
Online Algorithms
lecture notes
incomplete

The aim of the course is to give an introduction into the competitive analysis of the so-called
“online” (also spelled “on-line”) algorithms. In the online setting, the algorithm gets its input
piecewise (the meaning of “piecewise” varies and is problem-specific), and to each piece it has
to make an irrevocable decision before getting the next one. Each such decision sequence has
an associated (nonnegative real-valued) cost which the algorithm tries to minimize. Clearly,
such an algorithm cannot always produce an optimal decision sequence – the competitiveness
of the online algorithm is a quantity c such that the sequence generated by the algorithm has
a cost which is at most c times larger than that of the optimal sequence.

A bit more formally, an input of a problem is a sequence usually denoted σ = (σ1, . . . , σn) of
requests σi, coming from a set. To each such σ there is the set S(σ) of solutions, each having
the form τ = (τ1, . . . , τn), that is, the request σi is served by the action (or the response) τi.
Each solution τ has some nonnegative real cost C(τ).

The offline optimum cost Opt(σ) of the input σ is the value min{C(τ) : τ ∈ S(σ)}.

A (deterministic) online algorithm A cannot see the future and has to compute τi+1

from (σ1, . . . , σi+1), that is, τi+1 = A(σ1, . . . , σi+1), in a way that if A(σ) =
(A(σ1), A(σ1, σ2), . . . , A(σ)) denotes the action sequence generated by A for the input σ, then
A(σ) ∈ S(σ) has to hold (that is, A always should generate a valid solution). Then, the cost
of the solution produced by A is C(A(σ)). The algorithm A is called c-competitive for some

quantity c if for each possible input sequence σ we have C(A(σ))
Opt(σ)

≤ c.

Let us see two examples.

The ski rental problem

The base form of the ski rental problem1 is the following. We are spending our (presumably
winter) holiday of unknown length in a ski resort. In the beginning of each day, we have to
decide whether we rent a pair of skis (this action is denoted R) for a unit cost, or buy them
(this action is denoted B) for an integer cost of B > 1. If we already bought a pair of skis
during the season, we can simply use them for free (this action is denoted S, as “skip”).

In the formal setting given above, an input is a sequence σ = (1, 1, 1, . . . , 1) of some length N ,
the number of days our holiday lasts for. Usually we say in this case that the (input) season has
length N . For such an input, a solution is either the sequence (R, . . . ,R) of length N , having
the cost N (this corresponds to the case when we rent the skis during the whole season), or
a sequence of the form (R, . . . ,R,B, S, . . . , S) of length N (this corresponds to the case when
we rent the skis for a number of days, then eventually we buy them and after that, we only
use them freely). If we buy the skis on the ith day, then the cost of this solution is i − 1 + B
(we rent for i − 1 days for a unit cost, then finally buy the skis for an additional cost of B).
Although the definition of the problem would allow additional rents or even purchases after the
very first purchase, it is clear that no sane algorithm would do that.

Determining the offline cost is easy for this problem: if the season lasts for at most B days,
then the best option is to rent the skis during the whole season. Otherwise, the best option

1okay, I’m stopping using colors till I finish the draft for the whole semester. Eventually the lecture notes
will be more colorful

Szabolcs Iván, University of Szeged, Hungary 1 2018/12/09/23:02:23

is to buy the skis on the very first day and use them during the whole season. Formally, the
reader can verify that Opt = min{N,B} (N always denotes the length of the season).

Le us see an example for an online approach for the case when B = 4. A possible algorithm
is the following: on the first two days of the season, let us rent the skies and on the third
day (if there is a third day at all), let us buy them and continue to use them from that point.
Formally, if we denote this algorithm by A3, then A3(1) = A3(1, 1) = R, A3(1, 1, 1) = B and
A3(1, 1, . . . , 1) = S whenever the length of the input sequence is already larger than 3. Clearly,
this is an online algorithm according to the definition above. Now analysing the behaviour of
A3 we get the following:

• If N = 1, then Opt = 1 and the cost of A3 is also 1 (it rents the skis on the first day).
The ratio C(A3)/Opt is 1 (meaning we produce an optimal solution in this case).

• If N = 2, then Opt = 2, as well as the cost of A3, making the ratio again 1.

• If N = 3, then Opt = 3. Now A3 decides to buy the skis on the third day, thus its cost
becomes 6 (1 + 1 for renting and 4 for the eventual purchase) and the ratio is 6/3 = 2.

• If N ≥ 4, then Opt = min{N,B} = 4 and the cost of A3 remains 6, making the ratio to
be 6/4 = 1.5.

Amongst these, 2 is the worst (i.e. largest) possible ratio, thus A3 is a 2-competitive online
algorithm for the ski rental problem when B = 4.

If instead, we buy on the fourth day (and let us denote the resulting algorithm by A4), then
we get a ratio of 1 for the cases N < 4, and a ratio of 7/4 for the cases N ≥ 4, making A4 a
7/4-competitive algorithm. Since 7/4 < 2, we say that A4 is a better algorithm than A3 for
this problem (with B = 4).

Since the structure of the input is very restricted, only a sequence of ones, we can see that all
the (deterministic) online algorithms for the ski rental problem have the following form:

• either the algorithm rents the skis for i− 1 days for some constant i, then buys them on
the ith day – this algorithm is denoted Ai;

• or the algorithm rents the skis unconditionally, no matter what the length is – this one
is denoted A∞.

It is clear that A∞ has no bounded competitiveness: for any given c > 1, we can make the
season last for at least c ·B days, in which case the cost of A∞ becomes at least c ·B while the
optimum is B, hence the ratio becomes at least c for this input.

Now let us analyze the competitiveness of Ai. We consider three cases, depending on whether
i < B, i = B or i > B holds.

• If i < B, then let us set N = i. Then, for this particular input, the optimal cost is
Opt = min{i, B} = i, while the cost of Ai is i−1+B. This makes the ratio i−1+B

i
= 1+B−1

i

which is at least 2, since B − 1 ≥ i.

• If i > B, then let us set N = i again. Then, the optimal cost is Opt = B. while the cost
of Ai is again i − 1 + B, making the ratio i−1+B

B
= 1 + i−1

B
≥ 2 again, this time due to

i− 1 ≥ B.

Szabolcs Iván, University of Szeged, Hungary 2 2018/12/09/23:02:23

• Now for the case i = B, then we claim that AB has a competitive ratio of 2− 1
B

. To see
that this is the worst possible ratio (there was no need to settle that fact in the previous
two cases as we needed only a lower bound for those), we again split the analysis into two
subcases, depending whether N < B or N ≥ B holds.

– If N < B, then Opt = N and the algorithm rents the skies for the whole season,
making the ratio to be 1 (that is, the output is optimal in these cases).

– If N ≥ B, then Opt = B, and the algorithm purchases the skies on the Bth day,
making its cost to be 2B − 1 and thus the ratio becomes 2B−1

B
= 2− 1

B
, as claimed.

Thus, we get that AB has a competitive ratio of exactly 2− 1
B

(since we analyzed all the possible
cases for N), while Ai has a competitive ratio of at least 2 (since we showed a “bad enough”
input for each such algorithm) for all the other choices of i. Since A∞ is not competitive at all,
we can conclude that AB is the optimal online algorithm for the ski rental problem, having the
competitive ratio of 2− 1

B
.

The paging problem

In the paging problem, there are two (positive integer) parameters n and k. We assume 1 <
k < n (the problem becomes trivial in the other cases). The parameter k is called the size of
the cache, while the parameter n is called the size of the disk.

An input sequence has the form σ = (σ1, . . . , σt) (now n denotes the disk size, we cannot use it
to stand for the length of the input sequence) where 1 ≤ σi ≤ n for each i, that is, each request
asks for a “page” of the disk.

In a response sequence, each individual response τi is a number between 0 and n, inclusive.
The intuition is that we have a cache memory C that can hold up to k pages of the disk, this
memory is empty in the beginning. During the serving the request, the algorithm has to ensure
that the requested page is in the cache: if it’s already in the cache, then there’s nothing to be
done and it’s free (that action is encoded by the response 0), otherwise, if it’s not but the cache
is not yet full, the algorithm may load the page from the disk for a unit cost (this action is also
encoded by the response 0), otherwise (that is, the cache has already k pages but neither of
them is the same as the requested one), the algorithm has to drop one of the cached pages, and
load the requested page in place of the discarded one, for a unit cost. If the algorithm happens
to drop page p, then this action is encoded by the number p.

Formally, the action sequence (τ1, . . . , τt) is a solution for the input sequence (σ1, . . . , σt) if and
only if for each 0 ≤ i ≤ t, the following cache configuration Ci defined inductively has a size of
at most k: C0 = ∅ and Ci+1 = Ci − {τi+1} ∪ {σi+1}.

To see this in action, suppose the cache size is k = 3, the input sequence is
(1, 2, 3, 1, 2, 1, 4, 5, 1, 2, 3, 4) and the response sequence is (0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 2, 1), then this
corresponds to the following sequence of cache configurations: initially, the cache is empty,
C0 = ∅. Then, a request comes for the page 1, which is responded by a 0, meaning the new
configuration is C1 = ∅ − {0} ∪ {1} = {1} (removing the element 0 from a set that do not
contain 0 at all does not change anything). Then, a request comes for page 2, which is again
responded by a 0, making the new configuration to be C2 = {1} − {0} ∪ {2} = {1, 2} (again,
removing the 0 from the set {1} which does not contain 0 in the first place does not change the
set. Then, inserting 2 to this set yields the set {1, 2}). After that, the request 3 is responded
by a 0, making C3 = {1, 2}−{0}∪{3} = {1, 2, 3}. Note that in this phase, the cache gradually

Szabolcs Iván, University of Szeged, Hungary 3 2018/12/09/23:02:23

gets filled up without discarding a single page: we say that the algorithm filled the cache. Now,
a request of 1 comes again, which is responded by a 0 (which, in this case means that 1 is
already in the cache). The new configuration is {1, 2, 3} − {0} ∪ {1} = {1, 2, 3} which is fine
as it still has at most k = 3 elements. Then, the upcoming requests for the pages 2 and 1 are
also responded by zeros, the cache still holds the values {1, 2, 3} after that.

Now the request for page 4 comes, which is responded by the first nonzero entry 3 in our response
sequence. This makes the next cache configuration to be {1, 2, 3}−{3}∪ {4} = {1, 2, 4}. That
is, if our response is a positive integer j, that means “drop the page j and load the requested
page in place of that”. Now comes a request for page 5, which is responded by a 4, making
the new configuration to be {1, 2, 4}− {4} ∪ {5} = {1, 2, 5}. Then, request for page 1 is served
by a 0 which is also fine since 1 is already present in the cache and thus the new configuration
{1, 2, 5} − {0} ∪ {1} = {1, 2, 5} still has only three entries. Similarly, the next request is for
page 2, this is handled by a 0 again. The next request is for page 3, this can only be handled
by either a 1, a 2 or a 5 (we have to discard one of our cache pages), we decide to handle it
by a 2, making the new configuration to be {1, 3, 5}, and when the final request 4 arrives, that
can be handled by a 1 again.

