ f1(y, x). But then,

(f1(x, y), f1(y, x)) ≤p (f1(x′, y′), f1(y′, x′)) = (f1(x′, y′), f2(x′, y′)) = f(x′, y′),

thus f is indeed ≤p-monotone.

For the other direction, assume f is ≤p-monotone and (x, y) ≤p (x′, y′). Then

(f1(x, y), f2(x, y)) = f(x, y) ≤p f(x′, y′) = (f1(x′, y′), f2(x′, y′)),

implying f1(x, y) ≤ f1(x′, y′) (and also that f2(x′, y′) ≤ f2(x, y)), that is, f1 is ≤p-
monotone.

Soon we will show that ΨP is not only symmetric, but also a ≤p-monotone function. But first,
let’s see why it’s so good to have such a function, a so-called approximation function:

Definition: Approximation function.

A function f : P 2 → P 2 is an approximation function if it is symmetric and ≤p-monotone.

Approximation functions are called this way since they “approximate” some function: namely,
these interval-interval functions are approximating the point-point function x 7→ f1(x, x). To
put it more precise:

Definition: Approximated function.

The f : P 2 → P 2 approximation function approximates the P → P function x 7→ f1(x, x).

Approximating means,

Proposition

If the function f : P 2 → P 2 approximates the function g : P → P , then f(x, x) =
(g(x), g(x)) for each x ∈ P .

In more general, if y ≤ x ≤ z (that is, x is contained within the interval (y, z)), then g(x)
is contained in f(y, z).

Proof

Clearly, f(x, x) = (f1(x, x), f2(x, x) = (f1(x, x), f1(x, x)) = (g(x), g(x)), this holds for any
symmetric function.

For the other statement, y ≤ x ≤ z implies (y, z) ≤p (x, x), by ≤p-monotonicity we get

Szabolcs Iván, University of Szeged, Hungary 28 2016/11/26/20:04:00

f(y, z) ≤p f(x, x) = (g(x), g(x)), that is, the point-like interval (g(x), g(x)) is contained in
f(y, z).

Thus, approximation functions map more precise inputs to more precise outputs (that’s what
≤p-monotonicity is stating) and output point-like intervals if the input is point-like (that’s
implied by symmetry).

We already know that ΨP = 〈fP , gP〉 is a symmetric function. We have not shown yet it’s also
≤p-monotone, but nevertheless, we can ask the following: if it’s an approximation function,
then what function does it approximate? Well, recalling that

fP(u1, u2)(r) =
∨

p1∧...∧pn∧¬q1∧...∧¬qk→r∈P

u1(p1) ∧ . . . ∧ u1(pn) ∧ ¬u2(q1) ∧ . . . ∧ ¬u2(qk)

we get that ΨP then approximates the function u 7→ fP(u, u), that is,

fP(u, u)(r) =
∨

p1∧...∧pn∧¬q1∧...∧¬qk→r∈P

u(p1) ∧ . . . ∧ u(pn) ∧ ¬u(q1) ∧ . . . ∧ ¬u(qk),

which is familiar. . . , yes, it’s the function TP we started with!

So, if ΨP is an approximation function, then it approximates TP .

This “sounds good”, since TP is deeply related to logic programs.

ΨP is ≤p-monotone

The problem with TP was that it’s not a monotone function, thus it offers no natural candidate
for a semantics (i.e. a least pre-fixed point).

In this section we show that the function ΨP is monotone, with respect to the ordering ≤p.
Again, we will build up our proof bottom-up, breaking it into several smaller claims.

Also, we already know that it suffices to show that fP is ≤p-monotone.

We start with the literal evaluations again. In this case (since negation is involved) we only
make the statement for the poset 2Z × 2Z .

Proposition

The evaluation functions (u1, u2) 7→ u1(p) and (u1, u2) 7→ ¬u2(p) are ≤p-monotone for each
p ∈ Z.

Proof

Assume (u1, u2) ≤p (u′1, u
′
2), that is, u1 ≤ u′1 and u′2 ≤ u2 and let p ∈ Z. Then, since the

ui are pointwise ordered, we have u1(p) ≤ u′1(p) and u′2(p) ≤ u2(p). The former implies
(u1, u2) 7→ u1(p) is ≤p-monotone. From the latter, u′2(p) ≤ u2(p) implies ¬u2(p) ≤ ¬u′2(p),
hence (u1, u2) 7→ ¬u2(p) is also ≤p-monotone.

Then, we again build up fP step by step the same way as before (during the proof of the continu-
ity of TP). But for monotonicity we don’t have to deal with finite infima separately:

Szabolcs Iván, University of Szeged, Hungary 29 2016/11/26/20:04:00

Proposition

If I is some index set and fi : P → Q are monotone functions, then
∧
i∈I
fi and

∨
i∈I
fi, if they

exist, are monotone as well.

Proof

Note that there is no need here to emphasize ≤p-monotonicity: the argument works be-
tween arbitrary posets.

Let x ≤ y. Then for each i ∈ I we have fi(x) ≤ fi(y). Thus, any upper bound of
{fi(y) : i ∈ I} is also an upper bound of {fi(x) : i ∈ I} (implying (

∨
fi)(x) =

∨
fi(x) ≤∨

fi(y) = (
∨
fi)(y)) and similarly, any lower bound of {fi(x) : i ∈ I} is also a lower bound

of {fi(y) : i ∈ I}, implying (
∧
fi)(x) =

∧
fi(x) ≤

∧
fi(y) = (

∧
fi)(y).

Of course if Q is a complete lattice, as in our case when Q = 2Z , the supremum/infimum of
such functions always exists.

Then, we have that the functions of the form

fP,r(u1, u2) =
∨

p1∧...∧pn∧¬q1∧...∧¬qk→r∈P

u1(p1) ∧ . . . ∧ u1(pn) ∧ ¬u2(q1) ∧ . . . ∧ ¬u2(qk)

are ≤p-monotone, since the literal evaluations are monotone, evaluating the body of the clause
is then an infimum of ≤p-monotone functions, which is then ≤p-monotone as well, and then,
taking the supremum of such functions is ≤p-monotone again.

Then again, fP is the target tupling of such functions fP,r, which also preserves monotonicity
(and again, it does not matter that the ordering in question is ≤p or not):

Proposition

The target tupling of monotone functions is monotone.

Proof

Let I be an index set and fi : P → Q be monotone functions for each i ∈ I. We claim
that the functions f = 〈fi〉i∈I : P → QI is monotone. So let x ≤ y be members of P , we
have to show that f(x) ≤ f(y). Since f(x) and f(y) are from QI , i.e., functions ordered
pointwise, f(x) ≤ f(y) if and only if f(x)(i) ≤ f(y)(i) holds for each i ∈ I. But that’s
fi(x) ≤ fi(y) by the definition fo target tupling, which holds since each fi is assumed to
be monotone.

Thus,

Proposition

ΨP is ≤p-monotone.

Hence, it’s an approximation function since it’s symmetric as well.

Szabolcs Iván, University of Szeged, Hungary 30 2016/11/26/20:04:00

Well-orderings and well-founded induction

Now we know that ΨP is a monotone function (with respect to ≤p). Our current aim is to show
that monotone functions always have least (pre)fixed points (in complete lattices, that is).

In order to achieve this, we have to meet a proof method called well-founded induction, which
is a generalization of induction over the naturals we’ve already used (in the proof of the Tarski
Fixed Point Theorem, which is not a coincidence since the Kleene Fixed Point Theorem gener-
alizes the Tarski one, by generalizing the induction method).

But first, let us see an example for a monotone function in some complete lattice. Let the poset
be P = R≥0 ∪ {∞}, the nonnegative real numbers equipped with a ∞ element. We have seen
that it’s a complete lattice.

For the function, we write each real number in the form r = n− α, where n is an integer and
0 < α ≤ 1. That is, 0.5 = 1− 0.5, 1.7 = 2− 0.3, 10.3 = 11− 0.7, and, for integers, 2 = 3− 1,
42 = 43−1 and so on – n is the next strictly greater integer and α is the difference n− r. Then
we define the function f as

f(n− α) = n− α

2
f(∞) =∞

For example, f(0) = 0.5, f(0.5) = 0.75, f(42.2) = 42.6 and so on.

Let’s try to produce a fixed point of f by the iteration method we already seen in the proof of
the Tarski Fixed Point Theorem: start from 0, the least element of the poset, iterate f and “at
the end”, take the supremum:

x0 = 0 x1 = f(0) = 0.5 x2 = f(0.5) = 0.75 x3 = f(0.75) = 0.875

and so on, in general xn = 1− 1
2n

, thus the supremum of this sequence is
∨
n≥0

xn = 1.

If f were continuous, we would have f(1) = 1 and we were done. However, f(1) = 1.5, so we
are not done yet. . . for reasons becoming apparent later, let us refer to this element

∨
n≥0

xn as

xω. Then, iterating further we get

xω = 1 xω+1 = f(1) = 1.5 xω+2 = f(1.5) = 1.75 xω+3 = f(1.75) = 1.875

and so on, and after another infinitely many iterations we take again a supremum and get
a value, henceforth called xω×2 = 2. Then again, xω×2+1 = 2.5, xω×2+2 = 2.75, and so on,
iterating infinitely many times, taking supremum puts us into xω×3 = 3 and so on.

And after infinitely many infinite iterations we arrive to xω×ω = ∞, so we “finally” reach the
unique (pre)fixed point of f .

This might seem obscure at first4, but

it works

and it always works. Basically we just start from ⊥, apply f and take suprema “in some
structured manner” and hack our way to the least (pre)fixed point of f .

Now for this “structured manner” we have to know a little more about well-orderings and
well-founded induction.

4for those readers who have never done that before

Szabolcs Iván, University of Szeged, Hungary 31 2016/11/26/20:04:00

Definition: Well-ordering.

A strict linear order (P,<) is a well-ordering if there is no infinite (strictly) descending
chain

. . . < x3 < x2 < x1 < x0

in P .

If we have a well-ordered set, then we are able to do well-founded induction:

Proposition: Well-founded induction.

Assume (P,<) is a well-ordering and that X ⊆ P is a set such that for any element x ∈ P ,
if all the elements y < x strictly less than x are in X, then so is x.

Then X = P .

Writing the statement in a bit more formal way:

∀x((∀y(y < x → x ∈ X))→ x ∈ X)

implies X = P .

Proof

Assume X satisfies the above property and X 6= P . Then there is some x0 /∈ X. Since x0

is not in X, there has to be some element x1 < x0 also not in X (since otherwise every
element y < x0 is in X, thus, by the condition, x0 ∈ X as well). Repeating this argument
we get that there also exists some x2 < x1 not in X and so on, and we get an infinite
descending chain, which contradicts to P being well-ordered.

In our example, we did not index our sequence x0, x1, x2, . . . by only the natural numbers, but
also by “something else” we called ω, ω + 8, ω × 2 and so on.

It turns out that we indexed our sequence with ordinals, another set theoretic construction.
(We counted up to the ordinal ω2, which is still a fairly small ordinal – there are many more
ordinals much larger than that.)

Ordinals have two nice properties why it is good to index sequences by them5:

• Any set of ordinals is well-ordered. (Thus, we can do well-founded induction on the
sequence.)

• It does not matter how large the cardinality of a set X is, there is always an ordinal α
which is “larger” than X in the following sense: the set {β : β < α} of ordinals which
are less than α has a larger cardinality than X. (Thus, we can count up to pretty much
anything using ordinals. Even to uncountably infinite and more.)

Ordinals

In this section we define the (von Neumann) ordinals themselves. Basically, an ordinal is a set
of sets, satisfying some additional properties (which ensure that the collection of ordinals is
well-ordered).

5assuming ZFC, for those who are interested in the math details

Szabolcs Iván, University of Szeged, Hungary 32 2016/11/26/20:04:00

Definition: Ordinal.

An ordinal is a set α of sets, satisfying the following properties:

• It is transitive: if β ∈ α and γ ∈ β, then γ ∈ α as well.

• The elements of α are well-ordered with respect to the ∈ relation.

To put the second condition more explicit: if x ∈ y and y ∈ z for x, y, z ∈ α, then x ∈ z
(transitivity); x /∈ x for each x ∈ α (irreflexivity); for each x, y ∈ α, exactly one of x ∈ y,
y ∈ x or x = y has to hold, moreover, there is no infinite sequence x1, x2, . . . ∈ α such that
. . . ∈ x3 ∈ x2 ∈ x1.

In particular, if α is an ordinal, then α /∈ α, since if α ∈ α, then α (as an element of α) violates
the irreflexivity condition.

For example, the empty set ∅ is an ordinal (and is usually denoted 0). Also, {∅}, the set
containing the empty set is an ordinal: transitivity is OK, since α = {∅}, there is only one
β ∈ α, namely, β = ∅ and there is no γ ∈ ∅. Also, for {∅} being well-ordered it suffices to check
irreflexivity, which holds since ∅ /∈ ∅. The ordinal {∅} is usually denoted 1.

Another ordinal is {∅, {∅}} – that is, the two-element set, having the two previous ordinals 0
and 1 as elements. We could also write {0, 1} for this ordinal, and call it 2. This ordinal 2 is
transitive since ∅ ∈ {∅} ∈ 2, and ∅ ∈ 2 as well, and its two elements are well-ordered: ∅ ∈ {∅},
or 0 ∈ 1 if we prefer to write it this way.

Similarly, we can define 3 = {0, 1, 2}, 4 = {0, 1, 2, 3} and so on – these are ordinals (and actually
this is how the natural numbers are defined within set theory).

Basically, we get n+ 1 as n ∪ {n}. This works in general:

Definition: α + 1.

If α is an ordinal, let α + 1 denote the set α ∪ {α}.

Proposition

If α is an ordinal, then so is α + 1.

Proof

First we show that α+ 1 is transitive. Let γ ∈ β ∈ α+ 1. Then, either β ∈ α or β = α. In
the former case, since α is transitive, from γ ∈ β ∈ α we get γ ∈ α, thus γ ∈ α∪{α} = α+1
as well. In the latter case, when β = α, we have γ ∈ β = α, thus γ ∈ α ∪ {α} = α + 1 as
well.

Now we show that α + 1 is well-ordered by ∈.

For irreflexivity, let β ∈ α+ 1. If β ∈ α, then β /∈ β since α is well-ordered by ∈. If β = α,
then we know that β /∈ β, since α is an ordinal. Thus, ∈ is irreflexive over α + 1.

For transitivity, let β1, β2, β3 ∈ α+1 be so that β1 ∈ β2 and β2 ∈ β3. If neither of them is α,
then they are in α as well which is well-ordered by ∈. If β3 = α, then we have β1 ∈ β2 ∈ α
which implies β1 ∈ α since α is transitive. If β2 = α and thus β3 6= α (otherwise it would
be the case α ∈ α) then we have β3 ∈ α, thus β3 ∈ α and α ∈ β3 both hold which is a
contradiction, since by the transitivity of α we get then α ∈ α. Similarly, β1 = α also gives

Szabolcs Iván, University of Szeged, Hungary 33 2016/11/26/20:04:00

us a contradiction, since then β2 ∈ α and α ∈ β2 both hold, thus α ∈ α by transitivity of
α.

For trichotomy, let β, γ ∈ α + 1. If both of them are in α, then either β ∈ γ, γ ∈ β or
β = γ since α is well-ordered. Otherwise, if β = γ = α then they are equal; if β = α and
γ 6= α, then γ ∈ α; and if γ = α and β 6= α, then β ∈ α.

Finally, α+1 is well-ordered by ∈. Assume there is an infinite descending chain . . . ∈ β2 ∈
β1 ∈ β0 with each βi being a member of α+ 1. Then if βi = α, then i = 0, since otherwise
α ∈ βi−1 which is in turn a member of α + 1, thus it’s either α or a member of α – both
cases imply α ∈ α which cannot happen. Thus, . . . ∈ β2 ∈ β1 is an infinite descending
chain in α which is a contradiction since α is well-ordered by ∈.

In the previous examples all the elements of ordinals were ordinals themselves. This is not a
coincidence:

Proposition

Elements of ordinals are ordinals.

Proof

Let α be an ordinal and β ∈ α. By transitivity, all the elements of β are elements of α as
well, thus they are also well-ordered by ∈. (It is clear that any sub-ordering of a well-order
is a well-order.)

We still have to show that β is transitive, so let δ ∈ γ ∈ β. By α being transitive we get
from γ ∈ β ∈ α that γ ∈ α, which in turn implies by δ ∈ γ ∈ α and again the transitivity
of α that δ ∈ α as well. Thus, since α is well-ordered by ∈, and β, δ are two elements
of α, either β = δ, or β ∈ δ, or δ ∈ β has to hold. Now by δ ∈ γ ∈ β, each of them
being a member of α which is well-ordered by ∈, β = δ cannot happen (that would violate
irreflexivity). Also, β ∈ δ cannot happen (applying transitivity we would get β ∈ β,
violating irreflexivity again). Thus it has to be the case δ ∈ β, so β is indeed a transitive
set.

