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Roadmap

• Order types, well-orderings, ordinals and scattered order types
• Some applications of these constructs in computer science
• Order types of regular and context-free languages
• Known results regarding decidability and complexity issues
• Open questions of the area
• Some proof techniques
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Ordered sets

A (linearly/totally) ordered set is a pair (𝑋, <) with 𝑋 being a set and < being
a total order on 𝑋: an irreflexive, transitive and trichotomous relation

In computer science we are usually only interested in countable sets
since we want to represent their elements by a finite amount of information

Examples
• The set N = {0, 1, 2, . . .} of natural numbers, equipped with their standard

ordering
• The set Z = {. . . , −2, −1, 0, 1, 2, . . .} of integers (+ their standard order)
• The set {−4, −2, 0, 2, 4, . . .} of the even integers
• The set Q of rationals
• The set {0, 1}* of finite binary strings, ordered lexicographically
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Order types

Amongst these, there is an order-preserving bijection between the integers and
the even integers

This is an equivalence relation over all the possible orderings

The classes of this equivalence relation are called order types.

The order type. . .
• of the natural numbers is denoted by 𝜔

• of the integers (and of the even integers) is denoted by 𝜁

• of the rationals is denoted by 𝜂

• of the finite sets is denoted by their cardinality
e.g. the order type sun < mon < tue < . . . < sat of the days of the week is denoted by 7

these order types are pairwise different, e.g. 𝜔 ̸= 𝜁
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Sums of orderings, order types

If (𝑋, <) and (𝑌, ≺) are ordered sets of order type 𝑜𝑋 and 𝑜𝑌 , respectively,
then the order type of their (disjoint) union 𝑋 × {0} ∪ 𝑌 × {1}, ordered by

• each element of 𝑋 is smaller than each element of 𝑌 ,
• inside 𝑋 and 𝑌 , the elements are ordered according to the original < and

≺, resp,
is usually denoted by 𝑜𝑋 + 𝑜𝑌 .

Two copies of the natural numbers, placed next to each other:
(0, 0) < (1, 0) < (2, 0) < . . . < (0, 1) < (1, 1) < (2, 1) < . . .

has order type 𝜔 + 𝜔.

𝜔 + 𝜔 ̸= 𝜔 𝜂 + 𝜂 = 𝜂

𝜔 + 1 ̸= 𝜔 1 + 𝜔 = 𝜔
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“Infinite” sums of orderings, order types

If 𝐼 = (𝐼, <) is an “indexing” ordering and for each 𝑖 ∈ 𝐼, 𝑋𝑖 = (𝑋𝑖, <𝑖) is an
ordering, then

∑︀
𝑖∈𝐼

𝑋𝑖 is the ordering with

• domain
⋃︀

𝑖∈𝐼

𝑋𝑖 × {𝑖}

• equipped with the anti-lexicographic ordering: (𝑝, 𝑖) < (𝑞, 𝑗) if and only if
either 𝑖 < 𝑗 or (𝑖 = 𝑗 and 𝑝 <𝑖 𝑞)

The order type is denoted
∑︀
𝑖∈𝐼

𝑜(𝑋𝑖).

We can place a number of orderings, each being either of type 1 or of type 𝜔,
next to each other, indexed by 𝜔 and we can get e.g.:

• 1 + 1 + 1 + 1 + 1 + . . . = 𝜔

• 1 + 1 + 1 + 1 + 𝜔 + 1 + 1 + 1 + 1 + . . . = 𝜔 + 𝜔

• 1 + 𝜔 + 1 + 1 + 𝜔 + 1 + 1 + 1 + 𝜔 + . . . = 𝜔 + 𝜔 + 𝜔 + . . .
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Products of orderings, order type

If we have a sum of the form
∑︀
𝑖∈𝐼

𝑋𝑖 with each 𝑋𝑖 having the same order type 𝑜,

then the order type of this sum is also denoted by 𝑜 × 𝑜(𝐼).