Since during the whole computation the size of our cache is at most k = 3, this response
sequence is a solution. The total cost of this solution is 7 (there is a cost of 3 in the phase
during which the cache gets filled, then there is a cost for each “cache miss” when we have to
drop one of our pages – these are the responses which are encoded by some positive number).

A single step of an algorithm will in some cases be depicted as Ci
σi+1−→
τi+1

Ci+1, like

{1, 2, 4} 5−→
4
{1, 2, 5}, that is, we had the cache configuration {1, 2, 4}, we got the request for

page 5, we discarded the page 4 and we ended up in the configuration {1, 2, 5}. We might drop
the τ , the σ or both if they are not needed in the analysis.

The reader is encouraged to verify that for this particular input, 7 is the optimal cost.

It is easy to see that any algorithm that discards a page when the cache is not yet full can
be transformed to another one which loads the request without discarding the page, and only
discards the page upon the first cache miss when the cache is already full – this latter algorithm
always produces a solution which is at least as good as the original one. So from this point
on, we assume every algorithm (online or not) for the paging problem first fills its cache, and
discards pages only after that. The difference lies in the strategy of choosing which page to
discard.

A number of algorithms might come to mind for this problem:

• LFU, or Least Frequently Used, discards the page to which the least number of requests
arrived so far.

• FIFO, or First In, First Out, manages a “fair” rotation in the following sense: it always
discards the page which was loaded the longest time ago.

• LRU, or Least Recently Used, discards the page who had access (not only loading) the
longest time ago.

• LIFO, or Last In, First Out, discards the page which was accessed (or loaded. . . neither
of them makes any sense anyways) most recently.

All the above algorithms are online. An offline algorithm is LFD, or Longest Forward Distance,

Szabolcs Iván, University of Szeged, Hungary 4 2018/12/09/23:02:23

which discards the page which will not be requested for the longest time in the future2.

Example runs

Let us consider the input sequence (1, 2, 3, 1, 2, 1, 4, 5, 1, 2, 3, 4) with cache size k = 3. All the
above algorithms begin with filling the cache, and reach the configuration {1, 2, 3}, when the
request for the page 4 comes in.

• LFU counts the number of requests. So far page 1 had 3 requests, page 2 had 2 requests
and page 3 had a single one, thus 3 is dropped and the new configuration becomes {1, 2, 4}.
Handling the request 5, the page 4 is dropped (as now it is the page with a single request
so far), yielding {1, 2, 5}. Then 1 and 2 are served. For handling 3, the algorithm drops
the page 5, having a single request so far and the configuration becomes {1, 2, 3}. Finally,
for handling the request 4, the page 3 is dropped as it had two requests so far while page
2 had three and page 1 had 4. (In the case of ties, let’s say LFU drops the candidate
having the least number.) So, LFU has a cost of 3 + 4 = 7.

• When handling the first request for page 4, FIFO drops page 1 as it was the first one to
be loaded, making the configuration to be {2, 3, 4}. Then, for serving 5, 2 is dropped,
we are at {3, 4, 5}. Now for serving 1, 3 is dropped and we are at {1, 4, 5}. Then comes
the 2, and 4 gets dropped as it’s present since the 7th request, 5 is present since the 8th
and 1 is present since the 10th. So we are at {1, 2, 5}. Then comes the request for 3, we
discard the 5 and we are at {1, 2, 3} again. Finally, to serve 4, we drop the 1. The cost
of FIFO is 9.

• When LRU handles the first request for page 4, it drops the 3 since 1 is accessed just
in the previous request and 2 is accessed right before that but 3 was accessed four steps
ago. So the new configuration is {1, 2, 4}. Then, for serving the 5, we drop 2, yielding
{1, 4, 5}. Luckily, 1 is already in the cache now (but its “recentness” gets updated at this
point). For handling the request 2, we discard 4, and we are at {1, 2, 5}. Then, we drop
5 and 1, when handling 3 and 4, respectively. The cost of LRU is 8.

• LIFO discards 1 when 4 is requested as 1 was accessed just before that. So we are at
{2, 3, 4} and discard the 4 (as it’s the most recently touched page) when the request for
5 comes by, so we are at {2, 3, 5}. Now LIFO handles the request for 1 by dropping 5,
and we are at {1, 2, 3}. Then, the requests 1, 2, 3 are luckily all in the cache, and the
last request for page 4 makes LIFO discard 3 since that’s the one we just touched in the
previous step. LIFO has a cost of 7.

• Finally, running LFD means the following. When the request for the first 4 comes in,
we see that in the future, 1 will be requested within 2 steps, 2 will be requested within
3 steps and 3 will be requested within four steps, thus LFD discards 3 and we are at
{1, 2, 4}. Then when the request for 5 comes in, we see that 1 will be requested in the
next step, 2 in the one after that and 4 will be only requested later, thus we discard the
4 and we are at {1, 2, 5}. Now the requests for 1 and 2 are served without a cache miss.
For serving 3, we can discard now anything since none of the pages we have cached get
requested anymore, so let’s say we drop 1 (being the least one amongst the candidates)
and end up at {2, 3, 5}, then for serving 4 we end up similarly by choosing 2, at {3, 4, 5}.
The cost of LFD is 7. (The reader might verify that our first sample run was a potential
LFD run.)

2LFD actually produces the optimal solution. The proof of this will be added to the lecture notes later.

Szabolcs Iván, University of Szeged, Hungary 5 2018/12/09/23:02:23

Bad algorithms

Even though LFU and LIFO perform well on these particular inputs, they are not competitive.
To see that, for every c > 1 we have to create an input sequence on which the corresponding
ratio gets at least c.

When the cache size is k, then let us consider a long enough input sequence

1, 2, 3, . . . , k, k + 1, k + 2, k + 1, k + 2, . . . , k + 1, k + 2.

To handle this sequence, LIFO first fills up the cache, then discards k and loads k + 1, then
discards k + 1 and loads k + 2, then discards k + 2 to load k + 1 and so on, essentially using a
single cache page for k + 1 and k + 2. Clearly, this solution misses the cache on each request,
so if the length of the sequence is at least c · (k + 2), then the cost of LIFO is also at least
c · (k + 2).

On the other hand a possible solution discards 1 after filling the cache, then discards 2. At this
point both k + 1 and k + 2 are in the cache so the remaining request will become served at no
cost, making the cost of this solution to be k + 2. Hence the ratio is at least c, which can be
an arbitrarily large number, so LIFO is not competitive.

For this particular input, LFU performs relatively well, since after the second request for k+ 2
it won’t discard k + 1 nor k + 2. However, for the input sequence

1`, 2`, . . . , k`, k + 1, k + 2, k + 1, k + 2, k + 1, k + 2 . . . , k + 1, k + 2,

where σ` means the sequence σ, σ, . . . , σ of length ` = (k+2)c, and the total number of k+1, k+2
blocks is `, LFU will use the same single slot for handling the requests for k + 1 and k + 2
since these are requested less than ` times till the end, while the others are requested at least
` times during the initial phase. The optimal solution would of course discard 1 and 2 (say),
when serving k + 1 and k + 2 respectively and thus the optimum is at most k + 2, while LFU
has a cost of k + 2(k + 2)c, making the ratio more than 2c for an arbitrarily large c.

The best hope

Even when n = k+1, any deterministic online algorithm A can be tricked as follows: whenever
A discards some page p, then the next request will happen to be p.

For example, running LRU with a cache size of k = 3, we might construct the input sequence
that starts by (1, 2, 3, 4), then for serving 4, LRU discards the 1 so we request 1, to handle the
1 LRU discards the 2, so we request 2, etc, that is

{1, 2, 3} 4−→
1
{2, 3, 4} 1−→

2
{1, 3, 4} 2−→

3
{1, 2, 4} 3−→

4
. . .

and we can enforce a cache miss for each step. So, for any deterministic online algorithm A
there is an input of length m, for an arbitrary m, on which A has a cost of m.

At the same time, LFD (which is not an online algorithm) has a cost of at most m
k

on any input
sequence of length m (here we use the assumption that n = k + 1), after filling the cache: to
see this, assume at a given step LFD discards p from the configuration C. This might happen
if p does not occur at all after this step as a request: this would imply that all the rest of the
sequence can be handled with a cost of 0 (as the size of the cache is k, all the other possible
requests are cached at this point). So assume p occurs at some point. Since p is just discarded

Szabolcs Iván, University of Szeged, Hungary 6 2018/12/09/23:02:23

from the cache of size k and n = k + 1, the next cache miss will be at the next request for p.
But that next request has to be preceded by at least one request to each of the other k − 1
members of C, by the definition of LFD. Hence, each cache miss is followed by at least k − 1
cache hits, thus LFD makes at most m/k cache misses after the cache builds up, and one more
possibly for the very last cache miss which might be followed by an instant termination of the
input sequence, so that’s a total of k + (m/k) + 1 cache misses for a sequence of length of at
least k + m + 1. When m tends towards infinity, the ratio k+m+1

k+(m/k)+1
approaches k, implying

that the best online deterministic algorithm for the paging problem cannot be better than
k-competitive, not even for the case n = k + 1.

Good algorithms

In this subsection we show that LRU and FIFO, and a whole class of online algorithms called
“marking” algorithms are k-competitive. Along with the result of the previous section we
conclude that they are optimal in this sense.

A marking algorithm works as follows.

• Initially, it just fills the cache as all the other ones.

• From that point, each member of the cache can be either marked or unmarked. After
filling the cache, let us mark all the pages in the cache.

• From that point, when a request comes in for a page p. . .

– If p is in the cache, then we mark p and proceed.

– Otherwise, let us do the following.

∗ If all the pages in the cache are marked, then let us erase all the marks.

∗ At this point there is at least one unmarked page. Let us choose one unmarked
page by some algorithm, discard that page, load p and mark it.

For example, if we get the input (1, 2, 3, 2, 4, 2, 4, 3, 5, 1, 2, 1, 5, 4, 3, 5), k = 3 and we (say) always
choose the unmarked page to be discarded to be the one having the smallest possible index,
then the run is (star denoting marked pages): first we fill the cache, reach the configuration
{1∗, 2∗, 3∗}. Then handle the request 2: it’s in the cache, already marked, so there’s nothing to
do. Then, to handle 4, we first erase all the marks since all members of the cache are marked.
Then, we could drop 1, 2 or 3; since we choose the smallest possible one, we drop 1, load 4 and
mark it. We are at {2, 3, 4∗}. Then, a request for 2 arrives: since 2 is already in the cache,
it’s free but nevertheless, we mark the entry 2 and we are at {2∗, 3, 4∗}. Then we get a request
for page 4, which is already in the cache and is marked, fine. Then, the request for 3 gets the
page 3 marked a well (still for free), we are at {2∗, 3∗, 4∗}. The incoming request for page 5
gets all the marks erased, and we drop the page with the smallest index, that is, 2, load and
mark page 5. We are at {3, 4, 5∗}. Then for handling the request 1, we drop the page 3 as
that’s the smaller among the two candidates, load and mark 1. We are at {1∗, 4, 5∗}. Now to
handle 2, we drop 4 (that’s the only possibility we have right now), load and mark 2, we are at
{1∗, 2∗, 5∗}. Then, the request for 1 is free, and its entry is already marked, as well as the next
request for page 5. Now a request for page 4 arrives, we erase all the marks and drop page 1,
load and mark page 4, we are at {2, 4∗, 5}. Now handling the request for page 3, we arrive to
{3∗, 4∗, 5}, finally to handle 5, we simply mark the 5 and end up at {3∗, 4∗, 5∗}.