Also, in the above constructions for the finite ordinals we had that the “initial part” of an
ordinal (say, {0, 1} within 4 = {0, 1, 2, 3}) was also an ordinal (in this case, 2). This is again
not a coincidence:

Definition: Initial segment of an ordinal.

A subset X of an ordinal α is called an initial segment of α if whenever β ∈ X and γ ∈ β,
then also γ ∈ X.

That is, an initial segment is “closed downwards” with respect to ∈. Or, equivalently, it is a
transitive subset of an ordinal.

Proposition

If X is an initial segment of an ordinal, then either X ∈ α (and thus X is an ordinal), or
X = α.

Szabolcs Iván, University of Szeged, Hungary 34 2016/11/26/20:04:00

Proof

First we show that X is an ordinal. X is transitive by definition. Also, since X is a subset
of α and α is well-ordered by ∈, we have that X is also well-ordered by ∈.

Assume X 6= α. Then there is some element β ∈ α−X. Since ∈ is a well-ordering on α, we
have either x ∈ β or β ∈ x or β = x for each x ∈ X. But since X is transitive, β ∈ x ∈ X
would imply β ∈ X, a contradiction; thus, since β = x is also not an option (as x ∈ X
but β /∈ X), we have x ∈ β for all x ∈ X. That is, if X is a transitive subset of α, then
either X = α or X ⊆ β for some β ∈ α, that is, a transitive subset of some ordinal β ∈ α.
Let us set β0 = β and for each integer n ≥ 0, let βn+1 ∈ βn be an ordinal with X ⊆ βn+1

if such an ordinal exists. Note that since β0 ∈ α and βn+1 ∈ βn ∈ α implies βn+1 ∈ α by
transitivity of α, we have each βn is a member of α. Now since α is well-ordered, there
is no infinite descending chain of such β’s, thus at some point we get X = βn, thus X is
indeed an element of α.

The above claim is good since it helps proving that ordinals are well-ordered:

Proposition

Any set of ordinals is well-ordered by ∈.

Proof

We know that α /∈ α for any ordinal α, so irreflexivity is fine. Also, if γ ∈ β ∈ α for the
ordinals α, β, γ, then by the transitivity of α we get γ ∈ α, proving that ∈ is transitive
among ordinals.

For trichotomy, we use the previous proposition on initial segments. Let α and β be
ordinals, α 6= β.

Then γ = α∩β is transitive, since if ε ∈ δ ∈ γ, then by γ ⊆ α we get ε ∈ δ ∈ α, thus ε ∈ α
by transitivity of α; and similarly by ε ∈ δ ∈ β we also have ε ∈ β, thus ε ∈ α ∩ β = γ,
proving transitivity of γ.

Hence, by the above proposition we get that either γ ∈ α or γ = α, and either γ ∈ β or
γ = β. Now assume γ ∈ α and γ ∈ β both hold. Then γ ∈ α ∩ β = γ, which cannot
happen since γ is an ordinal. Thus the following cases can hold:

• γ ∈ α and γ = β. In this case β ∈ α.

• γ = α and γ ∈ β. In this case α ∈ β.

• γ = α and γ = β. In this case α = β.

So ∈ is trichotome over ordinals.

Finally, assume there is an infinite descending chain . . . ∈ α2 ∈ α1 ∈ α0 of ordinals. Then
by the transitivity of α0 we get that every αn with n ≥ 1 is a member of α0: α1 ∈ α0 by
definition, and applying induction we have that if αn ∈ α0, then by αn+1 ∈ αn and the
transitivity of α0 we get αn+1 ∈ α0. But then α0 is not well-ordered by ∈, a contradiction.

From now on we will use the notation α < β instead of α ∈ β when it is the ordering among
the ordinals that matters.

Szabolcs Iván, University of Szeged, Hungary 35 2016/11/26/20:04:00

At this point it might be unclear whether there are ordinals at all that are not those of the
form n for n ≥ 0, but there are.

Proposition

Assume X = {αi : i ∈ I} is a set of ordinals. Then the union α =
⋃
i∈I αi is an ordinal, and

is the supremum of this set (with respect to the well-ordering < defined between ordinals).

Proof

The set X either has a largest element or not. If it has a largest element β, then for each
γ ∈ X, γ 6= β we have γ < β, that is, γ ∈ β implying γ ⊆ β since β is transitive. Hence
in that case the union is β, clearly still an ordinal, and it is indeed the supremum of this
set, being its largest element.

Now assume X does not have a largest element.

Then for each i ∈ I we have αi ∈ α since αi < αj for some j ∈ I, and α is the union of all
the αj, hence αi ∈ α as well. Thus, if α is an ordinal, then it is an upper bound of X.

To see that α is an ordinal, let γ ∈ β ∈ α. Since α is the union of the sets αi, β ∈ αi holds
for some i ∈ I, hence by transitivity of αi we get γ ∈ αi, thus γ ∈ α as well. Thus, α is a
transitive set.

To see that α is well-ordered by ∈, we check all the properties. Assume x, y, z ∈ α. Then
x ∈ αi, y ∈ αj and z ∈ αk for some i, j, k ∈ I. Since any set of ordinals is well-ordered by
∈, there is a greatest element in the set {αi, αj, αj}, let it be αt. Then by transitivity we
get x, y, z ∈ αt. Thus, since αt is well-ordered by ∈, we get that x /∈ x, x ∈ y and y ∈ z
imply x ∈ z and exactly one of x ∈ y, y ∈ x or x = y holds. Thus α is strictly linearly
ordered by ∈. Now assume there is an infinite descending chain . . . < x2 < x1 < x0 of
elements of α. Then since α is the union of the αi sets, x0 ∈ αi for some i ∈ I. By
transitivity of αi we get that xn+1 ∈ xn ∈ αi implies xn+1 ∈ αi, thus in that case αi also
contains an infinite descending chain, which is a contradiction since αi is also well-ordered
by ∈.

Hence, α is an upper bound of the ordinals αi. Now assume β is also an upper bound.
Then by αi < β for each i ∈ I, that is, αi ∈ β and β being transitive implies αi ⊆ β for
each i ∈ I. Thus, their union α is also a subset of β. Moreover, α is transitive, thus either
α = β, or α ∈ β, that is, α < β, thus α is indeed the supremum of the set X of ordinals.

Hence, ω = {0, 1, 2, . . .} is an ordinal. (This is the same ω as the one we used previously for
indexing.)

We have seen two constructions for constructing larger ordinals from smaller ones: the con-
struction α 7→ α + 1 and taking union of a set of ordinals. The following proposition states
that these are essentially the only methods for constructing ordinals.

Proposition

Every ordinal α is either a successor ordinal, that is, an ordinal of the form β + 1, or a
limit ordinal, that is, an ordinal of the form

∨
β<α

β.

Szabolcs Iván, University of Szeged, Hungary 36 2016/11/26/20:04:00

Proof

We know that α is well-ordered by ∈, which is the ordering relation among ordinals and
elements of α are ordinals as well.

Now either α has a largest element with respect to ∈, or it does not have. If β is the
largest element of α, then α = β + 1. Indeed, since β ∈ α and α is transitive, α contains
all the members of β, that is, β ⊆ α. Moreover, if γ ∈ α − β, then either γ ∈ β, β ∈ γ or
β = γ; now since γ ∈ α − β, the case γ ∈ β is ruled out; since β is the largest element of
α, the case β ∈ γ is also ruled out, thus if γ ∈ α − β, then γ = β, which means precisely
that α = β + 1.

Now assume α does not have a largest element with respect to ∈. Then by transitivity,
each member β ∈ α is a subset of α, that is, β < α implies β ⊆ α, thus

⋃
β<α β ⊆ α.

Also, for each element γ ∈ α there is an ordinal β ∈ α with γ < β (since no γ is a largest
element of α), hence each element γ of α is a member of some β < α, hence α itself is a
subset of their union: α ⊆

⋃
β<α β, and these two statements together imply α =

⋃
β<α β.

It is also clear that α is the supremum of the set {β : β < α} in this case. (Note that
β < α is β ∈ α here, thus the latter set is α itself.)

Technically, 0 =
∨
∅ is often not viewed as a limit ordinal but as a separate case, that is, there

are three types of ordinals: zero, successor ordinals and limit (nonzero) ordinals, and these
three cases are mutually exclusive.

Also, α + 1 is denoted this way by a reason:

Proposition

Let α < β be ordinals. Then α + 1 ≤ β.

Proof

Since < is trichotome over the ordinals, we have either α+ 1 = β, α+ 1 < β or β < α+ 1.
But if β < α + 1, that is, β ∈ α ∪ {α}, then either β ∈ α (i.e. β < α) or β = α, both
contradicting to α < β. Hence, α + 1 ≤ β.

Summarizing some properties of ordinals we get:

• 0 is an ordinal.

• There is a well-ordering relation < over the ordinals.

• For each ordinal α, there is an ordinal denoted α + 1.

• It holds that α < α + 1 and for each α < β we have α + 1 ≤ β.

• For any ordinal α, the collection of ordinals smaller than α is a set6.

• For every ordinal α, one of the following three mutually exclusive cases hold:

– α = 0.

6Actually, this set is α itself.

Szabolcs Iván, University of Szeged, Hungary 37 2016/11/26/20:04:00

– α = β + 1 for some ordinal β.

– α is a nonzero limit ordinal, that is, α =
∨
β<α

β.

These will be enough to show that a monotone function over a complete lattice always has a
least pre-fixed point.

The Kleene Fixed Point Theorem

As the collection of the ordinals is well-ordered, we can do well-founded induction over the
ordinals, e.g., defining a sequence, indexed by ordinals, within some set P , where each element
is defined based on the earlier elements of the sequence.

Proposition: Kleene Fixed Point Theorem.

Let P be a complete lattice and f : P → P be a monotone function. We define to each
ordinal α the following element xα of P : x0 = ⊥; if α = β + 1 is a successor ordinal, then
xα = f(xβ) and if α =

∨
β<α

β is a nonzero limit ordinal, then let xα =
∨
β<α

xβ.

Then, for some ordinal α, xα is the least (pre)fixed point of f .

In the proof we will use well-founded induction.

Proof

Let X ⊆ P be the set of those elements occurring in the sequence above (i.e. x ∈ X if and
only if x = xα for some ordinal α). Then X contains ⊥, since x0 = ⊥, and if x ∈ X, then
f(x) ∈ X as well (since if x = xα, then f(x) = xα+1 by definition).

Also, each xα is a post-fixed point of f , which can be shown via well-founded induction.
For α = 0 we have xα = ⊥ which is a post-fixed point. For successor ordinals α = β + 1,
if xβ is a post-fixed point, then xα = f(xβ) is also a post-fixed point since monotone
functions transform post-fixed points into post-fixed points. For limit non-zero ordinals
α =

∨
β<α β, we have that a supremum of post-fixed points is still a post-fixed point. To

see that, let Y ⊆ P be a set of post-fixed points. Then for each y ∈ Y we have y ≤
∨
Y ,

thus by monotonicity we get y ≤ f(y) ≤ f(
∨
Y), that is, f(

∨
Y) is an upper bound for Y

while
∨
Y is the least upper bound, so

∨
Y ≤ f(

∨
Y), the supremum is also a post-fixed

point.

We also claim that
∨
X ∈ X, that is, X has a greatest element. To see this, let us fix to

each x ∈ X an ordinal α(x) with x = xα(x) and let α be the supremum of these ordinals
(as it’s the supremum of a set of ordinals, α is also an ordinal). To circumvent a case
analysis, let γ be a limit ordinal larger than α (such ordinal exists, e.g. the supremum
of the ordinals α, α + 1, α + 2,. . .) Then xγ =

∨
β<γ

xβ and since each x ∈ X appears as

x = xα(x) for some α(x) < γ, we get that {xβ : β < γ} is X. Hence, xγ =
∨
X and since

γ is an ordinal,
∨
X ∈ X, that is, X has a largest element x = xγ.

But then xγ is still a post-fixed point of f , thus xγ ≤ f(xγ) = xγ+1 which is also in X since
γ + 1 is also an ordinal. But since xγ is the largest element of X, we have that xγ+1 ≤ xγ
as well, thus xγ = xγ+1 = f(xγ), hence xγ is a fixed point of f .

It remains to show that xγ is the least pre-fixed point. We show by well-founded induction

Szabolcs Iván, University of Szeged, Hungary 38 2016/11/26/20:04:00

that whenever x is a pre-fixed point of f , and α is an ordinal, then xα ≤ x.

For α = 0 the claim holds, since x0 = ⊥ ≤ x for any x ∈ P .

If α = β + 1 is a successor ordinal, then by induction we have xβ ≤ x. By monotonicity of
f we get xα = xβ+1 = f(xβ) ≤ f(x) but since x is a pre-fixed point, we also have f(x) ≤ x,
implying xα ≤ x.

Finally, if α =
∨
β<α β is a limit ordinal, then by the induction hypothesis each xβ with

β < α is a lower bound of x, that is, x is an upper bound of the set {xβ : β < α}. Since
xα =

∨
β<α xβ is the least upper bound, we get xα ≤ x also in this case.

Hence, xγ is the least (pre)fixed point of f for some ordinal γ. (And for each ordinal δ > γ,
xδ = xγ from that point.)

Thus, the function ΨP always have a least (pre)fixed point with respect to the ordering ≤p.
This fixed point is called the Kripke-Kleene semantics of P .

The Kripke-Kleene semantics is consistent

We have seen that ΨP is an approximation function (that is, ≤p-monotone and symmetric).
Such functions always have a least (pre)fixed point due to the Kleene theorem. In this part we
show that this fixed point is consistent.

First, we show that the Kleene iteration produces a linearly ordered set.

Proposition

Let P be a poset with a least element ⊥ and f : P → P a monotone function such that
the sequence

• xα = ⊥ for α = 0,

• xα = f(xβ) for successor ordinals α = β + 1,

• xα =
∨
β<α xβ for limit ordinals α =

∨
β<α β

is well-defined for each ordinal α.

Then if β < α, then xβ ≤ xα, thus the set {xα ∈ P : α is an ordinal} is a linearly ordered
subset of P .

Proof

Let α be an ordinal. We apply well-founded induction on α So assume the claim holds for
each ordinal less than α, that is, whenever γ < δ < α, then xγ ≤ xδ.

We distinguish three cases according to whether α is 0, a successor or a limit ordinal.

Suppose α = 0. Then there is no ordinal β < α, so the claim is vacuously satisfied.

Suppose α = β + 1 is a successor ordinal and let γ < α be some smaller ordinal. Then
either γ = β or γ < β since there are no ordinals between β and α = β + 1. If γ = β, then
xβ ≤ f(xβ) = xα, since each member of the sequence is a post-fixed point of f . If γ < β,
then applying the induction hypothesis on γ < βα we get xγ ≤ xβ, thus by xβ ≤ xα we

Szabolcs Iván, University of Szeged, Hungary 39 2016/11/26/20:04:00

get xγ ≤ xα as well.

Finally, suppose α =
∨
β<α β is a limit ordinal. Then for each γ < α we have xγ ≤∨

β<α xβ = xα since xγ is a member of the set {xβ : β < α} and xα is an upper bound of
this set.

If the ordering in question is ≤p on P 2 for some complete lattice P , then the following propo-
sition is helpful:

Proposition

Assume U ⊆ P 2 is a set of consistent pairs, linearly ordered with respect to ≤p. Then⊕
U is consistent as well.

Equivalently, one can read the above proposition as “the consistent pairs in P 2 form a complete
poset”. Not a complete lattice, though, as e.g.

⊕
{(0, 0), (1, 1)} is (0 ∨ 1, 0 ∧ 1) = (1, 0) which

is inconsistent. But this is due to the fact that (0, 0) and (1, 1) are incomparable with respect
to ≤p.

Proof

Let U = {(xi, yi) : i ∈ I} be a linearly ordered subset of P 2 (with respect to ≤p). Let X
denote the set {xi : i ∈ I} and Y denote {yi : i ∈ I}. Then

⊕
U =

(∨
X,
∧
Y). We have

to show
∨
X ≤

∧
Y , which is implied by X ≤ Y . So let xi ∈ X and yj ∈ Y , we show

xi ≤ yj. Since U is linearly ordered, we either have (xi, yi) ≤p (xj, yj) or the other way
around.

If (xi, yi) ≤p (xj, yj), then xi ≤ xj (by ≤p) and xj ≤ yj (since (xj, yj) is consistent), thus
xi ≤ yj.

If (xj, yj) ≤p (xi, yi), then xi ≤ yi (by consistency of (xi, yi)) and yi ≤ yj (by ≤p), thus
xi ≤ yj.