𝜔 + 𝜔 + 𝜔 + . . . = 𝜔 × 𝜔

𝜔 + 1 + 𝜔 + 1 + 𝜔 + 1 + . . . = (𝜔 + 1) × 𝜔 = 𝜔 × 𝜔

𝜔 + 𝜔 = 𝜔 × 2
2 × 𝜔 = 2 + 2 + 2 + . . . = 𝜔

. . . + 𝜔 + 𝜔 + 𝜔 + . . . = 𝜔 × 𝜁

𝜁 + 𝜁 + 𝜁 + . . . = 𝜁 × 𝜔 ̸= 𝜔 × 𝜁
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Well-orderings, ordinals

• An ordering is a well-ordering if it contains no infinite descending chain
• The order types of well-orderings are called ordinals

• the finite order types 0, 1, 2, ... are ordinals, as well as 𝜔

• 𝜁 and 𝜂 are not ordinals
• 𝜔 × 𝜔 is an ordinal
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The order of the ordinals

• the (countable) ordinals themselves are also ordered: 𝑜1 ⪯ 𝑜2 if some
ordering of type 𝑜1 can be mapped into an ordering of type 𝑜2 in an
order-preserving way

• if not the other way around: 𝑜1 ≺ 𝑜2

• 𝜔 ≺ 𝜔 + 1
• 𝜔 + 𝜔 ≺ 𝜔 × 𝜔

• turns out ≺ is a total ordering over the ordinals: for each pair 𝑜1, 𝑜2 of
ordinals, exactly one of 𝑜1 ≺ 𝑜2, 𝑜2 ≺ 𝑜1 or 𝑜1 = 𝑜2 holds

• (this is not true for all the order types, e.g. 𝜂 + 1 + 1 + 𝜂 can be embedded
into 𝜂 and vice versa but they are not the same)

• moreover, this ≺ contains no infinite descending chains ⇒ the ordinals
themselves are also well-ordered
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Successor and limit ordinals

An ordinal 𝛼 is either. . .
• a successor ordinal, that is, 𝛼 = 𝛽 + 1 for some (smaller) ordinal 𝛽,
• or a limit ordinal, that is, 𝛼 =

⋁︀
𝛽≺𝛼

𝛽 is the supremum of all the ordinals

smaller than 𝛼

• 7 = 6 + 1 is a successor ordinal
• 𝜔 is a limit ordinal: it is the supremum of {0, 1, 2, 3, . . .}
• 𝜔 + 3 = (𝜔 + 2) + 1 is a successor ordinal
• 𝜔 + 𝜔 and 𝜔 × 𝜔 are limit ordinals
• 0 =

⋁︀
∅ is a limit ordinal (usually treated separately in proofs)
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Exponentation of ordinals

If 𝛼 and 𝛽 are ordinals, then 𝛼𝛽 is. . .
• 1 if 𝛽 = 0,
• (𝛼𝛾) × 𝛼 if 𝛽 = 𝛾 + 1 is a successor ordinal,
• 0 if 𝛽 is a limit ordinal and 𝛼 = 0,
•

⋁︀
𝛾≺𝛽

𝛼𝛾 if 𝛽 is a limit ordinal and 𝛼 ̸= 0.

• 𝜔1 = (𝜔0) × 𝜔 = 1 × 𝜔 = 𝜔

• 𝜔2 = (𝜔1) × 𝜔 = 𝜔 × 𝜔

• 𝜔3 = 𝜔 × 𝜔 × 𝜔 associative

• 𝜔𝜔 =
⋁︀

𝑛<𝜔
𝜔𝑛 = 1 + 𝜔 + 𝜔2 + 𝜔3 + . . .
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Cantor normal form

Each ordinal 𝛼 can be uniquely written as a finite sum of the form
𝛼 = 𝜔𝛼1 × 𝑛1 + 𝜔𝛼2 × 𝑛2 + . . . + 𝜔𝛼𝑘 × 𝑛𝑘

for some integer 𝑘 ≥ 0, ordinals 𝛼1 > 𝛼2 > . . . > 𝛼𝑘 and integer coefficients
𝑛1, . . . , 𝑛𝑘 > 0.