Szabolcs Iván, University of Szeged, Hungary 7 2018/12/09/23:02:23

For any marking algorithm, the whole input sequence can be partitioned into phases as follows:
the borders of the phases are the time points where the algorithm erases all the marks. For
this particular input and selection algorithm, the phases are

(1, 2, 3, 2), (4, 2, 4, 3), (5, 1, 2, 1, 5), (4, 3, 5).

It turns out that the actual algorithm for choosing the unmarked page to discard does not play
any role for determining the phases: the first phase is a maximal prefix of the input sequence
in which there are at most k different requests (thus, the second phase starts with the k + 1th
disjoint request, in this case, 1, 2 and 3 are the pages requested during the first phase, then
4 is a different one, starting the second phase, in which 2, 3 and 4 are requested, then the 5,
being the fourth distinct page to be requested begins the next phase, in which 1, 2 and 5 are
requested, and 4 starts the next phase and so on.

Indeed: at the end of each phase, the cache consists of exactly those pages that were requested
during this specific phase. To see this, we can use induction: the statement holds after the
very first phase. Then, assuming a full cache of unmarked pages in the beginning of a phase,
to each “new” request an unmarked page gets marked (either because it was already in the
cache from the previous phase, but yet unmarked, or because it caused a cache miss, in which
case we drop an unmarked page, and load-and-mark this new one). Hence all the pages will
get marked when k different requests arrive during the phase, and when the k + 1th comes in,
that will cause erasing all the marks and the beginning of the new phase.

Since by definition, the algorithm marks a page for each cache miss (and possibly marks a
page even when there is no cache miss), and k pages get marked during a single phase, we
immediately get that any marking algorithm induces at most k cache misses during a phase.
(This is also true for the first phase, when the cache gets filled.)

Now consider any algorithm working on the same input sequence. After handling the first
request p of a phase, we know that the cache contains p. In this phase, there are at least k− 1
pairwise different requests to be handled, which are all different from the first request of the
next phase. (In the example above, after handling the request for page 4 in the second phase,
there are still requests for 2 and 3 in this phase and the next one starts with a 5, a total of k
pairwise different requests.) Moreover, these k requests are all different from p, which implies
that not all of them can be in the cache after handling p (there are only k − 1 possible entries
for the k different requests), which means that there will be at least one cache miss from the
second request of a phase till the first request of the next phase, inclusive. Hence, the optimal
solution has at least ` cache misses for an input sequence consisting of ` phases (to be more
precise, k+`−2 as the first phase will have k cache misses, but the last phase might have none),
while any marking algorithm will make at most k · ` cache misses, making the ratio k·`

k+`−2 ≤ k.
Hence, any marking-type online algorithm is at least k-competitive. Since we already know
that they cannot be better than k-competitive, this means that the competitive ratio of any
marking-type algorithm is exactly k. (Observe that this upper bound holds for any choice of
n, not only for n = k + 1.)

LRU is marking

The LRU algorithm can be formulated as follows:

• for each cache entry we also store a timestamp,

• if we have to discard an entry, we choose the one having the oldest timestamp,

Szabolcs Iván, University of Szeged, Hungary 8 2018/12/09/23:02:23

• and whenever we load a page or get a request for a page already in the cache, we update
its timestamp.

Without the explicit use of markings, LRU still counts as a marking algorithm: all we have
to verify is that LRU cannot discard a page during a phase for which there was already an
incoming request during the very same phase. But this is clear: if a page had an incoming
request during the current phase, then its timestamp belongs to the current phase. If this is the
oldest timestamp, that means all the timestamps belong to the current phase, which in turn
implies that all the pages in the cache were already requested during the current phase, and
now we have to discard one of them due to a cache miss – which means that we are not in this
phase anymore but in the beginning of the next one. So indeed, during each phase, the cache
entries which were requested in the phase are “protected”, thus LRU is a marking algorithm.

Hence, LRU is k-competitive.

Although FIFO is not a marking algorithm, it is also k-competitive3.

Randomized algorithms

Upon receiving a request σi+1, a randomized online algorithm might take into account the
previous requests σ1, . . . , σi, its own responses τ1, . . . , τi and a random number in order to
compute τi+1. Note that the deterministic algorithms do not need to take their own responses
into account as they themselves can compute their response sequence knowing σ1, . . . , σi.

Randomized ski rental

For example, a possible randomized algorithm for the ski rental problem might be the following:

• We keep renting till the 3
4
Bth day;

• On the 3
4
Bth day, we flip a coin.

– If it’s heads, then we buy the skis on this day.

– Otherwise, we continue renting till the Bth day, on which (if that day comes at all)
we buy the skis.

Clearly, we cannot talk about “the” definitive cost of a randomized online algorithm on a
particular input. Instead, we might compute its expected value and compare it to the optimal
offline cost, getting a(n expected) competitive ratio for a particular input; taking the maximum4

of these ratios we get the competitive ratio of the algorithm itself.

For this particular algorithm A, we can proceed as follows:

• If the length N of the season is less than 3
4
B, then the algorithm will keep renting till the

last day, no matter what, for a total cost of N . As this is the optimal cost as well, the
ratio is 1 in these cases.

3The proof of this will be added to the lecture notes later.
4supremum, technically but that’s okay

Szabolcs Iván, University of Szeged, Hungary 9 2018/12/09/23:02:23

• If 3
4
B ≤ N < B, then the optimal cost is still min{N,B} = N . We can compute

the expected cost as follows: with 1
2

probability, we buy the skis on the 3
4
Bth day. This

choice has a cost of (3
4
B − 1 + B). Also with an 1

2
probability, we don’t buy the skis

on that day and we won’t reach the second “checkpoint” since N is less than B – this
choice has a cost of N . Summing up the costs, weighted by their probabilities we get an
expected cost E(A) = 1

2
(3
4
B − 1 + B) + 1

2
(N). Applying the assumption 3

4
B ≤ N (thus

B ≤ 4
3
N) we get that

E(A) =
1

2
(
3

4
B − 1 +B) +

1

2
(N) ≤ 1

2
(N +

4

3
N) +

1

2
N =

5

3
N,

making the ratio to be 5
3
.

• Finally, if B ≤ N , then the optimal cost is B. At the same time, we pay either 3
4
B−1+B

(if we buy on the first checkpoint), or 2B − 1 (if we buy on the second checkpoint), each
with probability 1

2
. Then, the expected cost of A is

E(A) =
1

2
(
3

4
B − 1 +B) +

1

2
(2B − 1) ≤ 15

8
B,

making the ratio to be 15
8

in this case.

Amongst all the possibilities, 15
8

is the highest one, thus the competitive ratio of the above
(randomized) algorithm A is 15

8
(or better). When B ≥ 8, this is already better than the 2− 1

B

we had for the optimal deterministic online algorithm.

Of course, the choice of the two checkpoints, and the probability distribution of 1
2
− 1

2
was

rather arbitrary and only illustrates the technique itself. The reader is encouraged to devise a
better algorithm, either by moving the probability (that’s a bit easier to optimize, ends up in
solving a linear system of a single variable) or one of the checkpoints (which in turn ends up
in solving a quadratic equation.

Exercise

Optimize the probability for the previous scenario: give the best possible p such that the
following randomized algorithm:

With probability p, we buy on the 3
4
Bth day; with probability 1− p, we buy on the Bth

day.

Solution

TODO

Exercise

Optimize the first checkpoint for the previous scenario: give the best possible α < 1 such
that the following randomized algorithm

With probability 1
2
, we buy on the (α ·B)th day; with probability 1

2
, we buy on the Bth

day.

Szabolcs Iván, University of Szeged, Hungary 10 2018/12/09/23:02:23

Solution

TODO

Later, after a crash course to game theory, we’ll see how to devise an optimal randomized online
algorithm for this problem.

Randomized marking

For the paging problem, we can make the marking algorithm randomized by choosing the page
to be discarded uniformly at random – so if there are, say, three unmarked pages, then each of
them will be discarded by a probability of 1

3
and so on. It is clear that the algorithm remains

k-competitive even in the worst possible case, since during a phase it will still have at most k
cache misses.

However, we can show that the competitive ratio of the algorithm improves by an order of
magnitude by exploiting randomness. To do this, we have to refine our phase-based analysis
we applied for the deterministic case. For a recap, for an input sequence of the paging problem
with cache size k, we defined the first phase as a maximal-length prefix of the input containing
at most k different requests, this determines the starting point of the second phase which is
defined as the maximal-length subsequence of the input starting at that request and containing
at most k different requests, and so on. So for k = 3, the following is a partitioning of an input
to phases:

(1, 2, 3, 2), (4, 2, 4, 3), (5, 1, 2, 1, 5), (4, 3, 5)

Let ` denote the number of phases. We know that on the boundaries, the cache consists of
exactly the pages that were requested during the previous phase, as this holds for all variants
of the marking algorithms, randomized being no exception here.

For each integer 1 ≤ i ≤ `, let ti stand for the number of “new” requests during phase i:
a request is new if it was not requested during the previous phase. As an extension, let us
consider each request of the first phase to be new. So in the previous example, 1, 2 and 3 are
the new requests in phase 1, making t1 = 3 (t1 is always k if the cache gets filled). In the second
phase, there are requests for the pages 2, 3 and 4, but as 2 and 3 were already requested during
the first phase, only 4 is considered to be new, making t2 = 1. In the third phase, 5 and 1 are
new (observe that only the previous phase counts, it does not matter that 1 was requested two
phases before), making t2 = 2 and finally, t4 = 2 as 3 and 4 are new but 5 is not.

Clearly, the number of “old” (as in, not new) requests is k − ti in phase i, assuming the phase
is not the last one.

Now let us try to analyze an arbitrary solution. We claim that during phases i and i + 1
together, any solution makes at least ti+1 cache misses. Indeed, in the beginning of phase i we
have k cache entries, and during the next two phases a grand total of k+ ti+1 pairwise different
requests arrive: k during the ith phase and an additional ti+1 during the next one. As only k
can be cached in the beginning of the phase, this implies at least ti+1 cache misses during these
two phases. Now if we denote the number of cache misses in phase i by Mi, we get that the
total cost of the solution is M1+ . . .+M`, which is at least M1

2
+ M1+M2

2
+ M2+M3

2
+ . . .+ M`−1+M`

2
,

which is by the previous argument at least t1
2

+ t2
2

+ . . . t`
2

, that is, 1
2

∑̀
i=1

ti is a lower bound for

the offline optimal solution.