Hence X ≤ Y , thus indeed
∨
X ≤

∧
Y , hence

⊕
U is indeed consistent.

Now we are ready to show consistency of the ≤p-least (pre)fixed point of an approximation
function:

Proposition

Assume f is an approximation function on P 2 for a complete poset P . Then the least
(pre)fixed point of f (with respect to ≤p) is consistent.

Proof

We show that each member xα of the Kleene iteration sequence is consistent. Since the
least (pre)fixed point of f also has this form, it is consistent as well. We apply well-founded
induction on α.

For α = 0, the claim holds since in that case, xα = (⊥,>) is the ≤p-minimal element of
P 2 which is consistent since ⊥ ≤ >.

For successor ordinals α = β+ 1, we have that xβ = (x1
β, x

2
β) is consistent by the induction

hypothesis. Then,

f(xβ) = (f1(x1
β, x

2
β), f2(x1

β, x
2
β)) = (f1(x1

β, x
2
β), f1(x2

β, x
1
β))

Szabolcs Iván, University of Szeged, Hungary 40 2016/11/26/20:04:00

by symmetry of f . Now since f is an approximation function, f1 is ≤p-monotone and
from x1

β ≤ x2β we get that (x1
β, x

2
β) ≤p (x2

β, x
1
β), thus f1(x1

β, x
2
β) ≤ f1(x2

β, x
1
β) hence xα is

consistent as well.

For limit ordinals α =
∨
β<α β we have xα =

⊕
β<α xβ. Applying the induction hypothesis

we get that each xβ is consistent, hence xα is a ≤p-supremum of consistent pairs, hence it
is consistent as well by the previous proposition.

Thus, summarizing the results so far on generalized logic programs:

Given a generalized logic program P , we have so far

• defined a function ΦP : 4Z → 4Z , similar to TP but using 4-valued logic;

• rewritten this function to ΨP : 2Z × 2Z → 2Z × 2Z , which is mathematically easier
to handle but still the same function (modulo isomorphism on the domain);

• have shown this function to be an approximation function, that is, ≤p-monotone and
symmetric;

• have shown that monotone functions always have a least (pre)fixed point on a com-
plete poset;

• have shown that the least (pre)fixed point with respect to ≤p of any approximation
function is consistent.

Thus, the Kripke-Kleene semantics can give us a unique model. But there are some problems
with it.

An example

Let us consider the following generalized (first-order) logic program:

→ p ¬p→ q(0) q(x)→ q(s(x)) q(x)→ r r → s r ∧ s→ t

As the ground terms are 0, s(0), s(s(0)), etc, writing qn in place of q(sn(0)) we get the Herbrand
extension

→ p ¬p→ q0 q0 → q1 q0 → r r → s r ∧ s→ t

q1 → q2 q1 → r

q2 → q3 q2 → r

q3 → q4 q3 → r

Szabolcs Iván, University of Szeged, Hungary 41 2016/11/26/20:04:00

and so on. Writing out ΦP explicitly for each variable we get

ΦP (u)(p) = t

ΦP (u)(q0) = ¬u(p)

ΦP (u)(qn+1) = u(qn)

ΦP (u)(r) =
∨
n≥0

u(qn)

ΦP (u)(s) = u(r)

ΦP (u)(t) = u(r) ∧ u(s).

Then, moving on with the Kleene iteration, we have to start from the ≤p-least element, that
is, u0(z) = ⊥ for each variable z ∈ Z. Then, during the iteration steps we get

step p q0 q1 q2 q3 q4 q5 . . . r s t
0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥
1 t ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥
2 t f ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥
3 t f f ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥
4 t f f f ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥
5 t f f f f ⊥ ⊥ . . . ⊥ ⊥ ⊥
6 t f f f f f ⊥ . . . ⊥ ⊥ ⊥
n t q0, . . . , qn−2 are f, the rest is ⊥ ⊥ ⊥ ⊥
ω t f f f f f f . . . ⊥ ⊥ ⊥

ω + 1 t f f f f f f . . . f ⊥ ⊥
ω + 2 t f f f f f f . . . f f f

which is a fixed point of ΦP , thus the Kripke-Kleene semantics for this particular program P
sets p to t, and everything else to f (and ω + 2 steps are actually needed in order to reach this
particular fixed point via iteration).

Problems with the Kripke-Kleene semantics

Let us consider the following (negation-free) program P :

→ p p→ q p ∧ q → r p ∧ s→ t u→ t

Then, the Kleene iteration on P goes as

step p q r s t u
0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
1 t ⊥ ⊥ ⊥ ⊥ f
2 t t ⊥ ⊥ ⊥ f
3 t t t ⊥ ⊥ f
4 t t t ⊥ ⊥ f

Szabolcs Iván, University of Szeged, Hungary 42 2016/11/26/20:04:00

that is, we reach the least fixed point in step 3, while the canonical semantics, that is, iterating
TP goes as

step p q r s t u
0 f f f f f f
1 t f f f f f
2 t t f f f f
3 t t t f f f
4 t t t f f f

(if we identify 0 with (0, 0) = f and 1 with (1, 1) = t when iterating TP).

That is, if uK denotes the Kripke-Kleene semantics of P and uC denotes the canonical semantics
of P , then we have uK 6= uC ! More precisely, we have uK ≤p uC and uC ≤t uK . In other
words:

• The Kripke-Kleene semantics is not necessarily the same as the canonical semantics
for (negation-free) logic programs.

• The Kripke-Kleene semantics does not always minimize the truth values.

Since we already argued that the canonical semantics is “the” good semantics of negation-free
logic programs, and also, our first rule is that we want to have a ≤t-minimal model as semantics,
we have to modify the Kripke-Kleene semantics to suit our needs better.

Stabilizer functions and well-founded fixed points

When f : P → P is a monotone function on a complete poset P , let µx.f(x) denote the least
fixed point of f .

Thus, if f1 : P 2 → P is a function such that for each y ∈ P , the function f y1 : P → P defined
as f y1 (x) := f1(x, y), is a monotone function, then the µx.f1(x, y) is a P → P function which
assigns to a value y the least such x∗ with f1(x∗, y) = x∗.

For example, if f1(x, y) = 5x−y
2

is an R≥0×R≥0 → R≥0 function, then µx.f1(x, y) is the function

y 7→ y
3
, since y

3
is the least value z satisfying z = 5z−y

2
. (Actually, it’s the only such value.)

Using the µ notation we can define the stabilizer function of an approximation func-
tion:

Definition: Stabilizer function

Let P be a complete lattice and f = 〈f1, f2〉 : P 2 → P 2 an approximation function. The
stabilizer function of f is the function s : P 2 → P 2 defined as s(x, y) = (s1(y), s1(x)),
where s1 : P → P is the function s1(z) = µx.f1(x, z).

So e.g., s1(y) is the least fixed point of the function z 7→ f1(z, y). This least fixed point exists,
since if f is an approximation function, then f1 is ≤p-monotone, thus if z1 ≤ z2, then from
(z1, y) ≤p (z2, y) we get f1(z1, y) ≤p f1(z2, y), thus z 7→ f1(z, y) is a monotone function and
hence has a least fixed point.

The first important property of stabilizer functions is that they are still approximation func-
tions:

Szabolcs Iván, University of Szeged, Hungary 43 2016/11/26/20:04:00

Proposition

If s : P 2 → P 2 is the stabilizer function of the approximation function f , then s is also an
approximation function.

Proof

First, since s(y, x) = (s1(y), s1(x)), swapping the input arguments of s results in swapping
the output arguments, thus s is symmetric.

To see that s is also ≤p-monotone, first note that if y ≤ y′, then s1(y′) ≤ s1(y). Indeed,
let x denote s1(y). Then, by definition of s1(y), we have x = f1(x, y). By y ≤ y′ we have
(x, y′) ≤p (x, y), thus applying ≤p-monotonicity of f1 we get f1(x, y′) ≤p f1(x, y) = x, thus
x is a pre-fixed point of the function z 7→ f1(z, y′). Since by definition of s1, the value
s1(y′) is the least (pre-)fixed point of this function, we get that s1(y′) ≤ x = s1(y).

Applying this we get that if (x, y) ≤p (x′, y′), then x ≤ x′, implying s1(x′) ≤ s1(x) and
y′ ≤ y, implying s1(y) ≤ s1(y′), thus s(x, y) = (s1(y), s1(x)) ≤p (s1(y′), s1(x′)) = s(x′, y′),
hence s is ≤p-monotone.

The second important property of stabilizer functions is that their fixed points are “good” fixed
points of the original approximation function:

Proposition

If s is the stabilizer function of f , then each fixed point of s is a ≤t-minimal fixed point of
f .

Proof

Let (x, y) be a fixed point of s. Then, (x, y) = s(x, y) = (s1(y), s1(x)), that is, x = s1(y)
and y = s1(x). From x = s1(y) we get x = f1(x, y) and from y = s1(x) we get y = f1(y, x),
thus f(x, y) = (f1(x, y), f1(y, x)) = (x, y) holds and (x, y) is also a fixed point of f .

For ≤t-minimality, let (x′, y′) ≤t (x, y) be a fixed point of f . That is, x′ ≤ x, y′ ≤ y and
f(x′, y′) = (x′, y′), that is, x′ = f1(x′, y′) and y′ = f1(y′, x′). Since f1 is ≤p-monotone,
we have (y′, x) ≤p (y′, x′), implying f1(y′, x) ≤p f1(y′, x′) = y′, thus y′ is a pre-fixed point
of the function z 7→ f1(z, x), and by definition of s1, y is the least pre-fixed point of this
function, thus y ≤ y′, hence y = y′.

Analogously, (x′, y) ≤p (x′, y′) implies f1(x′, y) ≤ f1(x′, y′) = x′, thus x′ is a pre-fixed point
of z 7→ f1(z, y), while x is its least pre-fixed point, thus x ≤ x′, hence x = x′ as well.

So the fixed points of the stabilizer functions are “good”, since these are also fixed points of
the original approximation function, and they are ≤t-minimal. Thus these fixed points also
deserve a name:

Let f be an approximation function and s be its stabilizer function. Fixed points of s are
called stable fixed points of f .

Since s is also an approximation function, it is also ≤p-monotone, so it has a least fixed point
with respect to ≤p. Thus, f has a ≤p-least stable fixed point. That’s the semantics we seek
for!

Szabolcs Iván, University of Szeged, Hungary 44 2016/11/26/20:04:00

Definition: Well-founded fixed point

The well-founded fixed point of an approximation function f is its ≤p-least stable fixed
point.

Now if f is an approximation function, k(f) is its Kripke-Kleene fixed point, and w(f) is its
well-founded fixed point, then (since k(f) is the ≤p-least fixed point of f) we have k(f) ≤p w(f),
so the well-founded fixed point is always at least as precise as the Kripke-Kleene fixed point.
Moreover, since s is also an approximation function, and w(f) is its Kripke-Kleene fixed point
(that is, w(f) = k(s)), which is always consistent, the well-founded fixed point is also consistent.
Thus we have:

The well-founded fixed point of an approximation function is always consistent, ≤t-minimal,
and at least as precise as its Kripke-Kleene fixed point.

The well-founded semantics coincides with the canonical semantics

We have already seen that ΨP approximates TP for any (generalized) logic program P .

Now if P is negation-free, then

fP (u, v)(r) =
∨

p1∧...∧pn→r∈P

u(p1) ∧ . . . ∧ u(pn).

Thus, fP does not depend on v! Hence, the function s1(v) = µu.fP (u, v) is computing the least
u∗ with u∗ = fP (u∗, v) where

fP (u∗, v)(r) =
∨

p1∧...∧pn→r∈P

u∗(p1) ∧ . . . ∧ u∗(pn) = TP (u∗),

that is, u∗ is the least fixed point of TP .

In other words, s1(v) is the canonical semantics of P for every v, thus s(x, y) = (s1(y), s1(x))
is a constant function: s(x, y) = (u, u) where u is the canonical semantics of P , hence its only
(and thus least) fixed point is (u, u), the canonical semantics of P . (if we identify point-like
intervals (x, x) with the value x).

Hence we have shown that

Proposition

The well-founded semantics of a negation-free logic program coincides with its canonical
semantics.

Thus, the well-founded semantics of generalized logic programs is always a ≤t-minimal fixed
point, which coincides with the canonical semantics of negation-free logic programs.

Semantics of functional programs

In the second part of the course, we give a semantics for (pure) functional programs.

Szabolcs Iván, University of Szeged, Hungary 45 2016/11/26/20:04:00

For those readers who have not yet seen functional programs at all, these are called functional
because not only objects (coming from some typed universe, like strings or integers) but also
functions are “first-class citizens” of the language. That is, if (say) int is a type and string is
a type, then one can define a function of type string → int (that take as input a string and
produce an integer, like the StrLen function which computes the length of a given string), as
usual in imperative languages; but atop of that, one can also define functions of type (string→
int) → string (that take as input a string → int function and produces a string as output), or
taking even further, (string→ int)→ (string→ int) functions: these take a string→ int function
and produce another string → int function. For example, the “double the output value of the
given function” can be defined in Scala as:

def double(f : String⇒ Int) = (s : String)⇒ {2 ∗ f(s)}

Then, double(strlen) becomes a String → Int function, returning twice the length of the input
string.

Syntax: Types

Every programming language has built-in types, or base types. The set of these types will
be denoted BaseTypes. In our example language there is only one type, nat (intended to be
the type of natural numbers), that is, BaseTypes = {nat}. For other languages we might have
BaseTypes = {int, String, bool, double} or something similar, the underlying theory is the same.

From the base types, one can build up functional types as in the above example, e.g. a function
of type (nat → nat) → nat takes a nat → nat function as input and produces a single nat (a
number) as output, an example for such a function is EvalAtZero(f) = f(0), that is, the
function EvalAtZero gets a function f and returns the value of f for the number 0. Now
a function of type nat → (nat → nat) takes a number n as input and produces a nat → nat
function, an example for such a function is AddConstant(n) = x ⇒ x + n, that is, for an
input n the function x 7→ x+ n is returned.

Thus, parentheses are important in the following definition:

Definition: Types

For a fixed nonempty set BaseTypes of base types, the set Types of types is the least set
such that

i) every base type is a type,

ii) whenever σ and τ are types, then so is (σ → τ). (These types are also called
functional types).

Types are usually denoted by σ and τ . In order to ease notation we will write σ1 → σ2 → σ3 in
place of σ1 → (σ2 → σ3) sometimes, and we will omit outermost parentheses most of the time.
For example, the above function AddConstant has type nat→ nat→ nat.

In our proofs we will move from more complex function types towards the base types; we can
do that since the types are well-ordered:

Szabolcs Iván, University of Szeged, Hungary 46 2016/11/26/20:04:00

Proposition

Any type τ can be written uniquely as τ = τ1 → τ2 → . . . τn with n ≥ 1 and τn being a
base type.

Proof

If τ is a base type, then choosing τ = τ1, n = 1 is fine.

Otherwise, τ = τ0 → σ is a functional type. Then by induction, σ uniquely can be written
as σ = τ1 → τ2 → . . .→ τn with τn being a base type, hence writing τ = τ0 → τ1 → τ2 →
. . .→ τn is fine.

We’ll write programs, or terms, which will have variables. Variables will have types. The type
declaration of these variables is called a context:

Definition

A context is a sequence x1 : τ1, . . . , xn : τn, where the xi are pairwise different variables
(coming from some fixed set X of variables), and the τi are types.

Contexts are usually denoted by Γ or ∆.

So in our example language, a program is called a term and consists of three parts: i) a variable
declaration part – that is, a context, ii) the “code of the program” itself, this part is called a
pure term, and iii) the type of the output of the program. So, a term is written as

Γ ` M : σ

where Γ is a context (declaring the types of the “global” variables of M), M is a pure term
(defined below) and σ is a type. Such a tuple intuitively can be read as “if the variables of M
have the types given in Γ, then the output of M will have type σ”.

Functional Programming example: Ackermann in Scala

Before proceeding, let us have a look at the central notions of functional programming in the
language Scala. A fine example to implement is the Ackermann function defined as

A(n,m) =


m+ 1 if n = 0;

A(n− 1, 1) if n > 0 and m = 0;

A(n− 1, A(n,m− 1)) if n,m > 0.

A sample implementation7 of the above function in Scala looks like

def ack(n : Int, m : Int) : Int = {

if (n == 0) m + 1

else if (m == 0) ack(n - 1 , 1)

else ack(n - 1 , ack(n , m - 1))

}

7The sample codes of this section are available on Pastebin here and can be played around with online here.

Szabolcs Iván, University of Szeged, Hungary 47 2016/11/26/20:04:00

http://pastebin.com/HBxTwp7E
http://www.scalakata.com/gist/8bc14e78398e23a25b46cab59643cefa

which is absolutely fine. However, for demostration purposes we now rewrite the above code
into a more “cryptic” form, with functions taking and returning functions as well.