• 𝜔2 + 𝜔2 + 𝜔 + 𝜔 + 𝜔 + 2 = 𝜔2 × 2 + 𝜔 × 3 + 2
• 𝜔 + 𝜔2 + 𝜔 + 𝜔2 + 𝜔 = 𝜔2 × 2 + 𝜔

• 𝜔𝜔 × (𝜔 + 1) = 𝜔𝜔+1 + 𝜔𝜔

seems like a finitely presentable normal form for ordinals

𝜖0 = 1 + 𝜔 + 𝜔𝜔 + 𝜔𝜔𝜔

+ 𝜔𝜔𝜔𝜔

+ . . .

Then, 𝜖0 = 𝜔𝜖0 . this guy is still countable
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Applications of ordinals

Halting conditions
Since the ordinals themselves are well-ordered, if we can assign an ordinal to
each program state such that the ordinal decreases in each step, we proved
termination.

Ackermann function

𝐴(𝑛, 𝑚) :=

⎧⎪⎪⎨⎪⎪⎩
𝑚 + 1 if 𝑛 = 0
𝐴(𝑛 − 1, 1) if 𝑛 > 0 and 𝑚 = 0
𝐴(𝑛 − 1, 𝐴(𝑛, 𝑚 − 1)) if 𝑛 > 0 and 𝑚 > 0

If we assign 𝜔 × 𝑛 + 𝑚 to each recursive call, then:
• first case: instant termination
• second case: 𝜔 × 𝑛 + 0 ≻ 𝜔 × (𝑛 − 1) + 1
• third one: 𝜔 × 𝑛 + 𝑚 − 1 < 𝜔 × 𝑛 + 𝑚 so the inner call terminates by

induction and becomes some finite number 𝑀 , and
𝜔 × (𝑛 − 1) + 𝑀 ≺ 𝜔 × 𝑛 + 𝑚 tools exist to assign ordinals automatically to functions
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Hercules vs the Hydra Kirby-Paris, 1982

Iván Szabolcs Környezetfüggetlen rendtípusok 14



Hercules vs the Hydra Kirby-Paris, 1982
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Hercules vs the Hydra
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Hercules vs the Hydra
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Ordinal of the Hydra

Let us assign an ordinal to each Hydra as follows:

• the single-point hydra’s ordinal is 0
• if the children of the Hydra have the ordinals 𝛼1 ≥ 𝛼2 ≥ . . . ≥ 𝛼𝑛, then

the Hydra gets the ordinal 𝜔𝛼1 + 𝜔𝛼2 + . . . + 𝜔𝛼𝑛

0 0

𝜔0 + 𝜔0 = 1 + 1 = 2

𝜔2

𝜔𝜔2

0

1

0

1

𝜔 × 2

𝜔𝜔×2
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Ordinal of the Hydra

1

0

𝜔 + 2 𝜔 + 2 𝜔 + 2 𝜔 + 2

𝜔𝜔+2 × 4
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Ordinal of the Hydra

𝜔𝜔+2 × 3 + 𝜔𝜔+1 × 5

The ordinal of the Hydra always decreases

Hercules always wins, no matter what
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How to represent order types by a finite description?

Ordinals smaller than 𝜖0 can be represented by a recursive Cantor normal form.

An idea: let us use lexicographic orderings of formal languages!
• binary words, say
• 𝑢 < 𝑣 iff either 𝑢 is a prefix of 𝑣, or 𝑢 = 𝑥0𝑦, 𝑣 = 𝑥1𝑧 for some 𝑥, 𝑦, 𝑧

• 𝜀 < 0 < 00 < 000 < 0000 < . . ., so 𝑜(0*) = 𝜔

• . . . < 0001 < 001 < 01 < 1, so 𝑜(0*1) = −𝜔, the order type of the
negative integers

• 𝑜(0*(0*1 + 1+)) = 𝜁

• 10 < 100 < 1000 < . . . < 110 < 1100 < 11000 < . . . < 1110 < . . ., so
𝑜(1+0+) = 𝜔2

• 𝑜((00 + 11)*01) = 𝜂
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What order types can be represented?

Every countable order type is the (lexicographic) order type of some language
over {0, 1}.