Szabolcs Iván, University of Szeged, Hungary 11 2018/12/09/23:02:23

Now let us try to bound (from above) the expected number of cache misses during phase i.
Clearly, each new request definitely induce a cache miss, so that’s ti for sure. Now we bound
from above the probability of the yth old request, y = 1, . . . , k − ti, inducing a cache miss.
Let x be the number of new requests preceding the yth old request, clearly x ≤ ti. The worst
possible scenario for this yth old request is that when the y − 1 old requests come first, each
marking its own entry in the cache, then the x new requests arrive, bombarding the remaining
k−(y−1) cache entries (among which the yth old request is still there), occupying x from those
uniformly at random, since this distribution maximizes the chance of the original cache entry
holding the yth old request gets overwritten (thus inducing a cache miss when requested). Of
course the larger the x, the larger the chance of a cache miss. So, the probability of a cache
miss is at most the probability with which we hit a particular entry amongst k− (y− 1), if we
choose ti from them uniformly at random. This chance is proportional to ti, namely ti

k−(y−1) :

indeed, the chance of not overwriting the entry (thus NOT causing a cache miss) with the first

shot is k−(y−1)−1
k−(y−1) . Then, if the first new request did not drop the target entry, then the second

has a chance of k−(y−1)−2
k−(y−1)−1 (as there are now one less entries to discard, the previously hit one

being now marked), and so on. In total, the probability of avoiding is

k − (y − 1)− 1

k − (y − 1)
·k − (y − 1)− 2

k − (y − 1)− 1
·k − (y − 1)− 3

k − (y − 1)− 2
·. . .· k − (y − 1)− ti

k − (y − 1)− (ti − 1)
=
k − (y − 1)− ti
k − (y − 1)

,

which makes the chance of being hit (thus the chance of a cache miss) to be ti
k−(y−1) .

That’s an upper bound of the expected cost of serving the yth old request during phase i. As
the expected values are additive we get that the total cost of serving all the old requests is at
most

ti
k − (1− 1)

+
ti

k − (2− 1)
+ . . .+

ti
k − (k − ti − 1)

,

which further equals to

ti

(1

k
+

1

k − 1
+ . . .+

1

ti + 1

)
,

which is, as ti ≥ 1 (there’s at least one new request in each phase, namely the very first request
of the phase – that’s why it’s a new phase) larger than

ti

(1

k
+

1

k − 1
+ . . .+

1

2

)
,

which, together with the cost ti of the new requests, makes the expected cost of the randomized

algorithm during phase i to be at most ti
k∑
j=1

1
j
.

Hence, as the total expected cost is then upperbounded by
(∑̀
i=1

ti

) k∑
j=1

1
j
, makes the ratio to be

at most 2
k∑
j=1

1
j
.

This quantity
∑k

j=1
1
j

is well-known, is usually denoted Hk and is known to be around ln k.

(Upperbounded by 1 + ln k via integrating 1
x

with respect to x from 1 to k and noting that this
integral is larger as the sum can be found as a total area of disjoint rectangles, strictly below
the 1/x line but that’s not needed in this course.)

Which means that the competitive ratio of the randomized marking algorithm is at most 2Hk ≈
2 + 2 ln k, and that’s much better than the deterministic variants’ k when k is large enough.

Szabolcs Iván, University of Szeged, Hungary 12 2018/12/09/23:02:23

Game theory - a handy tool to analyze randomized algorithms

(Disclaimer: this part is not intended to be a complete crash course in game theory – we
define here only those core notions which we actually use for the analysis of randomized online
algorithms.)

A matrix game is defined by a cost (or payoff) matrix (duh) C ∈ Rn×m for some integers n and
m, that is, a bunch of real numbers arranged into n rows and m columns. The game is played
between two competing players: player A and player B. In the “pure” variant of the game, A
picks a row, say row i, of the matrix, B (independently) picks a column, say column j of the
matrix and the value of this run of the game is Ci,j: the entry in the ith row and jth column of
C. The two players are competing in the following sense: A tries to maximize this value, while
B tries to minimize it.

As an example, when C =

 0 1 2
−1 0 1
−2 −1 0

, then if A picks the first row, then no matter what

B does, the value of this run will be at least 0 (the minimum entry in this row). If A picks the
second row, then the value of this run will be at least −1, while if A picks the third row, then
the value of the run will be at least −2. Since A wants to maximize the value, he5 can ensure
a value of at least 0, by picking the first row. In general, A can ensure a value of max

i
min
j
Ci,j.

Turning the focus to player B, if she picks the first column, then the value A can make out of
this run is at most 0. If she picks the second column, then no matter what A does, the value
will be at most 1, and by picking the third column, the value will be at most 2. Since player B
wants to minimize the value of the run, by picking the first column she can ensure a value of
at most 0. In general, player B can ensure a value of min

j
max
i
Ci,j.

In this particular game, it happens so that

max
i

min
j
Ci,j = min

j
max
i
Ci,j,

which means that both players can force that the value of the run is simultaneously at least
0 and at most 0 as well. In such cases, the optimal play for both of them is to pick a row
(column, resp.) which maximizes (minimizes, resp.) the corresponding term, in this case, A
should pick the first row and B should pick the first column. If any of them deviates from this
strategy, then they will lose and the other player will gain something.

This entry (i∗, j∗) (for which min
j
Ci∗,j = max

i
Ci,j∗) is the so-called saddle point of the

matrix, or a pure Nash equilibrium of the game and, if exists, gives an easy way for an optimal
deterministic strategy for both of the players.

However, if we consider the game matrix C =

(
1 −1
−1 1

)
, then the situation is not so clear:

player A can ensure a value of at least −1, while player B can ensure a value of at most 1. Since
these two values do not coincide, there is no single optimal pure strategy for any of the players:
if A picks the first row, then B should pick the second column, getting a value of −1. But
then, if A knows that B plays the second column, then A should pick the second row, getting a
value of 1. Should B know that, she would rather pick the first column and so on, resulting in
an “oscillating” behavior that does not happen in the case when there is a Nash equilibrium:
if an equilibrium is present, then if any player changes their mind, they lose something (while
the other player still playing their equilibrium strategy).

5usually, player A is regarded as male while player B is regarded as female

Szabolcs Iván, University of Szeged, Hungary 13 2018/12/09/23:02:23

Instead, we study so-called mixed strategies for these games. In a mixed strategy, the strategy
of A is a probability distribution p = (p1, . . . , pn) (that is, 0 ≤ pi ≤ 1 and

∑
pi = 1), and the

strategy of B is also a probability distribution q = (q1, . . . , qm). The game becomes randomized:
A picks each row i with the probability pi, while B picks column j with probability qj. Then,
the entry (i, j) is picked with the probability pi · qj, and has the value Ci,j. This means that

the expected value of the game is
n∑
i=1

m∑
j=1

piqjCi,j, which, if we use matrix notation, happens to

be pCqT where T means transpose of the vector.

Observe that a pure strategy is a special case of a mixed one: if A deterministically picks the
ith row, that’s him playing according to the mixed strategy ei (the ith unit vector) that sets
pi to 1 and all the others to 0.

Similarly to the argument we used in the case of pure games, A can ensure an expected value of
at least max

p
min
q
pCqT , while player B can ensure an expected value of at most min

q
max
p
pCqT .

Contrary to the case of pure strategies, the Fundamental Theorem of Game Theory states that
these two values always coincide:

max
p

min
q
pCqT = min

q
max
p
pCqT .

The value itself is called the value of the game, while the pair (p∗, q∗) of the optimal strategies
is called the mixed equilibrium strategy of the game.

For example, if in our example matrix C =

(
1 −1
−1 1

)
player A uses the strategy (1

4
, 3
4
) and

player B uses the strategy6 (3
4
, 1
4
), then the expected value of the game is

(
1

4
,
3

4
)

(
1 −1
−1 1

)(
3
4
1
4

)
= (−1

2
,
1

2
)

(
3
4
1
4

)
= − 1

4
.

However, if B knows that A plays (3
4
, 1
4
) for strategy, she can do better by playing (1, 0) instead:

then the value of the game becomes

(
1

4
,
3

4
)

(
1 −1
−1 1

)(
1
0

)
= (−1

2
,
1

2
)

(
1
0

)
= − 1

2
,

which is smaller, so it’s better for B. Actually, if A plays this strategy, then (1, 0) happens to
be an optimal counterstrategy – so in this case, for a fixed mixed strategy p of player A, there
is an optimal pure strategy ej minimizing the game value.

This is not a coincidence, the Loomis theorem says it’s always the case: for any game matrix
C and fixed mixed strategy p, there is a column index j such that

min
q
pCqT = min

j
pCeTj ,

and similarly for any fixed q there is an optimal counterstrategy of the form ei.

This makes the actual computation of the value of the game easier, as we now seek for the
maximizer (minimizer, resp.) of the equation

max
p

min
j
pCeTj = min

q
max
i
eiCq

T .

6TODO: fix font sizes

Szabolcs Iván, University of Szeged, Hungary 14 2018/12/09/23:02:23

Exercise

Let us determine the optimal strategies for the game matrix

(
2 4
5 3

)
, and the value of

the game.

Solution

For determining the optimal strategy for Player A, we can write p = (p1, p2) explicitly, so
we are trying to maximize

max
(p1,p2)

min
j

(p1, p2)

(
2 4
5 3

)
eTj

If we multiply the first two matrices, we get

max
(p1,p2)

min
j

(2p1 + 5p2, 4p1 + 3p2)e
T
j

Now, thanks to the Loomis theorem, we only have to consider the unit vectors eTj . Multi-
plication by these guys from the right means picking an entry, so the above formula further
equals

max
(p1,p2)

min{ 2p1 + 5p2, 4p1 + 3p2 }.

From this point on, there is a general approach, namely: if we denote the value of the game
by a new variable t, then we have an objective function t which we want to maximize (as
we’re devising a strategy for player A). We know that this t is the minimum of the linear
functions appearing in the brackets (if the matrix has m columns, then there’ll be m such
terms). So, t is upperbounded by each of these expressions. Thus, we can write a linear
system of inequalities:

t ≤ 2p1 + 5p2

t ≤ 4p1 + 3p2

0 ≤ p1

0 ≤ p2

1 = p1 + p2

max t

This is an LP problem that can be written mechanically from the matrix: make the product
of C by the vector (p1, . . . , pn) as above, state that the new variable t is upperbounded by
all the entries of the product (that’s the first m inequalities), and state also that the pi’s
are forming a probability distribution (last n+ 1 rows), and maximize t.

(If one happens to compute a strategy for player B, then one has to make the product
CqT instead, write that the new variable t is lowerbounded by each entry of the product,
that q is a probability distribution and minimizing t.)

If one feeds the above system to some LP solver (chances are, even your favorite spreadsheet
program has some built-in LP solving functionality), one gets that the game’s value is
t = 3.5, and the optimal strategy for A is (0.5, 0.5).

(The optimal strategy for B is (0.25, 0.75), by the way.)