Observe that for n > 0 we have

A(n,m) = A(n− 1, A(n,m− 1)) = A(n− 1, A(n− 1, A(n,m− 2)))

= A(n− 1, A(n− 1, A(n− 1, A(n,m− 3)))) = . . .

= A(n− 1, A(n− 1, A(n− 1, . . . , A(n− 1, 1))))

with the number of applications of the function A(n− 1,) being m+ 1. That is, the function
m 7→ A(n,m) can be computed as: i) take the function x 7→ A(n − 1, x) and ii) iterate this
function m+ 1 times, starting from 1.

For iteration, we might come up with the following idea:

def iterate(f : Int=>Int, n : Int) : Int = {

if(n == 0) f(1)

else f(iterate(f , n - 1))

}

That is, the iterate function takes a function f and an integer n, and computes fn+1(1) in a
recursive manner.

This is not bad for a start, but when we have a function of the form A×B → C for the types
A, B and C, we can always rewrite it to a function of the form A → (B → C). That is,
for a function f : A × B → C, instead of taking both arguments at the same time, we only
take the first argument in the first place, say a ∈ A, and produce a function fa : B → C.
This function plainly “remembers” the value of a ∈ A, and takes b ∈ B as argument, then
returns fa(b) := f(a, b). One can see this method as “partially assigning values to some of the
arguments”.

This operation in general is called currying (named after Haskell Brooks Curry among other
things) and is the reason why we only take functions of the form σ → τ but not function
of the form (σ1 × σ2 × . . . σn) → τ , since such a function can always be curried into of type
σ1 → (σ2 → (. . .→ (σn → τ))).

The curried version of iterate looks like this:

def iterateCurried(f : Int=>Int) : Int=>Int = {

n => if(n == 0) f(1) else f(iterateCurried(f)(n-1))

}

Thus, the type of the function is (Int → Int) → (Int → Int), since the uncurried version had
the type ((Int→ Int)× Int)→ Int. From the implementation point of view, we essentially have
to write the same code (apart from slight syntactical changes, like replacing the return type
and beginning the body with n=> since the return type is now a function, not a base type).
But, if we iterate the function x 7→ x+ 1 for a couple of numbers, as 5, 7 and 9, then using the
uncurried variant we have to code

iterate(_+1, 5)

iterate(_+1, 7)

iterate(_+1, 9)

Szabolcs Iván, University of Szeged, Hungary 48 2016/11/26/20:04:00

https://en.wikipedia.org/wiki/Haskell_Curry

that is, repeating parts of the code while using the curried variant we might code as

def myIter = iterateCurried(_+1)

myIter(5)

myIter(7)

myIter(9)

which is a bit less error-prone thing to do. Also, if one changes her/his mind and wants to
iterate some other function instead, then the code has to be updated only at one point which
is also a good thing.

Since we have the iterating function, we can finish the second8 implementation of the Ackermann
function as

def ackCurried(n : Int) : Int => Int = {

if(n == 0) _ + 1

else iterateCurried(ackCurried(n - 1))

}

and one can play around with the values ackCurried(2)(2)=7, ackCurried(3)(3)=61 and
with pretty much any value over 4 (for the first argument) throwing a stack overflow exception
but that’s OK, the Ackermann function is an extremely fast growing function despite its mild
appearance.

Syntax: λ-terms

Let us collect the fundamental notions we used, renaming the functions we implemented.

def iterate (f : Int→ Int) : Int→ Int {
n ⇒ if(n == 0) f(1) else f(iterate (f)(n− 1))

}

Recursion

if − else Built-ins: 0, 1, x 7→ x− 1

Function abstraction

Return type declarationVariable type declarationVariable Function application

The
mathematical framework for modeling functional languages is called (typed) λ-calculus. (In the
untyped λ-calculus there are no types.) One can rewrite a program, like the above Scala snip-
pet, into a so-called λ-term. Such a term consists of three parts: a context Γ, a “code” part M
(that will be called a pure term later on) and an “output” type σ, and is written as

Γ ` M : σ

which can be understood as “if the variables of M have the types as given in Γ, then M is a
valid λ-expression having type σ”, intuitively.

There are strict rules according to which λ-terms can be constructed. Such a rule can be written
as a formal fraction Γ1`M1:σ1,...,Γn`Mn:σn

Γ`M :σ
and has the meaning “if each Γi ` Mi : σi is a λ-term,

then so is Γ `M : σ”.
8or third if you consider iterate as a separate attempt

Szabolcs Iván, University of Szeged, Hungary 49 2016/11/26/20:04:00

A basic rule is that of variable evaluation, written as

Γ1, x : σ,Γ2 ` x : σ

that is, if a context Γ declares a variable x with type σ, then x is an expression with type σ.
(That’s what contexts are for, after all.)

For examples, x : nat, f : nat→ nat ` x : nat is a valid λ-term: if x is a variable of type nat
and f is a variable of type nat→ nat, then (surprise) x is an expression of type nat.

The second rule, or rather a set of rules, is that of built-ins:

Γ ` 0 : nat Γ ` 1 : nat

Γ ` M : nat

Γ ` pred(M) : nat

Γ ` M : nat

Γ ` succ(M) : nat

That is: in any context, 0 and 1 are valid expressions of type nat, and if in some context M
is an expression of type nat, then so are pred(M) and succ(M) (both having also type nat). In
the standard semantics, nat will be interpreted by the set N of natural numbers, 0 and 1 will
be interpreted by 0 and 1, respectively, succ will be the n 7→ n + 1 function, and pred will be
the n 7→ n− 1 function (with the exception that pred(0) = 0, in order to stay within the set of
naturals).

For examples, it holds that ` 0 : nat, x : nat ` 1 : nat, x : nat ` succ(succ(x)) : nat and
` succ(pred(1)) : nat.

The next rule is that of if-else. In (this variant of the) λ-calculus, one can test whether an
expression evaluates to zero and return a natural number based on the condition. That is,

Γ ` M1 : nat, Γ ` M2 : nat, Γ ` M3 : nat

Γ ` ifzero(M1,M2,M3) : nat

having the intuitive meaning “if in a context, M1, M2 and M3 are all expressions having type
nat, then the ifzero(M1,M2,M3) is also an expression of type nat.

The semantics of such an expression would be written in Scala as if(M1==0) M2 else M3, that
is, one evaluates M1, and if its value is 0, then this term has the value of M2, otherwise the
value of M3.

For example, x : nat, y : nat ` ifzero(x, 0, succ(y)) : nat is a term (being more or less equivalent
to if(x==0) 0 else y+1 in Scala, if x and y are declared as Ints).

The next rule is that of λ-abstraction. That is, when M is an expression of type τ in a context
Γ, in which a (free) variable x of type σ appears (that is, Γ1, x : σ,Γ2 ` M : τ), then one
can make this “block” M to be the body of a function taking x as the input parameter. The
resulting function is of type σ → τ (one sets the value of x, which is of type σ, then M evaluates
to a value with type τ) and is written as λx : σ.M . Formally,

Γ1, x : σ,Γ2 ` M : τ

Γ1,Γ2 ` λx : σ.M : σ → τ

For example, x : nat ` λy : nat.ifzero(x, 0, succ(y)) : nat → nat is a term (which can be
written in Scala as (y:Int) => if(x==0) 0 else y+1, if x is declared somewhere out of this
scope as an Int).

Having a function M of type σ → τ and some expression N of type σ in some context, we can
apply the function M on the input N , writing M(N), formally:

Γ ` M : σ → τ, Γ ` N : σ

Γ ` M(N) : τ

Szabolcs Iván, University of Szeged, Hungary 50 2016/11/26/20:04:00

For example, x : nat ` (λy : nat.ifzero(y, 0, succ(y)))(succ(x)) : nat is a term, esentially
having the same semantics as {y:Int => if(y==0) 0 y+1}(x+1) which evaluates to x+ 2 for
every natural number x (since x+ 1 is checked to be zero, which is always false, thus the value
of this expression becomes x+ 1 + 1 for each x ≥ 0).

Finally, we also have a rule for recursion. In λ-calculus this notion is somewhat more com-
plicated than in ordinary programming languages, since here one cannot call a function by its
name. Instead, given a definition def f(n) = M in which f also appears (that is, a definition
of a recursive function), with f being some function of type σ, we can first write the expression
λf : σ.M , in which f becomes a variable. Now for such an expression, the f what we have in
mind is a fixed point of this λ-function since if we substitute our intended f , then it satisfies
its own (recursively given) specification.

To make this a bit more understandable, suppose we have the expression M = ifzero(x, 1, f(x−
1) + 2) in which x is of type nat and f is of type nat→ nat. That is,

f : nat→ nat, x : nat ` ifzero(x, 1, f(x− 1) + 2) : nat.

What we have in mind: we want to implement the function f(n) =

{
0 if n = 0

f(n− 1) + 2 otherwise.

One can easily check that this recursive specification is satisfied by the fuction n 7→ 2n. Now
we can view this block M as a transformation of nat→ nat functions as

x : nat ` λf : nat→ nat.ifzero(x, 0, f(x− 1) + 2) : nat.

That is, a construct which can be implemented in Scala as

def transform(f : Int => Int) : Int => Int = {

n => if(n == 0) 0 else f(n - 1) + 2

}

So the function transform above gets some function f and outputs some other function f ′.
For example, if f is the constant zero function (n=>0), then its transformed variant f ′ returns
f ′(0) = 0 and f ′(n) = 2 for n > 0. Hence, for this function f 6= f ′, the constant zero is
not a fixed point of this transformation. But, the function n 7→ 2n is: if f is a some arbitrary
implementation of n 7→ 2n, then f ′ outputs f ′(0) = 0 and f ′(n) = f(n−1)+2 = 2(n−1)+2 = 2n
for n > 0, thus f ′ is also an implementation of the function n 7→ 2n. Thus, n 7→ 2n is a fixed
point of the transform function above! Hence, recursive specifications can be modeled this way
by fixed points9: taking the function of type σ → τ , λ-abstracting its body resulting in some
(σ → τ)→ (σ → τ) transformation, and taking a fixed point of that transformation. Formally,

Γ ` M : σ → σ

Γ ` Yσ(M) : σ

and Yσ is called the recursion operator (of type σ).

Example: iterate in λ-calculus

For an exercise, let us write our running example function iterate as a λ-term, building the
smallest blockfirst, the built-in 1 in the middle. That’s a built-in constant, in a context where are

9it will turn out that these are least fixed points, actually

Szabolcs Iván, University of Szeged, Hungary 51 2016/11/26/20:04:00

the symbols n (of type Int), f (of type Int→ Int) and iterate (of type (Int→ Int)→ (Int→ Int))
are visible. Thus we write the corresponding term as

i : (nat→ nat)→ (nat→ nat), f : nat→ nat, n : nat ` 1 : nat

since we have a rule (the second rule in the set for built-ins) that 1 is an expression of type nat
in any context. Also, in the same context, f is a nat → nat type variable, thus we can apply
the variable evaluation rule as:

i : (nat→ nat)→ (nat→ nat), f : nat→ nat, n : nat ` f : nat→ nat

Now since in the same context, f is of type nat→ nat and 1 is of type nat, we can use the rule
for function application here and get:

i : (nat→ nat)→ (nat→ nat), f : nat→ nat, n : nat ` f(1) : nat

Similarly, in the very same context, n is an expression of type nat, applying the variable
evaluation rule again:

i : (nat→ nat)→ (nat→ nat), f : nat→ nat, n : nat ` n : nat

Thus, the third built-in rule gives us predn is also such an expression:

i : (nat→ nat)→ (nat→ nat), f : nat→ nat, n : nat ` pred(n) : nat

Also by variable evaluation we get the type of i:

i : (nat→ nat)→ (nat→ nat), f : nat→ nat, n : nat ` i : (nat→ nat)→ (nat→ nat)

Since f is still a nat→ nat function in this context, we can apply i to f and get:

i : (nat→ nat)→ (nat→ nat), f : nat→ nat, n : nat ` i(f) : nat→ nat

As i(f) has type nat → nat and pred(n) has type nat in this context, we can apply i(f) to
pred(n), getting a nat:

i : (nat→ nat)→ (nat→ nat), f : nat→ nat, n : nat ` (i(f))(pred(n)) : nat

As the above expression is of type nat, one can apply f on it:

i : (nat→ nat)→ (nat→ nat), f : nat→ nat, n : nat ` f((i(f))(pred(n))) : nat

Then, we have three expressions of type nat in the same context: n, f(1) and f((i(f)), we can
combine them by an if-else:

i : (nat→ nat)→ (nat→ nat), f : nat→ nat, n : nat ` ifzero(n,f(1),f((i(f))(pred(n)))) : nat

(now we have the “λ-implementation” of the block M inside i = n⇒M). Then, we λ-abstract
the argument n (thus we will have the implementation of the function n⇒M):

i : (nat→ nat)→ (nat→ nat), f : nat→ nat

`

λn : nat.(ifzero(n,f(1),f((i(f))(pred(n))))) : nat→ nat

Szabolcs Iván, University of Szeged, Hungary 52 2016/11/26/20:04:00

Then, i is the function that takes f as input and outputs this function n ⇒ M , thus we
λ-abstract the argument f as well:

i : (nat→ nat)→ (nat→ nat)

`

λf : nat→ nat.λn : nat.(ifzero(n,f(1),f((i(f))(pred(n)))))

:

(nat→ nat)→ (nat→ nat)

Here comes the “λ-and-Y -trick”: we want to construct a recursive function, say, i, to have this
expression as body. First we λ-abstract i, yielding the term

`

λi : (nat→ nat)→ (nat→ nat).λf : nat→ nat.λn : nat.(ifzero(n,f(1),f((i(f))(pred(n)))))

:

((nat→ nat)→ (nat→ nat))→ ((nat→ nat)→ (nat→ nat))

and now we have a function that transforms an input function i into another function i′, and
the actual iterate function we want to have is the (least) fixed point of this transformation, so
we apply the recursion operator Y(nat→nat)→(nat→nat):

`

Y(nat→nat)→(nat→nat)(λi : (nat→ nat)→ (nat→ nat).λf : nat→ nat.λn : nat.(

ifzero(n,f(1),f((i(f))(pred(n))))))

:

(nat→ nat)→ (nat→ nat)

and that is the λ-term equivalent to our Scala function iterate.

At least, intuitively, since we have not defined the semantics of λ-terms, only the syntax along
with some informal intuition.

So the plan for this part is the following:

• We will give an “operational” semantics for λ-terms, that will be a step-wise compu-
tational semantics (e.g. if I have an application term M(N) then I should evaluate N
first, then substitute the result in place of the formal parameter of M , then evaluate the
resulting program, and such) corresponding to our informal intuition above. This gives
us “how” should those terms be evaluated, a local viewpoint.

• Then, we will give a “denotational” semantics also, that will assign an actual function
(i.e. a mathematical function, a mapping) to each λ-term. This gives us “what” those
terms mean, a global viewpoint.

• Finally, we will show that the two semantics are equvalent, thus they complement each
other, these are really the “how” and “what” of the same behaviour.

Szabolcs Iván, University of Szeged, Hungary 53 2016/11/26/20:04:00

Operational semantics of λ-calculus

Before proceeding with the operational semantics, we first define the so-called substitution of
(pure) λ-terms. The semantics is defined on pure terms, that can be generated by the following
grammar:

M → x | 0 | succ(M) | pred(M) | M(M) | λx : σ.(M) | ifzero(M,M,M) | Yσ(M)

where x is some variable and σ is some type. It is easy to check (via structural induction) that
whenever Γ ` M : σ is a term, then M is a pure term. At the same time, not all pure terms
can be typified: for example, x(x) is a pure term but there is no context Γ and type σ with
Γ ` x(x) : σ being a term (since then x should have some type τ → σ and the type τ at the
same time which is impossible).

Definition: Substitution.

Given pure terms M and N , and a variable x, the substitution M [x/N] is defined via
structural induction on M as

• x[x/N] = N for the variable x;

• y[x/N] = y for the variable y 6= x;

• 0[x/N] = 0;

• (succ(M ′))[x/N] = succ(M ′[x/N]);

• (pred(M ′))[x/N] = pred(M ′[x/N]);

• (M1(M2))[x/N] = (M1[x/N](M2[x/N]));

• (λx : σ.(M ′))[x/N] = λx : σ.(M ′);

• (λy : σ.(M ′))[x/N] = λy : σ.(M ′[x/N]) if y 6= x does not occur in N ;

• (λy : σ.(M ′))[x/N] = λz : σ.(M ′[y/z][x/N]) if y 6= x and y occur in N , where z is a
fresh variable;

• ifzero(M1,M2,M3)[x/N] = ifzero(M1[x/N],M2[x/N],M3[x/N]);

• (Yσ(M))[x/N] = Yσ(M [x/N]).