Main questions
• How can we define a language?

• regular languages
• context-free languages
• context-sensitive languages these can go well beyond 𝜖0

• one-counter languages

• Can we work by order types given by languages at all?
• Isomorphism problem: can we decide for two languages 𝐾 and 𝐿 whether

𝑜(𝐾) = 𝑜(𝐿)?
• Can we “compute” 𝑜(𝐾𝐿), 𝑜(𝐾 ∪ 𝐿) or 𝑜(𝐾*) if we know 𝐾, 𝐿, 𝑜(𝐾) and

𝑜(𝐿) in some other representation? say, their Cantor normal form if they are ordinals
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Well-ordered vs. scattered orderings

Well-orderings do not contain −𝜔.

Scattered orderings are those not containing 𝜂.
Their order types are the scattered order types.

• Each ordinal is scattered.
• 𝜁 is scattered.
• 𝜁 × 𝜁 is scattered.
• 𝜔 + (−𝜔) + (−𝜔) + 𝜔 + (−𝜔) + 𝜔 + 𝜔 + (−𝜔) + . . . is scattered.

there are already uncountably many from these guys

• {0, 1}* is not scattered.
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Hausdorff’s theorem

Hausdorff assigned to each scattered (countable) order type a (countable)
ordinal, its “rank” (intuitively, a sort of “embedding depth”).

To each ordinal 𝛼, let us define a class 𝐻𝛼 of orderings as follows:
• let 𝐻0 contain all the finite orderings; this is an Ésik-Iván modification from 2012

• for 𝛼 > 0, let 𝐻𝛼 be the smallest class of orderings that is
• closed under finite sum and
• contains all the orderings of the form

∑︀
𝑖∈𝜁

𝑋𝑖 with each 𝑋𝑖 being in some

𝐻𝛼𝑖 with 𝛼𝑖 < 𝛼.

If an ordering is a member of an 𝐻𝛼, let its rank be the smallest such 𝛼.
rank of an order type is defined in the expected way
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Rank examples

• 0 and 1 are finite, so they have rank 0.
• 𝜔 = . . . + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 1 + . . . is a 𝜁-sum of order types of

rank smaller than 1, so its rank is 1.
• 𝜁 = . . . + 1 + 1 + 1 + 1 + 1 + . . . is a 𝜁-sum of order types of rank smaller

than 1, so its rank is also 1.
• 𝜁 + 𝜁 + 𝜔 + 1 is a finite sum of order types of rank at most 1, so its rank is

also 1.
• 𝜁 × 𝜔 is an 𝜔-sum of 𝜁s, that is, . . . + 0 + 0 + 0 + 𝜁 + 𝜁 + . . ., a 𝜁-sum of

summands having rank smaller than 2, so its rank is 2.
• 𝜔𝑛 has rank 𝑛.
• 𝜔𝜔 = 1 + 𝜔 + 𝜔2 + . . . has rank 𝜔.

In general, if 𝛼 is an ordinal with Cantor normal form
𝛼 = 𝜔𝛼1 × 𝑛1 + . . . + 𝜔𝛼𝑘 × 𝑛𝑘, then its rank is 𝛼1.
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Hausdorff’s theorem

Exactly the (countable) scattered order types have (a countable) rank.

Hence, when reasoning over scattered order types, one technique is to use
induction on its rank. well-founded induction can be used on well-ordered sets, like ordinals

Why scattered order types?
Similarly to the technique that ordinals can be used to prove termination of
“one-player” systems, scattered order types can be used to prove termination of
some concurrent, “two-player” systems, where the aim of one player is to
terminate the system, while the other tries to make it run indefinitely.
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Some results on regular/context-free order types

On regular order types
• If 𝐿1 and 𝐿2 are regular languages, then it is decidable whether

𝑜(𝐿1) = 𝑜(𝐿2) holds.
Bloom–Choffrut, TCS, 2001

• An ordinal is regular if and only if it is smaller than 𝜔𝜔.
Thomas, RAIRO, 1986

• Every scattered regular order type has rank smaller than 𝜔.
but one cannot have all of them since there are uncountably many even for rank 2

• There is an operational characterization of scattered regular order types,
involving 1, 𝜔, −𝜔, and the operations + (binary sum), ×𝜔 and × − 𝜔.