Szabolcs Iván, University of Szeged, Hungary 15 2018/12/09/23:02:23

Now in the particular case when we have only two variables, we can do the job easier
(though that’s not really an application for analyzing a randomized online algorithm, but
anyways. . .). In the above case, we can use the variable substitution p2 = 1 − p1 and
get a linear system over one single variable: we should maximize min{ 5 − 3p1, 3 + p1},
where 0 ≤ p1 ≤ 1. Now if there are only two such inequalities, and we already ruled out
the case of a pure Nash equilibrium, then chances are, the maximum will be at the point
where these two lines meet (otherwise the optimal solution would be at either p1 = 0 or at
p1 = 1, both being a pure strategy), which means we only have to make them equal and
we’re set: 5− 3p1 = 3 + p1, that is, p1 = 0.5 and the common value is 3.5, just as before.

But having a 2 × 2 is not really a thing which we encounter if we apply game theory to our
topic. . . in most cases we have an infinite matrix to begin with.

Application of game theory

Suppose we have an online problem for which all the possible randomized algorithms can be
expressed as a probability distribution over the set of all deterministic algorithms.

For example, our example algorithm for ski rental that purchased the skis with probability 0.5
on the 3

4
Bth day, and with probability 0.5 on the Bth day, is basically a randomized algorithm

that runs A 3
4
B with probability 0.5, and AB with probability 0.5.

Now let us construct the following matrix C: each row of C corresponds to an input of the prob-
lem, while each column of C corresponds to a deterministic online algorithm for the problem.
This matrix typically is of infinite size on both dimensions.

Let the entry Ci,j be the competitive ratio of algorithm j being run on input i, that is, the
ratio Aj(i)/Opt(i).

As an example, consider the (trumpets) ski rental problem with B = 4. We are studying now
this problem since both the inputs and the sensible algorithms are super easy: row i corresponds
to the case when the length of the season is i, and column j corresponds to the algorithm Aj
(which rents the skis for the first j − 1 days, then buy them). We could make an additional
column for A∞ as well (which we already know to perform badly) but we’ll omit that detail for
now. (Actually, it makes no sense to give a chance for A∞ being run, it’s so bad.)

The top-left 6× 6 part of this matrix is

N A1 A2 A3 A4 A5 A6 . . .
1 4/1 1/1 1/1 1/1 1/1 1/1 . . .
2 4/2 5/2 2/2 2/2 2/2 2/2
3 4/3 5/3 6/3 3/3 3/3 3/3 . . .
4 4/4 5/4 6/4 7/4 4/4 4/4
5 4/4 5/4 6/4 7/4 8/4 5/4 . . .
6 4/4 5/4 6/4 7/4 8/4 9/4
...

...
...

. . .


For example, the entry for row N = 1 and column A1 is 4/1 = 4 since A1 buys the skis for a
price of 4 on the first day, while the optimal cost is min{4, 1} = 1 if the season consists of a
single day. Also, row 4, column 3 is 6/4 as in row 4 (and below), the optimum is 4, and A3

rents for two days, and buys on the third day, for a total cost of 6.

In each column, the maximum entry is shown in boldface.

Szabolcs Iván, University of Szeged, Hungary 16 2018/12/09/23:02:23

Now if we (as some sort of player B) choose an algorithm Aj, then its competitive ratio is

defined as the maximum possible7 value
Aj(σ)

Opt(σ)
. This means that if our competition (as some

sort of player A) picks the row maximizing the entry in column j, then his optimal strategy
as player A in this infinite matrix game against our fixed strategy Aj is exactly the problem
of determining the competitive ratio of Aj! For example, if we pick the column of A3 as the
minimizing player B, then we can ensure that the ratio is at most 6/3 and indeed, if the
maximizing player A picks the row N = 3, then the value of that specific run is exactly 6/3,
the competitive ratio of A3 for this version of the ski rental problem with B = 4.

That is, if we want to construct the best possible deterministic online algorithm for this problem,
that’s exactly the same thing as computing the optimal pure strategy j∗ as player B in this
infinite matrix game! This approach works for every online problem (but we might of course
bounce into problems if the enumeration of all the possible algorithms is not so easy for the
problem in question). The reason why A4 is the optimal online algorithm for this instance of
the ski rental problem is that this is the value j∗ which attains the minimum in the expression
min
j

max
i

Aj(i)

Opt(i)
.

Then, if a randomized algorithm can be given as a probability distribution q = (q1, q2, . . .) over
the deterministic algorithms (e.g. we have already seen the case when q3B/4 = qB = 0.5 and
qj = 0 for all the other js), then the expected competitive ratio of an algorithm for a given input
i is eiCq

T . For the worst possible case, we get (as the minimizing player) the term max
i
eiCq

T

– so an optimal randomized algorithm is given as the minimizer of the expression

min
q

max
i
eiCq

T ,

which is (by the Fundamental Theorem of Game Theory and the Loomis Theorem) exactly the
value of the matrix game given by the above constructed matrix!

Now if we do the math as before (not being scared of taking products of infinite matrices and
vectors), we have to compute the product CqT , and make each entry a lower bound of the
newly introduced variable t, stating that those qs are forming a probability distribution and
minimize t:

4q1 + q2 + q3 + q4 + q5 + q6 + . . . ≤ t

2q1 + 5q2/2 + q3 + q4 + q5 + q6 + . . . ≤ t

4q1/3 + 5q2/3 + 2q3 + q4 + q5 + q6 + . . . ≤ t

q1 + 5q2/4 + 3q3/2 + 7q4/4 + q5 + q6 + . . . ≤ t

q1 + 5q2/4 + 3q3/2 + 7q4/4 + 2q5 + 5q6/4 + . . . ≤ t

q1 + 5q2/4 + 3q3/2 + 7q4/4 + 2q5 + 9q6/4 + . . . ≤ t

. . . ≤ t

q1 + q2 + q3 + q4 + q5 + q6 + . . . = 1

qj ≥ 0

min t

Now we have an infinite number of constraints and an infinite number of variables. In this form
the system cannot be explicitly solved but in several cases, one can hope for reducing it to an
equivalent form of finite size (e.g. by deducing some of the probabilities to have a value 0 in
the optimal solution, hence being able to remove that particular column).

7again, I should say the “supremum” here. . . stay tuned

Szabolcs Iván, University of Szeged, Hungary 17 2018/12/09/23:02:23

Consider rows i and i + 1 for an arbitrary i ≥ 4. In these rows, the optimum cost is 4 (by
i ≥ 4). All the algorithms till Ai buy the skis on day i at latest, hence the first i entry of these
two rows coincide. In the columns of index j ≥ i + 1, Aj keeps renting in the first i + 1 days,
so Ci+1,j = Ci,j + 1/4 (division by 4 is due to that 4, the optimum is the denominator in both
rows). Finally, in column i, we have Ci+1,j = Ci,j + 4/4 = Ci,j + 1 as Ai+1 happens to buy the
skis on day i + 1, spending B more money. (See e.g. rows 4 and 5 of the matrix: a sudden
increment of 4/4 happens under A5, and for the columns right to that, there are increments of
1/4 between the two rows). This means that Ci+1,j ≥ Ci,j for each possible j when we have
i ≥ B.

Translated to the LP language, as the variables qj are nonnegative, this means that if the
constraint generated from row i + 1 is satisfied, then so is the constraint generated by row i.
That is, row 4 can be removed due to the presence of row 5; then, row 5 can be removed due
to the presence of row 6, and so on. At the end we get that all the rows from row 4 and above
can be replaced by a single inequality, which has Ci,i as the coefficient of qi when i ≥ 4 and
C4,i when i < 4.

Thus, we have now the following system of finite constraints

4q1 + q2 + q3 + q4 + q5 + q6 + . . . ≤ t

2q1 + 5q2/2 + q3 + q4 + q5 + q6 + . . . ≤ t

4q1/3 + 5q2/3 + 2q3 + q4 + q5 + q6 + . . . ≤ t

q1 + 5q2/4 + 3q3/2 + 7q4/4 + 8q5/4 + 9q6/4 + . . . ≤ t

q1 + q2 + q3 + q4 + q5 + q6 + . . . = 1

qj ≥ 0

min t

but still, we have an infinite number of variables. However, assume q is a solution for this
system. As we are minimizing t, its value will be the minimum of the left-hand side of the first
four constraints. Then we can transform this solution to another one q′ in which q′4 =

∑∞
j=4 qj,

and q′j = qj for j < 4. That is, we “collate” all the probabilities for running Aj with j ≥ 4 and
run A4 instead with the summed probability.

Then, the left-hand sides of the first three constraints do not change, while the last one either
decreases or remains the same. Also, q′ is still a probability distribution. Setting t to be the
minimum of the corresponding linear constraints we get that the value of the objective function
is either improved or remains the same. Hence, we can set qj = 0 for each j ≥ 5 and get a
finite LP system:

4q1 + q2 + q3 + q4 ≤ t

2q1 + 5q2/2 + q3 + q4 ≤ t

4q1/3 + 5q2/3 + 2q3 + q4 ≤ t

q1 + 5q2/4 + 3q3/2 + 7q4/4 ≤ t

q1 + q2 + q3 + q4 = 1

qj ≥ 0

min t

Feeding it to our favorite LP solver, we get that the optimum value of 256
175

is attained at q1 = 27
175

,
q2 = 36

175
, q3 = 48

175
, and q4 = 64

175
.

Putting it back into our context, we have just proved that the best possible randomized online
algorithm for the ski rental problem when the price of the skis is B = 4 is the following: we

Szabolcs Iván, University of Szeged, Hungary 18 2018/12/09/23:02:23

plan to buy on the first day with a probability of 27
175

, on the second day with a probability of
36
175

, on the third day with a probability of 48
175

, and on the fourth day with a probability of 64
175

.
This way, we get a 256

175
-competitive algorithm. (That’s around 1.4629 by the way – compare it

to the best possible deterministic one of 2− 1/4 = 1.75.)

The Yao Principle

Usually it’s not that easy to solve the infinite system of inequalities generated for an online prob-
lem. Instead, we use the following chain of inequalities: for arbitrary probability distributions
q0 and p0 over the deterministic inputs and the determistic algorithms we have

min
j
p0Ce

T
j ≤ max

p
min
j
pCeTj ≤ min

q
max
i
eiCq

T ≤ max
i
eiCq

T
0 .

In particular, the part
min
j
p0Ce

T
j ≤ min

q
max
i
eiCq

T

states that if we give a probability distribution p0 over the set of inputs, that is, a randomized
input, against which the best possible deterministic algorithm has a competitive ratio of K
(or even worse), then this K is a lower bound of the competitive ratio of the best possible
randomized algorithm (against a deterministic input, say, but that is the same as that against
a randomized input, due to the Loomis theorem). This is called the Yao principle.

Let us see an application for the principle.

Exercise

Show that the best possible randomized online algorithm for the ski rental problem cannot
have a better competitive ratio than 5/4.

Solution

We apply the Yao Principle. To this end, we have to specify a randomized input.

Let N , the length of the season, be B/2 with a probability of 1
2

and 3B/2 with a probability
of 1

2
.