Basically what happens: we get M [x/N] be replacing each free occurrence of x (an occurrence
is free if it is not within the scope of some λx) by N , and, if this occurrence of x is within the
scope of some λy for some y also occurring in N , then we rename the y in the λy construct to
some other, unused variable.

As an example:

Consider the term M = ifzero(x, (λx.pred(x))(succ(0)), (λy.ifzero(y, 0, x))(0)) and let us
calculate M [x/succ(y)].

Szabolcs Iván, University of Szeged, Hungary 54 2016/11/26/20:04:00

By definition, we get

ifzero
(
x, (λx.pred(x))(succ(0)), (λy.ifzero(y, 0, x))(0)

)
[x/succ(y)]

= ifzero
(
x[x/succ(y)], (λx.pred(x))(succ(0))[x/succ(y)], (λy.ifzero(y, 0, x))(0)[x/succ(y)]

)
and calculating the three arguments one by one,

x[x/succ(y)] = succ(y),

(
(λx.pred(x))(succ(0))

)
[x/succ(y)] =

(
((λx.pred(x))[x/succ(y)])((succ(0))[x/succ(y)])

)
=

(
(λx.pred(x))(succ(0[x/succ(y)]))

)
=

(
(λx.pred(x))(succ(0))

)
and

(λy.ifzero(y, 0, x))(0)[x/succ(y)] =
(
(λy.ifzero(y, 0, x))[x/succ(y)]

)
(0[x/succ(y)])

=
(
(λz.(ifzero(y, 0, x)[y/z][x/succ(y)])

)
(0)

=
(
(λz.(ifzero(y[y/z], 0[y/z], x[y/z])[x/succ(y)])

)
(0)

=
(
(λz.(ifzero(z, 0, x)[x/succ(y)])

)
(0)

=
(
(λz.(ifzero(z[x/succ(y)], 0[x/succ(y)], x[x/succ(y)]))

)
(0)

=
(
(λz.(ifzero(z, 0, succ(y)))

)
(0)

thus the result is

ifzero
(
succ(y), (λx.pred(x))(succ(0)), (λz.ifzero(z, 0, succ(y)))(0)

)
.

We can get the very same result as follows: first we highlight the free occurrences of x:

ifzero(x, (λx.pred(x))(succ(0)), (λy.ifzero(y, 0, x))(0))

then, as succ(y) contains the variable y, we highlight those λy that contain at least one
highlighted x in their scope, along with their own y occurrences:

ifzero(x, (λx.pred(x))(succ(0)), (λy.ifzero(y, 0, x))(0))

Finally we replace all the x by N(y) and all the y by some new variable:

ifzero(succ(y), (λx.pred(x))(succ(0)), (λz.ifzero(z, 0, succ(y)))(0)).

The result is the same.

Having defined substitution, we are now ready to define the operational semantics of λ-calculus
as follows. We’ll define a relation . between pure terms. The relation M . N can be read as
“M gets rewritten to N in one step”, represents one computation step. Some terms can be
rewritten, some are not. Those that cannot be rewritten are called (syntactic) values.

The rewriting rules are defined as follows:

1. If M = 0, M = x for some variable or M = (λx : σ.M ′), then M is already a value and

Szabolcs Iván, University of Szeged, Hungary 55 2016/11/26/20:04:00

does not get rewritten.

2. If M = (λx : σ.M ′)(N), i.e., a function application with the function being “in λ-form”,
then M.M ′[x/N]. That is, we substitute the argument N in place of the formal parameter
x in the body of the function.

3. If M = M1(N) and M1 .M2, that is, it is a function application but the function can be
rewritten (thus it is not in λ-form yet), then we rewrite the function part: M .M2(N).

4. If M = ifzero(0,M2,M3), then M.M2. That is, if the branching condition of M is already
evaluated and its value is 0, then we continue on the if branch.

5. If M = ifzero(n + 1,M2,M3), then M .M3. Here n + 1 is a shorthand for the pure term
succn+1(0). That is, if the branching condition of M is already evaluated and its value is
some positive natural number, then we continue on the else branch.

6. If M = ifzero(M1,M2,M3) and M1 .M
′
1, that is, if the branching condition is not a value

yet, then we continue its evaluation and M . ifzero(M ′
1,M2,M3).

7. If M = Yσ(M ′), then M .M ′(Yσ(M ′)). That is, the recursion operator gets substituted
into its body. We’ll see an example for that below.

8. If M = succ(M1) and M1 . M2, then M . succ(M2). That is, if we have a succ-term, we
try to rewrite its argument.

9. Similarly, if M = pred(M1) and M1 . M2, then M . pred(M2).

10. For the numbers, we have pred(0) . 0. That is, 0 cannot be decremented further, 0 − 1
becomes 0 again.

11. Also, pred(n + 1) . n, that is, the predecessor of n+ 1 is n.

These rules can be written in concise form as follows:

(λx : σ.M)(N) . M [x/N]

M . M ′

M(N) . M ′(N)

ifzero(0,M2,M3) . M2 ifzero(n + 1,M2,M3) . M3

M1 . M
′
1

ifzero(M1,M2,M3) . ifzero(M ′
1,M2,M3)

Yσ(M) . M(Yσ(M))

M . N

succ(M) . succ(N)

M . N

pred(M) . pred(N)

pred(0) . 0 pred(n + 1) . n

Then, we have defined .. The notion M .∗ N denotes that M can be rewritten into N in 0, 1,
or more (finitely many) steps; and M ⇓ N denotes that M .∗ N and N is a value (i.e., cannot
be further reduced). Clearly, since the rules uniquely determine the rewriting process, this N ,
if exists, is uniquely defined and is called the value of M .

Szabolcs Iván, University of Szeged, Hungary 56 2016/11/26/20:04:00

Example: 2× 2 = 4

The doubling function can be defined in Scala as

def f(n : Int) : Int = if(n == 0) 0 else 2 + f(n - 1)

which can be written as the term

` Ynat→nat

(
λf : nat→ nat.λn : nat.ifzero(n, 0, succ(succ(f(pred(n)))))

)
: nat→ nat.

Let us evaluate this function for the input succ(succ(0)), that is, 2. For the sake of readability,
we omit type specifications and write ifz for ifzero, s for succ and p for pred: so we want to
evaluate the (pure) term (

Y λf.λn.ifz(n, 0, ssfp(n))
)

(2).

Note that we also omit some parentheses around arguments of unary function symbols etc.
Then, this term is a function application, with its left-hand side being not in λ-form. Thus we
rewrite the part Y λf.λn.ifz(n, 0, ssfp(n)) according to the recursion rule and get:(

(λf.λn.ifz(n, 0, ssfp(n)))
(
Y λf.λn.ifz(n, 0, ssfp(n))

))
(2).

This term is again an application with the function part being also an application (and not in
λ-form yet), thus we rewrite the function part, which is, in turn, also an application, with its
function part being in λ-form. So we rewrite the term as follows: we substitute the argument
in place of the formal parameter f in the body of the λ-function and get:(

(λn.ifz(n, 0, ss(Y λf.λn.ifz(n, 0, ssfp(n))(p(n)))))
)

(2).

Then, our current term is a function application, with the left-hand side being in λ-form. Thus,
we substitute the argument 2 in place of the free ns in the body of the function and get:

ifz
(
2, 0, ss(Y λf.λn.ifz(n, 0, ssfp(n))(p(2)))

)
.

Observe that according to the substitution rule, we have not replaced the occurrences of n which
are in the scope of the inner λn. Then, this term is a conditional branch, with its condition
being already evaluated to a nonzero value thus we rewrite it to its else branch and get:

ss(Y λf.λn.ifz(n, 0, ssfp(n))(p(2))).

We recolored the inner parts or our current term to reflect the fact that it is a succ-term, thus
its argument should be rewritten, which happens to be also a succ-term, whose argument is a
function application, with the left-hand side not in λ-form. Hence we rewrite the function part
according to the recursion rule and get

ss((λf.λn.ifz(n, 0, ssfp(n)))(Y λf.λn.ifz(n, 0, ssfp(n)))(p(2))).

In the next step, we have a function application with its left-hand side being in λ-form, thus
we apply the substitution:

ss((λn.ifz(n, 0, ss(Y λf.λn.ifz(n, 0, ssfp(n))(p(n)))))(p(2))).

Szabolcs Iván, University of Szeged, Hungary 57 2016/11/26/20:04:00

Then again, inside the two succ operators, we have a function application, with the function
being in λ-form. Hence we substitute p(2) in place of the green n’s:

ss(ifz(p(2), 0, ss(Y λf.λn.ifz(n, 0, ssfp(n))(p(p(2)))))).

Here we have an ifz with a not yet evaluated condition p(2). We rewrite it to 1:

ss(ifz(1, 0, ss(Y λf.λn.ifz(n, 0, ssfp(n))(p(p(2)))))).

Then, the ifz subterm is rewritten to its else part as 1 6= 0:

ssss(Y λf.λn.ifz(n, 0, ssfp(n))(p(p(2)))).

Then yet again, we have to apply the recursion rule (one last time) and get:

ssss((λf.λn.ifz(n, 0, ssfp(n))(Y λf.λn.ifz(n, 0, ssfp(n)))(p(p(2)))).

and substituting the argument in place of the formal parameter f we get:

ssss((λn.ifz(n, 0, ss((Y λf.λn.ifz(n, 0, ssfp(n))(p(n))))))(p(p(2)))).

Then applying a function application fule, we substitute pp(2) in place of the free ns in the
body of the function:

ssss(ifz(pp(2), 0, ss((Y λf.λn.ifz(n, 0, ssfp(n))(p(pp(2))))))).

The ifzero’s condition pp(2) gets rewritten to p(1), then to 0:

ssss(ifz(0, 0, ss((Y λf.λn.ifz(n, 0, ssfp(n))(p(pp(2))))))).

Which is 0, thus the conditional branch gets (finally) rewritten to its if part:

ssss(0).

And that’s it. It’s the term 4. Two times two is four.

Denotational semantics: the interpretation domains

In this part we associate to each term Γ ` M : σ a function denoted [[Γ ` M : σ]]. To
this end, we first define an interpretation domain [[σ]] to each type σ.

It is more or less clear from the previous section that the objects of type natshould be the
natural numbers. However, instead of N, we define [[nat]] to be the poset N⊥. The intuition
is that when a computation does not terminate (such cases naturally occur in every Turing-
complete language, e.g. the function def f(n)=if(n==0) 0 else f(n+1)) terminates only if
it gets 0 as argument, in all the other cases it enters an infinite loop. (As an exercise, the
reader is encouraged to construct an equivalent term M of λ-calculus and apply the rewrite
rules of the operational semantics to check what happens). Thus, there is no N → N function
being “equivalent” to the f above. But if we introduce the element ⊥ and treat it as the sign
of nontermination, then the (mathematical) function f : N⊥ → N⊥ defined as f(0) = 0 and
f(n) = ⊥ for each n 6= ⊥ corresponds exactly to the above implementation.

Also, for reasons becoming apparent soon, we want to have not arbitrary functions, but con-
tinous functions appear as values for objects of type σ → τ . We introduce the following
notation:

Szabolcs Iván, University of Szeged, Hungary 58 2016/11/26/20:04:00

Definition

When P and Q are posets, then [P → Q] denotes the poset of continuous functions from
P to Q.

Let us recall that a function f : P → Q is continuous if whenever X ⊆ P is a nonempty linearly
ordered subset of P having a supremum

∨
X, then f(

∨
X) =

∨
x∈X f(x). Of course these

functions form a poset with respect to the pointwise ordering f ≤ g ⇔ ∀n ∈ P f(n) ≤ g(n).

Also recall that N⊥ is the poset where ⊥ is the least element (that is, ⊥ ≤ n for each n ∈ N)
and the integers are pairwise incomparable which can be depicted as

⊥

. . .54321

Clearly, N⊥ is not “that nice” in the sense it is not a complete lattice: e.g. the subset {1, 2} has
no upper bound (thus has no supremum). However, it is a so-called complete poset:

Definition: Complete poset, CPO.

A poset P is called a complete poset, or CPO, if every linearly ordered subset of P has a
supremum.

That is, if X ⊆ P is a subset of P such that for every pair x, y ∈ X of member of X we either
have x ≤ y or y ≤ x, then

∨
X exists. In particular, since ∅ is a linearly ordered subset,

∨
∅

also exists in a CPO, that is, any CPO has a least element.

Observe that if f : P → Q is a function where P is a CPO, then a nonempty, linearly ordered
subset X of P always have a supremum. Thus, this last condition can be removed when we
test continuity.

A nice property of continuous functions between CPOs is that they form a CPO as
well:

Proposition

If P and Q are CPOs, then so is [P → Q].

Proof

Let F ⊆ [P → Q] be a nonempty, linearly ordered subset of [P → Q], that is, F = {fi :
i ∈ I} with each fi being a continuous function from P to Q. We show that

∨
F exists

and is continuous.

For existence, we already know that
∨
F : P → Q can be defined as (

∨
F)(x) =∨

i∈I(fi(x)), assuming the supremum on the right-hand side exists. Since F (x) = {fi(x) :
i ∈ I} is a subset of the CPO Q, it suffices to check that this set is linearly ordered. So
let fi(x), fj(x) ∈ F (x) be two elements of F (x). Since F is linearly ordered, we either
have fi ≤ fj or fj ≤ fi; by definition this implies either fi(x) ≤ fj(x) or fj(x) ≤ fi(x), as
desired. Thus,

∨
F exists.

(Observe that up till this point we used only that Q is a CPO. Hence, for any poset P and
CPO Q, the set of functions P → Q is a CPO.)

Szabolcs Iván, University of Szeged, Hungary 59 2016/11/26/20:04:00

To show that
∨
F is continuous, let X ⊆ P be a nonempty linearly ordered subset of

P . Since P is a CPO, it has a supremum
∨
X. We have to show that (

∨
F)(
∨
X) =∨

x∈X(
∨
F)(x). Which holds, since

(
∨

F)(
∨

X) = (
∨
i∈I

fi)(
∨
x∈X

x) spelling out details

=
∨
i∈I

(fi(
∨
x∈X

x)) definition of
∨
i∈I

fi

=
∨
i∈I

∨
x∈X

fi(x) applying continuity of fi

=
∨
x∈X

∨
i∈I

fi(x) taking suprema can be swapped?

=
∨
x∈X

(
∨
i∈I

fi)(x) definition of
∨
i∈I

fi

=
∨
x∈X

(
∨

F)(x).

Hence,
∨
F belongs to [P → Q] as well, thus it is a CPO.

Note that when we swapped the suprema operators, we impliticly assumed that the
suprema

∨
i∈I fi(x) exist – but that holds, since Q is a CPO and F is linearly ordered.

Thus, if we define our interpretation domains as follows:

Definition: Interpretation domains of types.

For a type σ we define its interpretation domain [[σ]] recursively as follows:

• [[nat]] = N⊥

• for a functional type σ → τ , let [[σ → τ]] be the poset
[

[[σ]]→ [[τ]]
]

of functions.

That is, an object of type σ → τ should be a continuous function taking an argument of type
[[σ]] and mapping it into [[τ]].

Then by the previous proposition we have:

Proposition

For any type σ, the poset [[σ]] is a CPO.

Proof

To see that [[nat]] = N⊥ is a CPO, let us enumerate the linearly ordered subsets. Since such
a set cannot contain two different natural numbers (as these are pairwise incomparable),
the only such sets are ∅ and the singleton sets {x} (these are linearly ordered subsets of any
poset), and the sets of the form {⊥, n} with n ∈ N. For the sets {x} we have

∨
{x} = x,

for ∅ we have
∨
∅ = ⊥, which is also fine, and for the sets {⊥, n} we have

∨
{⊥, n} = n.

Thus N⊥ (and in fact, any poset of the form X⊥) is a CPO.

For the induction case we just apply our previous proposition: if [[σ]] and [[τ]] are CPOs,

Szabolcs Iván, University of Szeged, Hungary 60 2016/11/26/20:04:00

then so is [[σ → τ]] =
[
[[σ]]→ [[τ]]

]
.

Also, to a context Γ = x1 : σ1, x2 : σ2, . . . , xn : σn we also associate an interpretation domain
[[Γ]]. Since a context essentially declares the variables x1, . . . , xn, having respectively the types
σ1, . . . , σn, it makes sense to say that Γ should be interpreted by an assignment: each xi should
get a value from the corresponding interpretation domain [[σ]]. Thus, the correct definition
is

Definition: Interpretation domains of contexts.

For a context Γ = x1 : σ1, . . . , xn : σn, let us define its interpretation domain as [[Γ]] =
[[σ1]]× [[σ2]]× . . .× [[σn]].