Heilbrunner, RAIRO, 1980
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Some results on regular/context-free order types

On context-free order types
• It is undecidable for an input context-free language 𝐿 whether 𝑜(𝐿) = 𝜂.

Ésik, IPL, 2011

• It is decidable whether 𝑜(𝐿) is scattered, or well-ordered.
Bloom–Ésik, Fundamenta Informaticæ, 2010; Bloom–Ésik, FICS 2009

• The rank of each deterministic context-free scattered language is smaller
than 𝜔𝜔.

Ésik, DLT, 2011; Bloom–Ésik, IJFCS, 2011

• The deterministic context-free ordinals are exactly those smaller than 𝜔𝜔𝜔 .
Ésik, DLT, 2011

• To each ordinal 𝑜 smaller than 𝜔𝜔𝜔 there exists a so-called “ordinal
grammar” 𝐺 (whose nonterminals each generate a prefix-free language)
with 𝑜(𝐺) = 𝑜. But in general, there is no algorithm for transforming a
context-free grammar generating a well-ordered language to an order
equivalent ordinal grammar.

Bloom–Ésik, Fundamenta Informaticæ, 2009
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Our contributions to the field

Main contributions
• The Hausdorff-rank of context-free ordinals is less than 𝜔𝜔.

Ésik–Iván, LATIN 2012

Thus, exactly the ordinals smaller than 𝜔𝜔𝜔 are the context-free ones.
• If 𝐺 is an ordinal grammar, then the Cantor normal form of 𝑜(𝐺) is

effectively computable. Hence, the isomorphism problem of context-free
ordinals is decidable if the ordinals are given by ordinal grammars.

Gelle–Iván, TCS, 2019

• It is decidable whether 𝑜(𝐿) is a scattered context-free language of rank at
most 1, and if so, then 𝑜(𝐿) is effectively computable as a finite sum of
summands, each being 𝜔, −𝜔 and 1.

Gelle–Iván, GandALF 2019 and Gelle–Iván, SOFSEM 2020

• The rank of a scattered one-counter language is always smaller than 𝜔2.
Gelle–Iván, manuscript, submitted
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Open questions

Open questions, short-term
• Characterize the scattered context-free order types of rank 2. Is their

isomorphism problem decidable?
• Is there a way to compute 𝑜(𝐾 ∪ 𝐿) and 𝑜(𝐾𝐿) effectively if both 𝐾 and

𝐿 are scattered context-free languages of known order types?

Open questions, long-term
• Is the isomorphism problem of scattered order types decidable?
• Is there an operational characterization of scattered context-free order

types?
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Some proof techniques

Techniques against scattered context-free languages
• If 𝐺 generates a scattered language, then for each rule 𝐴 → 𝛼 there can be

at most one nonterminal 𝐵 in 𝛼 within the same component as 𝐴 (that is,
with 𝐵 ⇒* 𝑢𝐴𝑣 for some 𝑢, 𝑣).

• If 𝐺 generates a scattered language, then for each nonterminal 𝑋 there
exists a word 𝑢𝑋 such that whenever 𝑋 ⇒* 𝑢𝑋𝛽, then 𝑢 ∈ 𝑢*

𝑋 .
• For this definition of the rank we use, we have

• 𝑜(𝐾𝐿) = 𝑜(𝐿) × 𝑜(𝐾) if 𝐾 is prefix-free (!)
• the rank of 𝑜(𝐾 ∪ 𝐿) is at most the max rank of 𝑜(𝐾) and 𝑜(𝐿)

• If 𝐿* is an infinite scattered language, then 𝐿* ⊆ 𝑢* for some word 𝑢,
hence it is a prefix chain and so 𝑜(𝐿*) = 𝜔

Most of our results went through by applying induction in a bottom-up way to
the strongly connected components of the graph of 𝐺, and for each sentential
form 𝛼 at that level, reasoning about the possible order type of the language
generated by 𝛼.
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Thank you for your attention.
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