(Note: this choice is rather arbitrary. In principle, each choice would give us some lower
bound for the competitive ratio. In this case, this is a “lucky choice” as in the end, it
turns out to give a bound of 5/4 as needed. We’ll give a more elaborated example in the
next exercise in the context of the scheduling problem.)

Now we have to determine for each deterministic online algorithm Aj the expected com-

petitive ratio E
(

A(I)
Opt(I)

)
. If our chosen probability has a finite support, then this is simply

the weighted sum of the competitive ratios, in this case:

E

(
A(I)

Opt(I)

)
=

1

2

A(B/2)

Opt(B/2)
+

1

2

A(3B/2)

Opt(3B/2)
.

Recall that for the ski rental problem, Opt(N) = min{N,B} so we have Opt(B/2) =
B/2 and Opt(3B/2) = B, which means the expected competitive ratio of a deterministic
algorithm A is

E

(
A(I)

Opt(I)

)
=

1

2

A(B/2)

B/2
+

1

2

A(3B/2)

B
.

Szabolcs Iván, University of Szeged, Hungary 19 2018/12/09/23:02:23

We know that each sensible deterministic online algorithm has the form Aj for some j ≥ 1
which rents for j − 1 days, then buys on the jth day. Now (and this is the usual scenario)
we have to do a case analysis on these possible algorithms, and to give a lower bound for
their competitive ratio.

There are three cases: either j ≤ B/2, or B/2 < j ≤ 3B/2, or 3B/2 < j.

• If j ≤ B/2, then the algorithm purchases the skis before the B/2th day, so that
Aj(B/2) = j − 1 +B and Aj(3B/2) = j − 1 +B which makes the expected ratio at
least

E

(
A(I)

Opt(I)

)
=

1

2

Aj(B/2)

B/2
+

1

2

Aj(3B/2)

B

=
1

2

j − 1 +B

B/2
+

1

2

j − 1 +B

B

≥ 1

2

B

B/2
+

1

2

B

B
(as j ≥ 1)

=
3

2
.

• B/2 < j ≤ 3B/2, then for the first case, the algorithm keeps renting for the whole
length N = B/2 of the season, thus Aj(B/2) = B/2. For the second case, the
algorithm buys eventually before reaching day 3B/2, making Aj(3B/2) = j− 1 +B.
Thus in that case, the expected ratio becomes at least

E

(
A(I)

Opt(I)

)
=

1

2

Aj(B/2)

B/2
+

1

2

Aj(3B/2)

B

=
1

2

B/2

B/2
+

1

2

j − 1 +B

B

≥ 1

2
+

1

2
· B/2 +B

B
(as j > B/2)

=
5

4
.

• Finally, if 3B/2 < j, then the algorithm keeps renting in both cases, thus Aj(B/2) =
B/2 and Aj(3B/2) = 3B/2. Plugging in these values, we get that the ratio is at
least

E

(
A(I)

Opt(I)

)
=

1

2

Aj(B/2)

B/2
+

1

2

Aj(3B/2)

B

=
1

2

B/2

B/2
+

1

2

3B/2

B

=
5

4
.

Thus we indeed got that 5/4 is a lower bound in each of the cases, proving the statement.

Szabolcs Iván, University of Szeged, Hungary 20 2018/12/09/23:02:23

The scheduling problem

In the scheduling problem, we have a number m of machines, onto which we have to assign jobs.
Each job has a processing time pi ≥ 0 so the input has the for σ = (p1, . . . , pn). The action for
request i is τi ∈ {1, . . . ,m}, the index of the machine we assign the job to. The load of the jth
machine is `(j) =

∑
τi=j

pi, the total processing time of the jobs assigned to machine j, and the
makespan of the generated schedule is L = max

j
`(j), the maximal load. The objective function

is the makespan.

As an example, if m = 3 and the input sequence is (1, 2, 3, 4, 5, 6, 7, 8, 9), then a possible schedule
is given by the responses (1, 2, 3, 3, 2, 1, 1, 2, 3), meaning that the first job is scheduled onto the
first machine, the second job is scheduled onto the second machine, the third job onto the third
machine, the fourth is scheduled onto the third as well, the fifth one onto the second and so on.

We can visualize this schedule as one machine being drawn in a single line, and the jobs are
being drawn in order, as rectangles, a job with a processing time pi being a rectangle of size
pi × 1. For example, the first four responses give us the following scheduling:

1

2

3 4

At this moment, the load of the first machine (top) is 1, the load of the second is `(2) = 2
and the load of the third is `(3) = 7, making the makespan to be 7. The whole schedule is
visualized as

1

2

3 4

5

6 7

8

9

and the makespan of this one is 3 + 4 + 9 = 16.

There are some obvious lower bound for the optimal makespan:

Proposition

Let us consider the optimal makespan L∗ for the input (p1, . . . , pn) of the scheduling prob-
lem with m machines. Then

max pi ≤ L∗∑
pi

m
≤ L∗

Indeed: the first bound comes from the fact that we have to schedule the largest job, making
the load of its machine to be at least max pi, while the second states that

∑
pi ≤ m ·L∗ which

is clear since
∑

i pi =
∑

j `(j) ≤ m ·maxj `(j) = m · L∗.

Szabolcs Iván, University of Szeged, Hungary 21 2018/12/09/23:02:23

These bounds give us 9 ≤ L∗ and 1+2+...+9
3

= 15 ≤ L∗. So if we happen to find a schedule with
a makespan of 15, then it’s optimal. And we can:

9 6

8 7

1 2 3 4 5

As an online deterministic algorithm, let us consider the following algorithm called LIST: we
assign the next job in queue to the machine with the least actual load. (In case of a tie, let us
schedule it to the one with the least possible index, for being deterministic.)

If we run LIST on the same input, we start with

1

2

3

4

(for this prefix the optimum solution would have a cost of 4 by the way) and we end up with

1

2

3

4

5

6

7

8

9

having a cost of 18. So for this particular instance, the competitive ratio is 18
15

= 1.2.

Another application of the Yao principle

Exercise

Give some nontrivial lower bound for the competitive ratio of the best possible randomized
algorithm for the scheduling problem, with m = 2 machines.

Solution

Such statements can be attacked by the Yao principle. We have to pick some randomized
input and study all the possible deterministic algorithms’ outputs on them, lower-bounding
the competitive ratio in each case, and return with the minimum of these lower bounds.

For starters, let us consider the following randomized input: we get the input (1, 1) with
a probability of 1

2
and the input (1, 1, 2) with a probability of 1

2
.

In general, when we apply the Yao principle, in the first it is advisable to

• pick exactly two input sequences σ1 and σ2 with some nonzero probabilities, 1
2
-1
2

suffices for the first try,

• such that σ1 is a prefix of σ2,

Szabolcs Iván, University of Szeged, Hungary 22 2018/12/09/23:02:23

• while the optimal solution τ 1 greatly differs from the prefix of the optimal solution
τ 2.

Since we are dealing against deterministic online algorithms, whatever τ ′1 is the output
of such an algorithm A for the input σ1, that is also the prefix of its output for σ2. So
generally, if an algorithm performs well on σ1, then it’ll perform bad on σ2 and vice versa,
giving on average some expected competitive ratio strictly greater than one.

Back to the current exercise, we determine the optimal costs for both cases: for (1, 1),
the optimal cost is 1 (we have to schedule the two jobs onto different machines), and
for (1, 1, 2), the optimal cost is 2 (we have to schedule the first two jobs onto the same
machine and the third job to the other one). As the optimal output prefixes differ, it’s a
good candidate for showing a lower bound.

So the expected competitive ratio becomes

1

2
· A(1, 1)

1
+

1

2
· A(1, 1, 2)

2
.

Now we have to analyze all the possible online deterministic behaviors against this specific
input set. If we choose the two inputs σ1 and σ2 such that σ1 is a prefix of σ2, then it
suffices to take into account all the possible outputs for σ2 as their prefix of the appropriate
length gives the output for σ1.

So we have a number of cases for an online algorithm A:

• If A schedules (1, 1, 2) as

1 1 2

then A(1, 1, 2) = 4 and A(1, 1) = 2, making the expected ratio

1

2
· 2

1
+

1

2
· 4

2
= 2.

• If A schedules (1, 1, 2) as

1 1

2

then A(1, 1, 2) = 2 and A(1, 1) = 2 (as the first two jobs get scheduled onto the same
machine), making the ratio

1

2
· 2

1
+

1

2
· 2

2
=

3

2
.

• If A schedules (1, 1, 2) as

1

1

2

Szabolcs Iván, University of Szeged, Hungary 23 2018/12/09/23:02:23

then A(1, 1, 2) = 3 while A(1, 1) = 1, making the ratio

1

2
· 1

1
+

1

2
· 3

2
=

5

4
.

Amongst these ratios, 5
4

is the least one, so we proved that there is no randomized online
algorithm for m = 2 machines having a competitive ratio better than 5

4
.

Exercise

Can you improve the lower bound you just got?

Solution

What we see in the previous calculation is that the minimum value is taken in a single
case (and there were only finitely many cases). For many problems, this indicates that by
changing the probability (while retaining the support of the input distribution) we can do
better.

So what happens if we parametrize our input and say that (1, 1) is given with a probability
of p, while (1, 1, 2) is given by a probability of 1− p?

Everything remains the same, we only have to change the 1
2
s to the corresponding symbols

and get that

• in the first case, the expected ratio is p · 2 + (1− p) · 2 = 2,

• in the second one, it’s p · 2 + (1− p) · 1 = 1 + p,

• and in the third case, it’s p · 1 + (1− p) · 3
2

= 3
2
− p

2

Thus, we have to maximize min
{

2, 1 + p, 3
2
− p

2

}
over 0 ≤ p ≤ 1.

We can solve this by plotting the three functions

1 + p

2

3
2
− p

2

1 + p

3
2
− p

2

Szabolcs Iván, University of Szeged, Hungary 24 2018/12/09/23:02:23

The minimum of these three functions is shown in boldface. Thus, the minimum gets
maximized when 3

2
− p

2
= 1 + p, that is, p = 1

3
. This choice (giving (1, 1) with a chance

of 1
3

and (1, 1, 2) with a chance of 2
3
) gives us the competitive ratio 1 + p = 4

3
as a lower

bound. Since it’s larger than the 5/4 we had before, we improved the lower bound.

Or, instead of plotting the functions, we can solve this by a linear solver: the corresponding
LP problem, if we introduce the new variable t for storing the maxmin is

2 ≥ t

3

2
− p

2
≥ t

1 + p ≥ t

0 ≤ p ≤ 1

max t

Feeding it to our favorite LP solver gives us the optimal solution p = 1/3 and t = 4/3.
Though in this case it might be an overkill to use that.

Exercise

Can you improve your bound even more?

Solution

We already optimized our distribution for the support consisting of (1, 1) and (1, 1, 2). In
this case we might try to add a third input, which extends σ2 even further. This approach
might or might not work, but we’ll elaborate this. Say we extend our set of inputs by
σ3 = (1, 1, 2, 4). (On the very scientific base of “why not”.)