That is, members of [[Γ]] are n-tuples of objects, at coordinate i there is a member of the
corresponding domain [[σi]]. Of course [[Γ]] is also a poset, equipped with the pointwise ordering
and moreover, is a CPO as well, since the following holds:

Proposition

If each Pi is a CPO for i ∈ I, then so is P =
∏
i∈I
Pi.

Proof

Let U ⊆ P be a linearly ordered subset of the product. We have to prove that
∨
U exists.

Now for each i ∈ I, the supremum of the set U(i) = {u(i) : u ∈ U} (that is, the supremum
of the values at the ith coordinates) exists, since for any u(i), v(i) ∈ U(i) we either have
u ≤ v or v ≤ u since U is linearly ordered, implying either u(i) ≤ v(i) or v(i) ≤ u(i). Thus
U(i) ⊆ Pi is linearly ordered and since Pi is a CPO, its supremum exists.

But then (
∨
U)(i) =

∨
(U(i)) is well-defined, thus

∨
U indeed exists.

Examples: continuous functions

Before proceeding, it is worth to see some continuous functions. We already know the members
of [[nat]] = N⊥. What functions are the members of [[nat → nat]]? This poset is defined as
[[[nat]] → [[nat]]], so if f ∈ [[nat → nat]], then f is a continuous N⊥ → N⊥ function. Several
functions from N⊥ to N⊥ are given below:

⊥ 0 1 2 3 4 5 . . .
f ⊥ 4 ⊥ 5 3 4 ⊥ . . .
g 3 3 3 3 3 3 3 . . .
h 0 1 1 1 2 2 ⊥ . . .
i ⊥ 4 2 5 3 4 ⊥ . . .

The question is, which of the above are continuous and which are not.

According to the definition of continuity, f is continuous if whenever X is a nonempty, linearly
ordered subset of N⊥, then f(

∨
X) should coincide with

∨
x∈X f(x). We already know that

Szabolcs Iván, University of Szeged, Hungary 61 2016/11/26/20:04:00

this condition is satisfied by the singleton sets, so we only have to check the sets X of the form
{⊥, n} for some n ∈ N. Then

∨
X is n. Hence, the condition for a nat→ σ function f is

f(n) = f(n) ∨ f(⊥),

which is further equivalent to
f(⊥) ≤ f(n)

for each n ∈ N. This condition is easy to check for the above example functions: if f(⊥) = ⊥,
then f(⊥) ≤ f(n) for each n, thus f and i in the example are continuous; if f(⊥) = m for some
m ∈ N, then m ≤ f(n) if and only if f(n) = m for each n ∈ N (as each m ∈ N is a maximal
element of N⊥). Thus, if f(⊥) = m for some m ∈ n, then f is continuous if and only if f is
a constant mapping. Hence, h is not continuous and g (which is presumably the constant 3
function) is continuous. Clearly, constant functions are always continuous.

So f, g and i above are members of [[nat → nat]]. This is also a poset and is equipped with
the pointwise ordering, according to which f ≤ i holds (at least for this part of the table) since
f(x) ≤ i(x) for each x ∈ N⊥. In general, if f ≤ g for the functions f, g, then if f(x) = n
for some n ∈ N, then f(x) = g(x) since n is a maximal element of N⊥. Hence, if f and g
are members of some domain [[σ → nat]] with f ≤ g, then g is “more specified” than f , i.e.,
whenever f(x) 6= ⊥, then f(x) = g(x).

As a last example, let F : [[nat → nat]] → [[nat]] be the function F (f) = minn∈N{f(n) 6= ⊥}
that is, which returns the least n for which f(n) is an integer. If there is no such n (i.e., f is
the constant ⊥ function), then F (f) is ⊥.

We claim that this particular function F is not continuous. Indeed, let f be the function in our
example above and let j be the same as f with the modification f(0) = ⊥. Then j ≤ f and
both functions are continuous. Then, X = {j, f} is a linearly ordered subset of [[nat → nat]],
with the supremum f . If F were continuous, then it should satisfy F (f) = F (f)∨ F (j) but as
F (f) is 0 and F (j) is 2, the supremum on the right hand side does not exists (in N⊥, the set
{0, 2} has no upper bound at all). Thus F is not a continuous function.

It will turn out in the following sections that λ-terms can denote continuous functions only.
Since λ-calculus is a so-called “Turing-complete” formalism, meaning informally that any pro-
gram, written in any “real-life” programming language, can be transformed into a λ-term.
Hence, the above reasoning can be seen as an undecidability result: it shows that there is no
program (in any programming language) that takes some other program f as input, and out-
puts the least value n for which f does not enter an infinite loop. Essentially, this can be seen
as a proof of the so called Halting Problem.

Denotational semantics: semantics of terms

In this section we will associate to each term Γ ` M : σ a continuous function [[Γ ` M : σ]] ∈
[[[Γ]] → [[σ]]]. The intuition is that such a term evaluates to some element of type σ (that’s
where the → [[σ]] part comes from), after we supply values to each freely occurring variable of
M (that’s where the [[Γ]]→ part comes from since Γ contains all the freely occurring variables
of M).

Our aim is to define this semantics to “coincide” with the operational semantics. That is,

Whenever M ⇓ V , then [[Γ `M : σ]] = [[Γ ` V : σ]].

Szabolcs Iván, University of Szeged, Hungary 62 2016/11/26/20:04:00

In this section, let Γ stand for the context x1 : σ1, . . . , xn : σn and di ∈ [[σi]] for each 1 ≤ i ≤ n.

We start with the case of variable evaluations as: let [[Γ ` xi : σi]] be the ith projection,
that is:

[[Γ ` xi : σi]](d1, . . . , dn) = di.

The definition is okay, since it is a [[Γ]]→ [[σi]] function and we also know that projections are
always continuous.

The next case is that of constant 0 which is also straightforward:

[[Γ ` 0 : nat]](d1, . . . , dn) = 0.

Again, it is clearly okay, since it is a [[Γ]] → [[nat]] function and we also know that constant
functions are always continuous.

For successor and predecessor, we define the functions [[pred]] and [[succ]] as

[[succ]](x) =

{
⊥ if x = ⊥
x+ 1 otherwise,

[[pred]](x) =


⊥ if x = ⊥
0 if x = 0

x− 1 otherwise.

Since these are [[nat→ nat]] functions and the image of ⊥ is ⊥ in both cases, they are continuous
functions.

Now it makes sense to define the pred and succ terms’ semantics as:

[[Γ ` pred(M) : nat]](d1, . . . , dn) = [[pred]]
(

[[Γ `M : nat]](d1, . . . , dn)
)

[[Γ ` succ(M) : nat]](d1, . . . , dn) = [[succ]]
(

[[Γ `M : nat]](d1, . . . , dn)
)

This definition is also okay: if pred(M) (succ(M), respectively) is a term in a context, then so
is M , and both are of type nat. By induction on the structure of the term, [[Γ `M : nat]] is a
continuous [[Γ]]→ [[nat]] function, while pred and succ are continuous [[nat]]→ [[nat]] functions,
hence their composition is also a continous [[Γ]]→ [[nat]] function.

At this point it might worth observing that for any n,

[[Γ ` succn(0) : nat]]

is the constant n function which is good since that’s the value we want for those terms.

For the conditional branching, we define the function [[ifzero]] : N3
⊥ → N⊥ as

[[ifzero]](x, y, z) =


⊥ if x = ⊥,
y if x = 0,

z otherwise.

The ⊥ part might seem a bit arbitrary but it has a reason: if we think of ⊥ as the sign
of nontermination, then the first case says that if the calculation of the condition does not
terminate, then the whole branching’s computation is nonterminating as well, which is fine.

Now we want to show that the [[ifzero]] function above is continuous. However, it is a N3
⊥ → N⊥

function, so there are lots of cases (compared to the N⊥ → N⊥ case), e.g. one has to check all
the sets X of the form X = {(⊥,⊥,⊥), (⊥, y,⊥), (x, y,⊥), (x, y, z)} as these are also linearly

Szabolcs Iván, University of Szeged, Hungary 63 2016/11/26/20:04:00

ordered (so the problem is that while in N⊥ there were only the sets of the form {⊥, n} which
were easy to check, in this poset N3

⊥ the linearly ordered subsets can be larger. (Actually, the
largest such sets can have size 4 but anyways, four is a much larger number than two when it
comes to case analysis.)

To circumvent a lengthy case analysis we will show that it suffices to check continuity for only
one coordinate at a time. Formally:

Definition

We say that a function f :
∏
i∈I
Pi → Q is continuous at coordinate i ∈ I if whenever

U ⊆
∏
i∈I
Pi is a linearly ordered subset such that for each u, v ∈ U and j ∈ I with j 6= i we

have u(j) = v(j), and X has a supremum, then f(
∨
X) =

∨
x∈X f(x).

In other words, if we fix the values at each coordinate j 6= i and let the ith coordinate values’
range over some linearly ordered set Xi ⊆ Pi, then the image of the supremum is the same as
the supremum of the images. By this definition it is clear that if f is continuous, then it is
continuous at all of its coordinates.

The reverse direction does not hold in general. To see this, let us consider the following
function f : 2N → 2: let f(x1, x2, x3, . . .) be 0 if an infinite number of xi’s are 1, and 1
otherwise.

Then f is continuous on all of its coordinates: if we fix x1, x2, . . . , xi−1, xi+1, xi+2, . . . to some
values xj ∈ {0, 1}, then whatever xi is, it is either the case that the sequence of the fixed
values already contains an infinite number of 1s (in which case f takes the value 0), or only
a finite number of them (in which case even with xi, there can be only a finite number of
them as well in the whole sequence and f takes the value 1), thus f(x1, . . . , xi−1, x, xi+1, . . .)
is a constant function which is continuous.

On the other side, consider the sequence u1, u2, u3, . . . defined as follows: the first i entries
of ui are 1’s, the rest are zeros. Then we have u1 ≤ u2 ≤ u3 ≤ . . ., thus U = {ui : 1 ≤ i}
is a linearly ordered set and it has the supremum (1, 1, 1, 1, . . .) since eventually all the
coordinates become 1. However, each ui contains only a finite number of 1s, thus f(ui) = 1
for each i. Thus, f(

∨
U) = 0 and

∨
u∈U f(u) = 1, and f is not continuous.

Note also that f is not even monotone in this setting but it is monotone at each coordinate.

But, if there is only a finite number of coordinates, then the converse also holds:

Proposition

Let P =
n∏
i=1

Pi be a finite product of posets and f : P → Q a function.

Then f is continuous (monotone, resp.) if and only if it is continuous (monotone, resp.)
at each coordinate i = 1, . . . , n.

Proof

First we show the claim for monotonicity. Assume f : P → Q is monotone at each
coordinate i = 1, . . . , n and let (x1, . . . , xn) ≤ (y1, . . . , yn), that is, xi ≤ yi for each i.

Szabolcs Iván, University of Szeged, Hungary 64 2016/11/26/20:04:00

Then, applying coordinate-wise monotonicity, one at a time, we get

f(x1, . . . , xn) ≤ f(y1, x2, x3, . . . , xn)

≤ f(y2, y2, x3, . . . , xn)

≤ . . .

≤ f(y1, y2, y3, . . . , yn),

so f is indeed monotone.

Now assume f is continuous at each coordinate i = 1, . . . , n. (Then, f is monotone at each
coordinate, thus f is monotone.)

Let U ⊆ P be a nonempty, linearly ordered subset of P having the supremum u∗ =
∨
U .

Let us write U = {(xi1, xi2, . . . , xin) : i ∈ I}. Then, u∗ =
(∨

i∈I x
i
1,
∨
i∈I x

i
2, . . . ,

∨
i∈I x

i
n

)
.

Then, applying continuity at one coordinate each, we get

f(u∗) = f
(∨
i∈I

xi1,
∨
i∈I

xi2, . . . ,
∨
i∈I

xin

)
=

∨
i1∈I

f
(
xi11 ,

∨
i∈I

xi2, . . . ,
∨
i∈I

xin

)
=

∨
i1∈I

∨
i2∈I

f
(
xi11 , x

i2
2 , . . . ,

∨
i∈I

xin

)
= . . .

=
∨
i1∈I

∨
i2∈I

. . .
∨
in∈I

f(xi11 , x
i2
2 , . . . , x

in
n).

Then, since each member u = f(xi1, . . . , x
i
n) of U is of the form f(xi11 , x

i2
2 , . . . , x

in
n), we get

that f(u) ≤ f(u∗) for each u ∈ U , thus
∨
u∈U f(u) ≤ f(u∗).

Also, let i1, . . . , in ∈ I and consider the subset S = {(xij1 , . . . , x
ij
n) : 1 ≤ j ≤ n} of U . Since

U is linearly ordered, so is its finite subset S, which has a largest element (x
ij
1 , . . . , x

ij
n).

But then each vector (xi11 , x
i2
2 , . . . , x

in
n) has some upper bound of the form (x

ij
1 , . . . , x

ij
n),

that is, some upper bound in U . Hence, since f is monotone, we get that each member of
the set {f(xi11 , x

i2
2 , . . . , x

in
n) : i1, . . . , in ∈ I} has some upper bound in {f(u) : u ∈ U}, thus

f(u∗) ≤
∨
u∈U f(u) as well, hence f(u∗) =

∨
u∈U f(u) indeed holds.

Now we are ready to proceed with [[ifzero]]:

Proposition

The function [[ifzero]] is continuous.

Proof

By the previous proposition it suffices to show that [[ifzero]] is continuous at each of its
three coordinates. Now if we fix two of the three coordinates, then we get a function f
from N⊥ to N⊥ and we already know that such functions are continuous if and only if
f(⊥) ≤ f(n) for each n ∈ N. Thus we’ll check this property in all the three cases.

1. If we fix y and z, we have to check [[ifzero]](⊥, y, z) ≤ [[ifzero]](x, y, z) which holds,

Szabolcs Iván, University of Szeged, Hungary 65 2016/11/26/20:04:00

since [[ifzero]](⊥, y, z) = ⊥ is the least element of N⊥.

2. If we fix x and z, we have to check [[ifzero]](x,⊥, z) ≤ [[ifzero]](x, y, z). If x 6= 0, then
the two values coincide. If x = 0, then we get ⊥ ≤ y which clearly holds.

3. Finally, fixing x and y, we check [[ifzero]](x, y,⊥) ≤ [[ifzero]](x, y, z), which holds
since for x = ⊥ and x = 0 the two values coincide (being ⊥ and y respectively in the
two cases), and when x is some other integer, then we get ⊥ ≤ z which also holds.

Hence, [[ifzero]] is continuous at each of its three coordinates, thus is continuous.

Thus if we define the semantics for conditional branching as

[[Γ ` ifzero(M1,M2,M3) : σ]](d1, . . . , dn) = [[ifzero]](v1, v2, v3)

where vi = [[Γ ` Mi : nat]](d1, . . . , dn) for i = 1, 2, 3, then the resulting function is also
continuous (applying the induction hypothesis on M continuity of [[ifzero]] and that target
tupling of three functions and function composition preservers continuity).

For defining semantics for function application, we define the following function

eval :
(

[P → Q]× P
)
→ Q : eval(f, x) = f(x)

for the CPOs P and Q.

As usual, first we show that this function is continuous:

Proposition

The above evaluation function eval is continuous.

Proof

As eval is a binary function, it suffices to show that it’s continuous at both coordinates.

1. Let us fix x ∈ Q and let F ⊆ [P → Q] be a nonempty linearly ordered set of contin-
uous functions from P to Q. We have to show that eval(

∨
F, x) =

∨
f∈F eval(f, x).

But as the left hand side is (
∨
F)(x) (by definition of eval) which further equals to∨

f∈F f(x) (by definition of supremum of functions), which is again
∨
f∈F eval(f, x)

(by definition of eval), this case is verified.

2. Now let us fix f ∈ [P → Q] and let X ⊆ Q be a nonempty linearly ordered subset
of Q. Then, eval(f,

∨
X) = f(

∨
X) (by definition of eval), which further equals to∨

x∈X f(x) (as f is continuous) which is, by definition of eval,
∨
x∈X eval(f, x). Thus

this case is also verified and eval is continuous.

Hence, if we define the semantics for function application as

[[Γ `M(N) : σ]](d1, . . . , dn) = eval
(

[[Γ `M : τ → σ]](d1, . . . , dn), [[Γ ` N : τ]](d1, . . . , dn)
)

we also get that (applying induction on the structure of the term, the fact that eval is continuous,
and that target tupling of two functions and function composition preserves continuity) this
function is also continuous.