For this new input, the optimal cost is 4. Let p1 be the probability of giving (1, 1), p2 be
the chance of giving (1, 1, 2) and p3 = 1− p1 − p2 being the chance for (1, 1, 2, 4).

Then, the expected cost of an algorithm A is

p1
A(1, 1)

1
+ p2

A(1, 1, 2)

2
+ p3

A(1, 1, 2, 4)

4
.

As σ3 is the longest one, with all the others being a prefix of it, it suffices to analyze all
the possible outputs for (1, 1, 2, 4):

• If (1, 1, 2, 4) gets scheduled as

1 1 2 4

that gives us A(1, 1) = 2, A(1, 1, 2) = 4 and A(1, 1, 2, 4) = 8, yielding an expected
ratio of

p1
2

1
+ p2

4

2
+ p3

8

4
= 2.

Szabolcs Iván, University of Szeged, Hungary 25 2018/12/09/23:02:23

• If (1, 1, 2, 4) gets scheduled as

1 1 2

4

then A(1, 1) = 2, A(1, 1, 2) = 4 and A(1, 1, 2, 4) = 8. Then the ratio is

p1
2

1
+ p2

4

2
+ p3

4

4
= 2p1 + 2p2 + p3.

• If (1, 1, 2, 4) gets scheduled as

1 1

2 4

(or if 4 gets scheduled on the other machine) then A(1, 1) = 2, A(1, 1, 2) = 2 and
A(1, 1, 2, 4) = 6. Then the ratio is

p1
2

1
+ p2

2

2
+ p3

6

4
= 2p1 + p2 +

3

2
p3.

• If (1, 1, 2, 4) gets scheduled as

1

1

2 4

then A(1, 1) = 1, A(1, 1, 2) = 3 and A(1, 1, 2, 4) = 7. Then the ratio is

p1
1

1
+ p2

3

2
+ p3

7

4
= p1 +

3

2
p2 +

7

4
p3.

• Finally, if (1, 1, 2, 4) gets scheduled as

1

1

2

4

then A(1, 1) = 1, A(1, 1, 2) = 3 and A(1, 1, 2, 4) = 5. Then the ratio is

p1
1

1
+ p2

3

2
+ p3

5

4
= p1 +

3

2
p2 +

5

4
p3.

Szabolcs Iván, University of Szeged, Hungary 26 2018/12/09/23:02:23

Right now, firing up the LP solver method does not seem to be an overkill at all. The
generated LP problem is:

t ≤ 2

t ≤ 2p1 + 2p2 + p3

t ≤ 2p1 + p2 +
3

2
p3

t ≤ p1 +
3

2
p2 +

7

4
p3

t ≤ p1 +
3

2
p2 +

5

4
p3

p1 + p2 + p3 = 1

pi ≥ 0

max t

We might note that the first constraint is redundant as the second one is always smaller,
and the fourth is also redundant due to the presence of the fifth. Either way, if we enter
this system or the reduced one into an LP solver, we get the optimal solution at p1 = 1/3,
p2 = 2/3, p3 = 0 and t = 4/3.

Which means that with this extension of the support, we could not improve the ratio.

Exercise

Do the math (definitely with the help of an LP solver for the last phase) for the input
sequence (1, 1, 2, 4, 8) (that is, p1 for (1, 1), p2 for (1, 1, 2), p3 for (1, 1, 2, 4) and p4 for
(1, 1, 2, 4, 8).

You should end up with a result of 7
5

= 1.4, which is an improvement.

The LIST algorithm is
(
2− 1

m

)
-competitive

The above 1.4 we get after solving the four-variable system is not so far8 from an upper bound:
in this section we show that the LIST algorithm is actually

(
2− 1

m

)
-competitive, which is 1.5

if m = 2.

Let us consider a schedule produced by the LIST algorithm. Let the `th job be one of those
finishing latest (on the figure below, this job is filled in blue).

8Well. . . being far is relative, I admit

Szabolcs Iván, University of Szeged, Hungary 27 2018/12/09/23:02:23

Now if S` is the starting time of this job, then we can be sure in that when the LIST algorithm
assigns job ` to its machine, all the machines have a load at least S` (since if any of them would
have a load less than S`, LIST would place the job onto that machine). Hence the area of size
m× S` is already completely filled when we place job j onto the track, that is,

m · S` ≤
∑
i<`

pi

and of course, since job ` finishes last, if L denotes the cost of the schedule produced by LIST,
then we also have

L = S` + p`.

We also have the lower bounds

n∑
i=1

pi

m
≤ L∗ p` ≤ L∗

for the cost of the optimal solution L∗.

Putting all the pieces together, we get that

L = S` + p` ≤

∑
i<`

pi

m
+ p` =

∑
i≤`
pi

m
+
m− 1

m
p` ≤ L∗ +

m− 1

m
L∗ =

(
2− 1

m

)
L∗,

proving the upper bound.

Exercise

Show that if pj ≤
n∑

i=1
pi

2m
holds for each job pj, then LIST is

(
3
2
− 1

2m

)
-competitive.

Solution

Since
∑n

i=1 pi
m
≤ L∗, this condition ensures p` ≤ L∗

2
in the proof above, making the chain to

L = S` + p` ≤

∑
i<`

pi

m
+ p` =

∑
i≤`
pi

m
+
m− 1

m
p` ≤ L∗ +

m− 1

m
· 1

2
L∗ =

(
3

2
− 1

2m

)
L∗.

For proving the lower bound, consider an input sequence of m × (m − 1) jobs of unit cost,
followed by a job of a cost of m. For the case of m = 6, the output of LIST (left) and the
optimal solution (right) are depicted below:

In general, LIST produces a solution of cost 2m − 1 while the optimal cost is m, hence this
example shows the matching lower bound 2m−1

m
= 2− 1

m
.

Szabolcs Iván, University of Szeged, Hungary 28 2018/12/09/23:02:23

Scheduling variant: unrelated machines

A possible extension of the scheduling problem is the following: we have m machines, jobs are
arriving, this time job i defines a processing time pi,j for each machine 1 ≤ j ≤ m. For example,
if we job with processing time vector (1, 2, 4) arrives, this means that on the first machine it
takes 1 time unit to process the job, if we choose the second, then it takes 2 time units, and on
the third it takes 4 time units.

As an example, if m = 3 and the input sequence is

((1, 2, 3), (5, 1, 2), (4, 4, 2), (3, 1, 5), (1, 2, 6), (6, 6, 5))

then a possible schedule is

(4,4,2) (6,6,5)

(5,1,2)(3,1,5)

(1,2,3)(1,2,6)

with a total cost of 7 (we get this one if we assign job i in a greedy way to the machine for
which pi,j is minimal).

We can do better:

(6,6,5)

(5,1,2) (4,4,2)

(1,2,3) (3,1,5) (1,2,6)

is an optimal solution with a total cost of 5.

For this variant, two lower bounds for the optimal value L∗ are:

max
i

min
j
pi,j ≤ L∗

∑
i

min
j
pi,j

m
≤ L∗

The first one comes from the fact we have to schedule each single job, and job i takes at least
min pi,j time units to process (this happens in the example above with the job (6, 6, 5): 5 is thus
a lower bound for the optimal cost). For the second, the nominator sums the total time units
we have to spend with work for processing all the jobs in the lucky case when each job can be
scheduled to the machine with solves it fast (this is what we have done in the first example:
that way, the total time needed was 11), and if we are extremely lucky, then it happens so that
there are no gaps and all the machines will have the same load (we were not that lucky in the
first example, there were huge gaps on the first two machines), proving the other lower bound.

For this variant, the LIST algorithm is the following: we check what the load would be on each
machine if we would assign the current job there; and we choose the machine having the least
load.

Szabolcs Iván, University of Szeged, Hungary 29 2018/12/09/23:02:23

For example, consider the following configuration:

(4,5,4)

(5,2,2)

(1,2,3)

If now we get the job (4, 2, 1), then the load of machine 1 would increase to 5, the load of
machine 2 would increase to 4, and the load of machine 3 would increase to 5. Since 3 is the
least amongst these possibilities, we schedule (4, 2, 1) onto machine 2. (Observe that this is not
the machine which could finish the job in the least time.)

Proposition

The LIST algorithm is m-competitive for this variant of the scheduling problem.

Proof: Upper bound

Let us consider the run of the LIST algorithm on a queue of m jobs.

For each 1 ≤ i ≤ n, let L(i) be the makespan after processing the first i jobs. We prove
by induction that

L(k) ≤
∑
i≤k

min
j
pi,j

holds for each k. For k = 0, both sides are zero, so it’s fine. Now assume the claim holds
for k and let us step to k + 1. We claim that L(k + 1) ≤ L(k) + minj pk+1,j. Indeed:
let j∗ be the index so that pk+1,j∗ is minimal. Then, the load on the machine j∗ is at
most L(k) before scheduling job k + 1 (as L(k) is the maximum load at that moment),
so the load on that machine would be at most L(k) + minj pk+1,j, and possibly even less
on some other machine. So after scheduling job k + 1 the load on its machine is at most
L(k) + minj pk+1,j. If this is a machine at this moment having the maximal load, then we
get L(k + 1) ≤ L(k) + minj pk+1,j. Otherwise, if this machine has a non-maximal load at
this moment, then some other machine has; but that machine has the same load as before,
so L(k + 1) = L(k) in that case (which also entails L(k + 1) ≤ L(k) + minj pk+1,j, so the
statement is proved).

Thus, plugging in n in place of k we get

L = L(n) ≤
∑
i≤n

min
j
pi,j ≤ m · L∗,

as needed to get the upper bound.

Proof: Lower bound

Let ε > 0 be some arbitrarily small value and let us consider the following sequence
of jobs: p1 = (1 + ε, 1,m,m, . . . ,m), p2 = (m, 1 + ε, 2,m,m, . . . ,m), p3 = (m,m, 1 +
ε, 3,m,m, . . . ,m), . . . , pm−1 = (m,m,m, . . . , 1 + ε,m− 1), pm = (m,m, . . . ,m, 1 + ε).

In general, pi,i = 1 + ε, pi,i+1 = i and the other entries are m.

Szabolcs Iván, University of Szeged, Hungary 30 2018/12/09/23:02:23

For this input, 1 + ε is an optimal solution: we schedule job i to machine i for each i.

The LIST algorithm puts first job to the second machine as that has a cost of 1. For the
second job, the second machine would now be loaded till 2 + ε while the third would be
loaded only till 2, so job 2 gets assigned to machine 3. Then, job 3 gets assigned to machine
4 (loads are 3 + ε vs. 3), and so on, while in the final step, job m gets assigned to the first
machine, the makespan becoming m, showing a lower bound of m for competitiveness as
ε tends to zero.

Sheduling variant: Related parallel machines

In this variant, we have m machines, each machine j having a speed vj > 0. The jobs themselves
again have a single processing cost pi. Processing job i on machine j takes pi

vj
time. Again, the

LIST algorithm schedules the job to the machine which would have the least load after getting
the job.

Exercise

Run the LIST algorithm for the case of m = 3, v = (1, 2, 3), and input sequence
6, 6, 6, 12, 24, 18, 12. Can you give an optimal solution?