Szabolcs Iván, University of Szeged, Hungary 66 2016/11/26/20:04:00

In the next step, we define semantics for λ-abstraction. To do that, we first define the curry
function (which we have already used in our introductionary Scala snippet) as follows: when f
is some (P1×. . .×Pn)→ Q function for some n ≥ 1, then let curry(f) be the (P1×. . .×Pn−1)→
(Pn → Q) function defined as(

curry(f)(p1, . . . , pn−1)
)
(pn) = f(p1, . . . , pn).

Again, we show that first if f is continuous, then so is the resulting function curry(f):

Proposition

The curry function is a [[(P1× . . .×Pn)→ Q]→ [(P1× . . .×Pn−1)→ [Pn → Q]]] function.

Proof

There are actually three sub-statements to verify in the above sentence:

1. For each f ∈ [(P1 × . . . × Pn) → Q] and values p1 ∈ P1, p2 ∈ P2, . . . , pn−1 ∈ Pn−1,
the function curry(f)(p1, . . . , pn) : Pn → Q is continuous. (That’s the innermost
bracket.)

But that’s clear since curry(f)(p1, . . . , pn−1) is simply the function we get by fixing
each coordinate 1 ≤ i ≤ n − 1 of f to the constant pi, that is, continuity of this
function is exactly the continuity of f at the nth coordinate which holds since f is
continuous.

2. For each f ∈ [(P1× . . .× Pn)→ Q], the function curry(f) is continuous. (That’s the
middle bracket.)

To show this, it suffices to show that curry(f) is continuous at each of its coordinates
i = 1, . . . , n − 1, that is, whenever p1, . . . , pi−1, pi+1, . . . , pn−1 are fixed, and X ⊆ Pi
is some nonempty linearly ordered set, then

curry(f)(p1, . . . , pi−1,
∨

X, pi+1, . . . , pn−1) =
∨
x∈X

curry(f)(p1, . . . , pi−1, x, pi+1, . . . , pn−1).

Now two functions are the same if and only if they agree on every input pn, thus this
is further equivalent to

curry(f)(p1, . . . , pi−1,
∨

X, pi+1, . . . , pn−1)(pn) =∨
x∈X

curry(f)(p1, . . . , pi−1, x, pi+1, . . . , pn−1)(pn),

which is by the definition of curry further equivalent to

f(p1, . . . , pi−1,
∨

X, pi+1, . . . , pn−1, pn) =∨
x∈X

f(p1, . . . , pi−1, x, pi+1, . . . , pn−1, pn),

which holds since f is continuous, thus it is continuous at its ith coordinate as well.

3. The curry function itself is continuous. (That’s the outermost bracket.)

Let F ⊆ [(P1 × . . . × Pn) → Q] be a linearly ordered set of continuous functions.
We have to show that curry(

∨
F) =

∨
f∈F curry(f). By definition, these (n− 1-ary)

Szabolcs Iván, University of Szeged, Hungary 67 2016/11/26/20:04:00

functions coincide iff they agree on every possible input vector p1, . . . , pn−1. As their
results are Pn → Q functions, “agreeing on it” means that these functions have to
agree on every possible input pn. Thus, curry(

∨
F) =

∨
f∈F curry(f) holds if and

only if

curry(
∨

F)(p1, . . . , pn−1)(pn) =
(∨
f∈F

curry(f)
)

(p1, . . . , pn−1)(pn).

Which holds since

curry(
∨

F)(p1, . . . , pn−1)(pn)

= (
∨

F)(p1, . . . , pn) by definition of curry

=
∨
f∈F

f(p1, . . . , pn) by definition of function supremum

=
∨
f∈F

curry(f)(p1, . . . , pn−1)(pn) by definition of curry

=
(∨
f∈F

curry(f)(p1, . . . , pn−1)
)

(pn) by definition of function supremum

=
(∨
f∈F

curry(f)
)

(p1, . . . , pn−1)(pn) by definition of function supremum.

Hence, if we define the semantics for λ-abstraction as

[[Γ ` λx : σ.(M) : σ → τ]](d1, . . . , dn) = curry([[Γ, x : σ `M : τ]])(d1, . . . , dn)

we get that the resulting function is also continuous (applying the induction hypothesis, the
continuity of curry and that function composition preserves continuity).

(A minor note: here we assume that x does not occur in Γ. If it does, then first one should
rename the λ-bound variable to some fresh name and apply currying afterwards.)

In that case, the function types work out smoothly: then [[Γ, x : σ ` M : τ]] is a function
from [[σ1]]× . . . [[σn]]× [[σ]] to [[τ]], thus its curry is a function from [[σ1]]× . . . [[σn]] = [[Γ]] to
[[[σ]]→ [[τ]]] = [[σ → τ]] which is exactly what we expect.

Finally, to deal with recursion, we introduce the lfp (for least fixed point) operator, which takes
as argument a function f : P → [Q → Q] for the CPOs P and Q, and returns a function
lfp(f) : P → Q defined as follows: let

(
lfp(f)

)
(p) be the least fixed point of the function f(p).

The definition makes sense since for each p ∈ P , as g = f(p) is a Q → Q continuous function
and has a least fixed point (namely,

∨
n<ω g

n(⊥) where ⊥ is the least element of Q due to
Tarski’s Fixed Point Theorem). Thus, we can set lfp(f)(p) to this least fixed point.

Again, we show that this operator lfp preserves continuity:

Proposition

If f ∈ [P → [Q→ Q]], then lfp(f) ∈ [P → Q].

Proof

Let X ⊆ P be a linearly ordered nonempty subset of P and let x∗ stand for the supremum∨
X. We have to show that lfp(f)(x∗) =

∨
x∈X lfp(f)(x).

Szabolcs Iván, University of Szeged, Hungary 68 2016/11/26/20:04:00

Recall that if g ∈ [Q → Q], then its least fixed point is
∨
n<ω g

n(⊥). Now if we calculate
lfp(f)(x∗), then this g is the function f(x∗) = f(

∨
X) =

∨
x∈X f(x) since f is continuous.

That is, the supremum of the functions f(x). (Note that since f is continuous and X is
linearly ordered, so is f(x) and as [Q→ Q] is a CPO, we have that this function exists.)

That is, g(⊥) is
∨
x1∈X(f(x1)(⊥)).

Calculating g2(⊥) we get then g2(⊥) =
∨
x2∈X

∨
x1∈X f(x2)

(
f(x1)(⊥)

)
and in general,

gn(⊥) =
∨
xn∈X

∨
xn−1∈X

. . .
∨
x1∈X

f(xn)f(xn−1) . . . f(x1)(⊥),

that is,

gn(⊥) =
∨

x1,...,xn∈X

f(xn)f(xn−1) . . . f(x1)(⊥).

Now recall that X is a linearly ordered subset of P and f is continuous, thus it is monotone.
Then, whenever x1, . . . , xn ∈ X is a finite subset, then there is a largest element xi among
them. For this xi we have f(xj) ≤ f(xi) for each j = 1, . . . , n, that is, f(xj)(y) ≤ f(xi)(y)
for every y ∈ Q. Thus we get that

f(xn)f(xn−1) . . . f(x1)(⊥) ≤ f(xi)
n(⊥),

thus every member in the set {f(xn)f(xn−1) . . . f(x1)(⊥) : x1, . . . , xn ∈ X} has an upper
bound in its subset {f(x)n(⊥) : x ∈ X}, hence we get∨

x1,...,xn∈X

f(xn)f(xn−1) . . . f(x1)(⊥) =
∨
x∈X

f(x)n(⊥).

Thus,∨
n<ω

∨
x1,...,xn∈X

f(xn)f(xn−1) . . . f(x1)(⊥) =
∨
n<ω

∨
x∈X

f(x)n(⊥) =
∨
x∈X

∨
n<ω

f(x)n(⊥),

and as the left-hand side is lfp(f)(x∗), the right-hand side is
∨
x∈X lfp(f)(x) due to the

Tarski Fixed Point Theorem, the statement is proved.

Thus we can finally define the semantics of the recursion operator as

[[Γ ` Yσ(M) : σ]](d1, . . . , dn) = lfp
(

[[Γ `M : σ → σ]]
)

(d1, . . . , dn).

Applying the induction hypothesis we get that [[Γ ` M : σ → σ]] is a
[
[[Γ]] →

[
[[σ]] → [[σ]]

]]
function, thus its lfp is a

[
[[Γ]]→ [[σ]]

]
function, as intended.

Equivalence of the two semantics

We have defined two semantics for terms: the operational semantics (defined over pure terms)
and the denotational semantics (defined for terms).

One part of the two semantics being equivalent is the following:

Szabolcs Iván, University of Szeged, Hungary 69 2016/11/26/20:04:00

If Γ `M : σ is a term and M .N , then [[Γ `M : σ]] = [[Γ ` N : σ]].

This of course has the corollary that if Γ ` M : σ and M .∗ V , in particular if M ⇓ V , then
[[Γ `M : σ]] = [[Γ ` V : σ]] as well.

But this is not enough for an exact coincidence: for example, the term M = (Y (λf.λx.f(x)))(0)
enters an infinite loop according to the operational semantics as:

(Y (λf.λx.f(x)))(0)

. ((λf.λx.f(x))(Y (λf.λx.f(x))))(0)

. (λx.(Y (λf.λx.f(x)))(x))(0)

. (Y (λf.λx.f(x)))(0)

and the computation loops over these three terms forever. Thus, if the two semantics “coincide”
in a sense, then this term should have the value ⊥ (corresponding to the infinite loop). This
property can be captured by the following statement:

If `M : nat is a term, then for any n ∈ N, M ⇓ n if and only if [[`M : nat]] is the
constant n function.

Also, M does not have a value if and only if [[`M : nat]] is the constant ⊥ function.

In this section we show that both properties indeed hold.

The first statement is technically easy to check but of course it has many cases. First we
show that term substitution factors through denotational semantics, which will be used in the
λ-abstraction case.

Proposition

If Γ `M : σ for Γ = x1 : σ1, . . . , xn : σn and for each 1 ≤ i ≤ n, ∆ ` Ni : σi, then

[[Γ `M : σ]] ◦
〈

[[∆ ` N1 : σ1]], . . . , [[∆ ` Nn : σn]]
〉

= [[∆ `M [~x/ ~N] : σ]].

Proof

We show the claim by induction on the structure of M .

1. If M = 0 (and thus σ = nat), then M [~x/ ~N] = 0 as well and both sides evaluate to
the constant 0 function.

2. If M = xi (and thus σ = σi), then the left-hand side is [[∆ ` Ni : σi]] (as [[Γ ` xi : σi]]

is the projection to the ith coordinate), and since xi[~x/ ~N] = Ni, the right-hand side
is [[∆ ` Ni : σi]] as well.

3. If M = op(M1, . . . ,Mk) for Γ `Mj : τj such that

[[Γ ` op(M1, . . . ,Mk) : σ]] = [[op]] ◦ 〈[[Γ `M1 : τ1]], . . . , [[Γ `Mk : τk]]〉

Szabolcs Iván, University of Szeged, Hungary 70 2016/11/26/20:04:00

for some function [[op]] and M [~x/ ~N] = op(M1[~x/ ~N], . . . ,Mk[~x/ ~N]), then

[[Γ `M : σ]] ◦
〈

[[∆ ` N1 : σ1]], . . . , [[∆ ` Nn : σn]]
〉

= [[op]] ◦
〈

[[Γ `M1 : τ1]], . . . , [[Γ `Mk : τk]]
〉
◦
〈

[[∆ ` N1 : σ1]], . . . , [[∆ ` Nn : σn]]
〉

∗
= [[op]] ◦

〈
[[∆ `M1[~x/ ~N] : τ1]], . . . , [[∆ `Mk[~x/ ~N] : τk]]

〉
= [[∆ ` op(M1[~x/ ~N], . . . ,Mk[~x/ ~N]) : σ]]

= [[∆ `M [~x/ ~N] : σ]]

where in the starred step we applied the induction hypothesis for the terms Mi. This
handles the case of succ, pred, ifzero, M(N) and Yσ(M), with [[op]] being [[succ]],
[[pred]], [[ifzero]], eval and lfp, respectively.

4. Finally, if M = λx : τ1.M1 and thus σ = τ1 → τ2, with x not appearing in Γ, then

[[Γ ` λx : τ1.M1 : τ1 → τ2]] ◦
〈

[[∆ ` N1 : σ1]], . . . , [[∆ ` Nn : σn]]
〉

= curry[[Γ, x : τ1 `M1 : τ2]] ◦
〈

[[∆ ` N1 : σ1]], . . . , [[∆ ` Nn : σn]]
〉

= curry[[Γ, z : τ1 `M1[x/z] : τ2]] ◦
〈

[[∆ ` N1 : σ1]], . . . , [[∆ ` Nn : σn]]
〉

for any variable z. For the right side,

[[∆ ` (λx : τ1.M1)[~x/ ~N] : τ1 → τ2]]

= [[∆ ` λz : τ1.M1[x/z][~x/ ~N] : τ1 → τ2]]

= curry[[∆, z : τ1 `M1[x/z][~x/ ~N] : τ2]]

for the fresh variable z not occurring in any of the Ni. Both results are functions

of type [[∆]] →
(

[[τ1]] → [[τ2]]
)

: such functions f and g coindide if and only if

f(~d)(d) = g(~d)(d) for each ~d ∈ [[∆]] and d ∈ [[τ1]]. Thus, as(
curry[[Γ, z : τ1 `M1[x/z] : τ2]] ◦

〈
[[∆ ` N1 : σ1]], . . . , [[∆ ` Nn : σn]]

〉)
(~d)(d)

= curry[[Γ, z : τ1 `M1[x/z] : τ2]]
(

[[∆ ` N1 : σ1]](~d), . . . , [[∆ ` Nn : σn]](~d)
)

(d)

= [[Γ, z : τ1 `M1[x/z] : τ2]]
(

[[∆ ` N1 : σ1]](~d), . . . , [[∆ ` Nn : σn]](~d), d
)

= [[Γ, z : τ1 `M1[x/z] : τ2]]
(

[[∆, z : τ1 ` N1 : σ1]](~d, d), . . . , [[∆, z : τ1 ` Nn : σn]](~d, d), [[∆, z : τ1 ` z : τ1]](~d, d)
)

∗
= [[∆, z : τ1 `M1[x/z][~x/ ~N, z/z] : τ2]](~d, d)

= curry[[∆, z : τ1 `M1[x/z][~x/ ~N] : τ2]](~d)(d)

and the claim is proved.

We are ready to show one direction of the semantics equivalence:

Szabolcs Iván, University of Szeged, Hungary 71 2016/11/26/20:04:00

Proposition

If Γ `M : σ is a term and M .N , then [[Γ `M : σ]] = [[Γ ` N : σ]].

Proof

We apply induction on the structure of M , having many subcases.

1. If M = x or M = 0 or M = λx : τ.M ′, then there is no N with M .N , so the claim
holds.

2. If M = (M1)(M2) and M1 = λx : τ.M ′
1, then Γ ` M1 : τ → σ and Γ ` M2 : τ

are terms. Now if M . N , then N = M ′
1[x/M2]. We have to show that [[Γ ` (λx :

τ.M ′
1)(M2) : σ]] = [[Γ `M ′

1[x/M2] : σ]]. Spelling out the definitions,

[[Γ ` (λx : τ.M ′
1)(M2)]]

= eval ◦
〈

[[Γ ` λx : τ.M ′
1 : τ → σ]], [[Γ `M2 : τ]]

〉
= eval ◦

〈
curry[[Γ, x : τ `M ′

1 : σ]], [[Γ `M2 : τ]]
〉
.

For an input ~d ∈ [[Γ]] this is evaluated as

eval ◦
〈
curry[[Γ, x : τ `M ′

1 : σ]], [[Γ `M2 : τ]]
〉

(~d)

= curry[[Γ, x : τ `M ′
1 : σ]](~d)([[Γ `M2 : τ]](~d))

= [[Γ, x : τ1 `M ′
1 : σ]](~d, [[Γ `M2 : τ]](~d))

= [[Γ `M ′
1[x/M2] : σ]](~d).

3. If M = (M1)(M2) and M1 .M
′
1, then by M .N it has to be the case N = (M ′

1)(M2).
By the induction hypothesis, [[Γ `M1 : τ → σ]] = [[Γ `M ′

1 : τ → σ]] and thus

[[Γ `M : σ]] = eval([[Γ `M1 : τ → σ]], [[Γ `M2 : τ]])

= eval([[Γ `M ′
1 : τ → σ]], [[Γ `M2 : τ]])

= [[Γ ` N : σ]].

4. If M = succ(M1), then N = succ(N1) for some M1.N1. By the induction hypothesis,
[[Γ `M1 : nat]] = [[Γ ` N1 : nat]], thus

[[Γ `M : nat]] = [[succ]]◦ [[Γ `M1 : nat]] = [[succ]]◦ [[Γ ` N1 : nat]] = [[Γ ` N : nat]].

5. If M = pred(0), then N = 0 and we have

[[Γ ` pred(0) : nat]] = [[pred]] ◦ [[Γ ` 0 : nat]]

which is [[pred]] applied on the constant 0, that is, indeed the constant 0 function.

6. If M = pred(succn+1(0)), then N = succn(0). As we already argued, [[Γ ` succn(0) :
nat]] is the constant n function for each n. As [[pred]] decreases the positive values
by one, we get [[Γ `M : nat]] is also the constant n function.

Szabolcs Iván, University of Szeged, Hungary 72 2016/11/26/20:04:00

7. If M = pred(M1), with M1 . N1, then N = succ(N1). By the induction hypothesis,
[[Γ `M1 : nat]] = [[Γ ` N1 : nat]], thus

[[Γ `M : nat]] = [[pred]]◦ [[Γ `M1 : nat]] = [[pred]]◦ [[Γ ` N1 : nat]] = [[Γ ` N : nat]].

8. If M = ifzero(0,M2,M3), then N = M2. Then for any d1, . . . , dn we have

[[Γ `M : nat]](d1, . . . , dn) = [[ifzero]](v1, v2, v3)

with vi = [[Γ ` Mi : nat]](d1, . . . , dn) where M1 = 0. As [[Γ ` 0 : nat]] is the
constant zero function, we have that v1 = 0, thus by the definition of [[ifzero]],
[[ifzero]](v1, v2, v3) = v2 which is exactly [[Γ `M2 : nat]], as intended.

9. If M = ifzero(n+ 1,M2,M3), then N = M3. Then for any d1, . . . , dn we have

[[Γ `M : nat]](d1, . . . , dn) = [[ifzero]](v1, v2, v3)

with vi = [[Γ ` Mi : nat]](d1, . . . , dn) where M1 = n + 1. As [[Γ ` n + 1 : nat]] is the
constant n+ 1 function, we have that v1 = n+ 1, thus by the definition of [[ifzero]],
[[ifzero]](v1, v2, v3) = v3 which is exactly [[Γ `M3 : nat]], as intended.

10. If M = ifzero(M1,M2,M3) with M1 . M
′
1, then N = ifzero(M ′

1,M2,M3). By the
induction hypothesis, [[Γ `M1 : nat]] = [[Γ `M ′

1 : nat]], thus

[[Γ ` ifzero(M1,M2,M3) : nat]]

= [[ifzero]] ◦ 〈[[Γ `M1 : nat]], [[Γ `M2 : nat]], [[Γ `M3 : nat]]〉
= [[ifzero]] ◦ 〈[[Γ `M ′

1 : nat]], [[Γ `M2 : nat]], [[Γ `M3 : nat]]〉
= [[Γ ` ifzero(M ′

1,M2,M3) : nat]]

= [[Γ ` N : nat]].

11. Finally, if M = Yσ(M1), then N = M1(Yσ(M1)). Then, Γ ` M1 : σ →
σ is a term. Let f stand for the function [[Γ ` M1 : σ → σ]]. Then
[[Γ ` M : σ]](d1, . . . , dn) is lfp(f)(d1, . . . , dn) and [[Γ ` N : σ]](d1, . . . , dn)

is eval
(
f(d1, . . . , dn), lfp(f)(d1, . . . , dn)

)
. By definition of lfp, lfp(f)(d1, . . . , dn)

is a (actually, the least) fixed point of the function f(d1, . . . , dn) (which is a

[[σ]] → [[σ]] continuous function). Hence, eval
(
f(d1, . . . , dn), lfp(f)(d1, . . . , dn)

)
is

f(d1, . . . , dn)
(
lfp(f)(d1, . . . , dn)

)
= lfp(f)(d1, . . . , dn), i.e., [[Γ ` M : σ]](d1, . . . , dn),

thus the two functions coincide here as well.

Now we turn to the our direction. We want to prove that whenever

[[`M : nat]] = n

for some n ∈ N, then
M ⇓ n.

In order to show this, we have to prove some more correlations between the two semantics.
We define for each Γ and σ a relation denoted ≤ between members of [[Γ]] → [[σ]] and terms
Γ `M : σ inductively as follows.

Szabolcs Iván, University of Szeged, Hungary 73 2016/11/26/20:04:00

Definition

Let Γ `M : σ be a term and f : [[Γ]]→ [[σ]] be a function.

We define f ≤ (Γ ` M : σ) for the context Γ = x1 : σ1, . . . , xn : σn inductively on the
structure of σ and the cardinality of Γ as follows:

• If σ = nat, then f ≤ Γ ` M : nat if for each di ∈ [[σi]], ` Ni : σi for i = 1, . . . , n we

either have f(~d) = ⊥, or f(~d) = n ∈ N and M [~x/ ~N] ⇓ n.

• If σ = τ1 → τ2, then f ≤ Γ ` M : τ1 → τ2 if for each di ∈ [[σi]], d ∈ [[τ1]], ` Ni : σi
with di ≤ Ni and ` N : τ1 with d ≤ N we have f(~d)(d) ≤ (M [~x/ ~N])(N).

We will prove that for any term,

[[Γ `M : σ]] ≤ Γ `M : σ.

This in particular implies that [[` M : nat]] ≤ ` M : nat, which by the definition of the base
case implies that if [[`M : nat]] = n ∈ N, then M ⇓ n, and that’s what we are seeking for.

Before the proof itself, we show several handy statements, needed mainly for the case of the
recursion operator.

Proposition

Assume f ≤ f ′ ≤ Γ `M : σ. Then f ≤ Γ `M : σ.

Thus in particular, ⊥ ≤ Γ `M : σ for the least element ⊥ of the corresponding CPO.

Proof

Let Γ = x1 : σ1, . . . , xn : σn and di ≤ Ni for di ∈ [[σi]] and ` Ni : σi. We use induction on
the structure of σ.

If σ = nat, then f(~d) is either ⊥, or some n ∈ N. If it is ⊥, then it’s fine. Otherwise,

f(~d) = n. By f ≤ f ′ it has to be the case f ′(~d) = n as well. We get M [~x/ ~N] ⇓ n by
f ′ ≤ Γ `M : σ.

If σ = σ1 → σ2, then we have to show that whenever d ≤ N for d ∈ [[σ1]] and ` N : σ1, it
also holds that

f(~d)(d) ≤ ` (M [~x/ ~N])(N) : σ2.

Since f ≤ f ′ we have f(~d) ≤ f ′(~d), thus f(~d)(d) ≤ f ′(~d)(d) and by f ′ ≤ Γ ` M : σ we
have

f ′(~d)(d) ≤ ` (M [~x/ ~N])(N) : σ2.

Applying the induction hypothesis we get that f(~d)(d) ≤ ` (M [~x/ ~N])(N) : σ2, exactly
what we needed.

Proposition

Assume f ≤`M : σ and N .M . Then f ≤` N : σ.

Szabolcs Iván, University of Szeged, Hungary 74 2016/11/26/20:04:00

Proof

We use induction on the structure of σ.

If σ = nat, then by f ≤` M : nat, we either have f = ⊥, in which case f ≤` N : nat as
well, or f = n ∈ N, in which case M ⇓ n. Thus, by N . M we also have N ⇓ n, hence
f ≤` N : nat.

If σ = σ1 → σ2, then let d ∈ [[σ1]] and ` K : σ1 with d ≤ K. By f ≤` M : σ1 → σ2 we
get that f(d) ≤`M(K) : σ2. From N .M we also get N(K) . M(K). Thus applying the
induction hypothesis we get f(d) ≤ N(K), which proves f ≤` N : σ.

Proposition

Assume Γ ` M : σ is a term and F = {fi : i ∈ I} is a linearly ordered set of functions
[[Γ]]→ [[σ]] with fi ≤ Γ `M : σ for each i ∈ I. Then

∨
F ≤ Γ `M : σ as well.

Proof

We use induction on the structure of σ. Let Γ = x1 : σ1, . . . , xn : σn, and for each 1 ≤ i ≤ n,
let di ∈ [[σi]], ` Ni : σi with di ≤ Ni.

Clearly, (
∨
F)(~d) =

∨
f∈F f(~d) and the set F ′ = {f(~d) : f ∈ F} is a linearly ordered subset

of [[σ]].

If σ = nat, then either
∨
F ′ = ⊥ which is fine, or

∨
F ′ = n for some n ∈ N. In the latter

case there has to be a function f ∈ F with f(~d) = n. By f ≤ Γ ` M : nat we get that

M [~x/ ~N] ⇓ n. Thus
∨
F ≤ Γ `M : nat.

If σ = σ1 → σ2, then we have to show that whenever d ≤ N for d ∈ [[σ1]] and ` N : σ1,

then
(∨

f∈F f(~d)
)

(d) ≤ Γ `M [~x/ ~N](N).

But as
(∨

f∈F f(~d)
)

(d) =
∨
f∈F (f(~d)(d)) and since F is linearly ordered, so is {f(~d)(d) :

f ∈ F}. Also, since by assumption f ≤ Γ ` M : σ1 → σ2 for each f ∈ F , we have that

f(~d)(d) ≤` M [~x/ ~N](N). Since these objects form a linearly ordered subset of [[σ2]], we

can apply induction and get that
∨
f∈F (f(~d)(d)) ≤ `M [~x/ ~N](N), proving the claim.

Proposition

For any term Γ `M : σ it holds that

[[Γ `M : σ]] ≤ Γ `M : σ.

Proof

We apply induction on the structure of M , as usual. Let Γ be the context x1 : σ1, . . . , xn :
σn and for each i = 1, . . . , n let di ∈ [[σi]] and ` Ni : σi with di ≤ Ni.

1. If M = 0, then σ = nat and we have [[Γ ` 0 : nat]](~di) = 0, also 0[~x/ ~Ni] = 0, and
0 ⇓ 0 indeed holds.

2. If M = xi, then σ = σi and [[Γ ` xi : σi]](~d) = di. Also, xi[~x/ ~N] = Ni, hence we
have to show di ≤ Γ ` Ni : σi which is granted by our assumption on the dis and

Szabolcs Iván, University of Szeged, Hungary 75 2016/11/26/20:04:00

Nis.

3. If M = succ(K), then σ = nat. Then [[Γ `M : nat]](~d) is [[succ]]
(

[[Γ ` K : nat
]
](~d)).

Now if [[Γ ` K : nat
]
](~d) = ⊥, then this result is also ⊥; if it’s some n ∈ N, then the

result is n+ 1. Applying the induction hypothesis on ([[Γ ` K : nat
]
](~d) = n we get

that K[~x/ ~N] ⇓ n. Thus M [~x/ ~N] = succ(K[~x/ ~N]) ⇓ n+ 1.

4. If M = pred(K), then σ = nat and [[Γ ` M : nat]](~d) is [[pred]]
(

[[Γ ` K : nat
]
](~d)).

Let x denote [[Γ ` K : nat
]
](~d) ∈ N⊥. If x = ⊥, then [[Γ ` M : nat]](~d) =

[[pred]](⊥) = ⊥ as well. If x = 0, then [[Γ ` M : nat]](~d) = [[pred]](0) = 0.

Applying the induction hypothesis we get that K[~x/ ~N] ⇓ 0. Thus, M [~x/ ~N] =

pred(K[~x/ ~N]) .∗ pred(0) . 0, so M ⇓ 0.

Finally, if x = n + 1 for some n ∈ N, then [[Γ ` M : nat]](~d) = [[pred]](n + 1) = n.

Applying the induction hypothesis on K we get that K[~x/ ~N] ⇓ n. Hence M [~x/ ~N] =

pred(K[~x/ ~N]) .∗ pred(n+ 1) . n, thus M [~x/ ~N] ⇓ n.

5. Assume M = ifzero(M1,M2,M3). Then σ = nat again. Now

[[Γ `M : nat]](~d) = [[ifzero]]([[Γ `M1 : nat]](~d), [[Γ `M2 : nat]](~d), [[Γ `M3 : nat]](~d)).

Let vi stand for [[Γ `Mi : nat]](~d).

If v1 = ⊥, then the result is ⊥ which is fine.

If v1 = 0, then the result is v2. If v2 = ⊥, it’s fine. Otherwise, let v2 = n ∈
N. Applying the induction hypothesis we get from [[Γ ` M1 : nat]] ≤ Γ ` M1 :

nat that M1[~x/ ~N] ⇓ 0. Thus, M [~x/ ~N] = ifzero(M1[~x/ ~N],M2[~x/ ~N],M3[~x/ ~N]) .∗

ifzero(0,M2[~x/ ~N],M3[~x/ ~N]) . M2[~x/ ~N]. Now applying the induction hypothesis we

get from [[Γ `M2 : nat]] ≤ Γ `M2 : nat that M2[~x/ ~N] ⇓ n. Thus, M [~x/ ~N] ⇓ n.

Finally if v1 is a positive integer m + 1, then the result is v3. If v3 = ⊥, it’s
fine. Otherwise, let v3 = n ∈ N. Applying the induction hypothesis we get from
[[Γ ` M1 : nat]] ≤ Γ ` M1 : nat that M1[~x/ ~N] ⇓ m+ 1. Thus, M [~x/ ~N] =

ifzero(M1[~x/ ~N],M2[~x/ ~N],M3[~x/ ~N]) .∗ ifzero(m+ 1,M2[~x/ ~N],M3[~x/ ~N]) . M3[~x/ ~N].
Now applying the induction hypothesis we get from [[Γ ` M3 : nat]] ≤ Γ ` M3 : nat

that M3[~x/ ~N] ⇓ n. Thus, M [~x/ ~N] ⇓ n.

6. Assume M = N(K). Then Γ ` N : τ → σ and Γ ` K : τ . Then,

[[Γ ` N(K) : σ]](~d)

= [[Γ ` N : τ → σ]](~d)
(

[[Γ ` K : τ]](~d)
)
.

Applying the induction hypothesis for N , we get that whenever d ≤ K ′ for some
d ∈ [[τ]] and ` K ′ : τ , then [[Γ ` N : τ → σ]](~d)(d) ≤ N [~x/ ~N](K ′). Applying the

induction hypothesis for K, we get that d = [[Γ ` K : τ]](~d) ≤ K[~x/ ~N] = K ′, thus

we have that [[Γ ` N(K) : σ]](~d) ≤ N [~x/ ~N](K[~x/ ~N]) = M [~x/ ~N].

Szabolcs Iván, University of Szeged, Hungary 76 2016/11/26/20:04:00

7. Assume M = λx : σ1.N : σ1 → σ2. We have to show that whenever d ≤ K for
d ∈ [[σ1]] and ` K : σ1, then

[[Γ ` λx : σ1.N : σ1 → σ2]](~d)(d) ≤ (λx : σ1.N)[~x/ ~N](K).

The left-hand side equals to [[Γ, x : σ1 ` N : σ2]](~d, d), and the right-hand side is

(λz : σ1.N [x/z][~x/ ~N])(K) = N [~x/ ~N, x/K] for some fresh variable z, for which we
can apply the induction hypothesis.

8. Finally, assume M = Yσ(N). Then Γ ` N : σ → σ. Let f stand for the function
[[Γ ` N : σ → σ]]. Applying the induction hypothesis, f ≤ Γ ` N : σ → σ, which

is function type, so this means that f(~d)(d) ≤ N [~x/ ~N](K) for any d ≤ K, d ∈ [[σ]],

` K : σ. We have to show that [[Γ ` Yσ(N) : σ]](~d) ≤ Γ ` Yσ(N [~x/ ~N]) : σ.

From the Tarski Fixed Point Theorem we know that

[[Γ ` Yσ(N) : σ]](~d) =
∨
n≥0

(
f(~d)

)n
(⊥).

We prove that
(
f(~d)

)n
(⊥) ≤ Yσ(N [~x/ ~N]) : σ which shows our claim by the previous

proposition.

We also know that ⊥ ≤ Γ ` Yσ(N [~x/ ~N]) : σ, handling the case n = 0. We now apply

induction: if
(
f(~d)

)n
(⊥) ≤ Yσ(N [~x/ ~N]), then by f ≤ Γ ` N : σ → σ we get(

f(~d)
)n+1

(⊥) = f(~d)(
(
f(~d)

)n
(⊥)) ≤ N [~x/ ~N](Yσ(N [~x/ ~N])).

Since Yσ(N [~x/ ~N]) . N [~x/ ~N](Yσ(N [~x/ ~N])), the claim is proved.

Summing up, in the second part we

• defined the syntax of λ-calculus, which is the mathematical model of pure functional
programs;

• defined the operational semantics of λ-terms, which is the ,,how” part of the compu-
tation, a stepwise rewriting rule set;

• defined the denotational semantics of λ-terms, which is the ,,what” view of the com-
putation, assigning continuous functions to the terms;

• and proved that the two semantics exactly correspond to each other.

the end.

Szabolcs Iván, University of Szeged, Hungary 77 2016/11/26/20:04:00