Solution

We end up with the following configuration after running LIST (the bottom machine being
the fastest):

6 6 12 18

6 24

12

First we schedule 6 onto the fastest machine, its load being 6/3 = 2 then, then the second
6 goes on the second machine, its load becoming 6/2 = 3, then the third job of size 6
goes again to the third machine, its load becoming 4, then the 12 goes again to the third
machine, its load becoming 8 (on machine 2 the load would be 9 while it would be 12 on
the first), and so on, the makespan is now 15.

This is, in fact, optimal: as all the number are divisible by 6, if we want to go below 15,
then on the first machine we can only process 12 units, so that’s already optimal. Now if
on the second machine we go below 15, then we can process at most 24 units, in which
case the load on the third machine would grow to at least 16. So this 14 is an optimal
solution.

We again have two lower bounds for the optimum:

max pi
max vj

≤ L∗
∑
pi∑
vj
≤ L∗

Indeed: the largest job of size max pi has to be processed on a machine, which takes at least
max pi
max vj

time even on the fastest one, showing us the first bound, and for the second one, observe

Szabolcs Iván, University of Szeged, Hungary 31 2018/12/09/23:02:23

that the total amount of work all the machines can do is
∑
vj per time unit, thus if all of them

are evenly loaded, the total makespan is the one given in the second bound.

We will show in this section that LIST is Θ(logm)-competitive in this setting.

Szabolcs Iván, University of Szeged, Hungary 32 2018/12/09/23:02:23

Proof: Lower bound

For the lower bound we construct an input of the following form:

• First, we construct the input with respect to a parameter k. Now the number m of
machines and the competitive ratio c will both be functions of k so that as k →∞,
m will also tend to infinity (thus the argument works for an arbitrary number of
machines) and c will be Ω(logm).

• Jobs arrive in increasing order, so that p1 ≤ p2 ≤ . . . pm for some m. Intuitively,
these arrangements tend to ruin LIST’s performance in general.

• There are m machines with speeds v1 = pm, v2 = pm−1, v3 = pm−2, . . . , vm = p1.
This way, the optimal cost is one: we have to assign pi to machine m− i+ 1.

• It’s easier to analyze the behavior of the LIST algorithm if everything is an integer
and divisibility is not a problem. So the size of the jobs (and the speed of the
machines) will be powers of two.

Thus, we will have M0 machines of speed 20 = 1, some number M1 of machines of speed
21, in general, Mi machines of speed 2i for 0 ≤ i ≤ k. Also, let Mk = 1.

We construct the numbers of machines to make sure that when the subsequence of jobs of
2i begins, then for each j > i, the machines of speed 2j have a load of exactly i, and for
each j ≤ i, the machines of speed 2j have a load of exactly j.

For an example, see the Figure below for k = 3 (with the number Mi of the machines
being incorrect yet). The Figure shows the moment after we scheduled all the jobs of sizes
1 and 2, and the jobs of size 4 (which will be scheduled to the first machine only) are yet
to come.

8

4

4

2

2

2

2

1

1

1

1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

1 1

1 1

2 2 2 2

2 2

2

Szabolcs Iván, University of Szeged, Hungary 33 2018/12/09/23:02:23

In order for the construction to work, we have to ensure that the jobs of size 1 exactly load
the machines of speed at least 2, the jobs of size 2 exactly load the machines of speed at
least 4 and so on. Since the jobs of size 2i should be the same as Mi to make the optimal
cost one, we have Mk−1 = 2 ·Mk (since the 2 jobs of size 2k−1 can fill the machine of speed
2k for a load of one), Mk−2 = 4 ·Mk + 2 ·Mk−1 and so on; in general,

Mk−t = 2t ·Mk + 2t−1 ·Mk−1 + . . .+ 22 ·Mk−1+2 + 21 ·Mk−t+1.

Simpligf́ıing the terms but the last one by 2 we get

Mk−t = 2 ·
(

2t−1 ·Mk + 2t−2 ·Mk−1 + . . .+ 21 ·Mk−1+2

)
+ 21 ·Mk−t+1,

which is 2 ·Mk−t+1 + 2 ·Mk−t+1 = 4 ·Mk−t+1 if t > 1 since in that case the inner factor
also has this general form.

So we get that if we have Mk = 1 machine of speed 2k, Mk−1 = 2 mahcines of speed 2k−1,
Mk−2 = 8 machines of speed 2k−2, and so on (with the number of machines being 32, 128
and so on, each time quadrupling the previous number), then for that input the LIST
algorithm has a cost of k, while the optimum is 1. Expressing k in terms of the number
m of machines we get that m = 1 + 2 + 2 · 4 + 2 · 42 + 2 · 43 + . . .+ 2 · 4k−1 = 1 + 24k−1

4−1 and
so k = Θ(logm), thus for this particular input sequence, LIST is an Ω(logm)-competitive
algorithm.

For the asymptotically matching bound we prove a couple of lemmas first. Again, let L∗ stand
for the cost of the optimal solution and L stand for the cost of the solution produced by
LIST.

Proposition

After running LIST, the fastest machine has a load of at least L− L∗.

Proof

Let us consider the machine having the highest load. If this is the fastest machine, then
its load is L, which is of course at least L− L∗ and we are done. Otherwise, let p` be the
last task on this machine, let vj and vmax respectively stand for the speed of this machine
and the fastest one, and let

Clearly, we have
pj
vmax
≤ L∗ (since the left-hand-side is always a lower bound for the optimal

cost).

Since LIST chose machine j, we get that L ≤ load(max) +
pj
vmax
≤ load(max) + L∗, rear-

ranging this constraing we indeed get load(max) ≥ L− L∗.

Proposition

If after running LIST all the machines of speed at least v have a load at least `, then all
the machines of speed at least v/2 have a load at least `− 4L∗.

Proof

If the minimum load of the “fast” machines (let the machines of speed at least v be called
“fast”, and the machines of speed between v/2 and v be called “mid” machines) ` is at
most 4L∗, then there is nothing to show (as the claim states that the load is nonnegative

Szabolcs Iván, University of Szeged, Hungary 34 2018/12/09/23:02:23

in that case, which clearly holds). So assume ` ≥ 4L∗. In this case, ` − 2L∗ is a positive
number.

Let us consider all the jobs that are scheduled on a fast machine, start before ` and end
after `− 2L∗, that is, have a nonempty intersection with the “rectangle” indicated on the
Figure below. The jobs in question are marked; the last three row of the Figure are the
fast machines.

`− 2L∗ `

It is clear that in an optimal solution at least one of these jobs is scheduled on a non-
fast machine (as if all of these were scheduled to a fast machine, then the makespan is
necessarily at least 2L∗, since these jobs completely fill the green rectangle). So let the jth
job be one such job. Since job j of size pj is scheduled in some solution (having makespan
L∗) to a machine of speed at most v, we get that

pj
v
≤ L∗. Thus, on a machine of speed

at least v/2, the processing of job j takes at most 2 · L∗ time units. Now since LIST
scheduled this job onto a fast machine instead, on which the load became at least `− 2L∗

(since job j intersects the work rectangle indicated on the Figure), we get that on each of
the mid-speed machines having load `′ and speed v′ ≥ v/2, the inequality `′+

pj
v′
≥ `−2L∗

holds. Thus, knowing
pj
v′
≤ 2L∗ and rearranging we get `′ ≥ `− 4L∗, as claimed.

Having these two Lemmas we are able to prove a Θ(logm)-competitivity:

Proposition

LIST is Θ(logm)-competitive on parallel related machines.

Proof

In this proof, let us call the machines of speed at least vmax

m
fast, and the others slow.

By the first lemma we know that after running LIST, the machine(s) of speed vmax have a
load of at least L− L∗. Applying the second lemma we get that the machines of speed at
least vmax

2
have a load of at least L− 5L∗. Applying the second lemma again, machines of

speed at least vmax

4
have a load of at least L−9L∗, in general, machines of speed at least vmax

2k

have a load of at least L− (4k + 1)L∗. Iterating this speed-halving dlogme times, we get
that machines of speed at least vmax

2dlogme ≤ vmax

m
have a load of at least L− (1 + 4dlogme)L∗

– that is, the load is at least L− (1 + 4dlogme)L∗ on each fast machine, so the total work
carried out by these machines only is at least(∑

j:j fast

vj

)(
L− (1 + 4dlogme)L∗

)
.

Szabolcs Iván, University of Szeged, Hungary 35 2018/12/09/23:02:23

Now let us compute the total work W carried out by the machines in an optimal schedule.
In this case, each machine has a load of at most L∗, and thus the total work is at most(∑

j vj

)
L∗. We can split the sum into two sums, separately summing the work carried

out by the slow and the fast machines respectively and we get

W ≤
(∑

j

vj

)
L∗ ≤

(∑
j:j slow

vj

)
L∗ +

(∑
j:j fast

vj

)
L∗.

Now as the slow machines have speed at most vmax

m
by the definition of being slow and

there at most m slow machines (as there are m machines at all), we get that
(∑
j:j slow

vj ≤
vmax

m
·m = vmax so

W ≤ vmax · L∗ +
(∑
j:j fast

vj

)
L∗.

Of course the fastest machine is fast, so vmax ≤
(∑
j:j fast

vj

)
, yielding

W ≤ 2 ·
(∑
j:j fast

vj

)
L∗.

Putting the lower and the upper bounds for the total work we get(∑
j:j fast

vj

)(
L− (1 + 4dlogme)L∗

)
≤ 2 ·

(∑
j:j fast

vj

)
L∗,

rearranging which we get
L ≤

(
3 + 4dlogme

)
L∗,

showing Θ(logm)-competitiveness.

Scheduling variant: the time model

In this variant, each job j has a processing time pj and an arrival time tj. Time ticks in a
continuous way and we have no knowledge about the job (pj, tj) before tj. A sample input for
m = 2 machines is (2, 0), (2, 0), (3, 1), that is, two jobs of processing time 2 are known already
in the beginning and a job of processing time 3 arrives after 1 unit of time passes. Clearly, we
can decide at time point 0 to schedule both of the jobs, then when job (3, 1) arrives, we are
forced to wait till time point 2 and then we can start (3, 1), yielding a makespan of 5. The
optimal solution for this case would schedule only one of the (2, 0) jobs, wait till time point 1,
then schedule (3, 1) to the free machine and (2, 0) to time point 2, as soon as the first (2, 0)
finishes. Hence the optimal solution has a makespan of 4. (See the Figure below.)

2,0

2,0

3,1 2,0

3,1

2,0

So it might have a benefit to wait in this setting. Clearly, waiting too long is another costly
mistake. This particular example shows that for m = 2 machines, those algorithms that
schedule both of the two (2, 0) jobs before time point t = 1 cannot have a competitive ratio

Szabolcs Iván, University of Szeged, Hungary 36 2018/12/09/23:02:23

beating 1.25. On the other hand, if an algorithm waits till t = 1 time units before scheduling
the second (2, 0) task, it will have a cost of at least 3 on the single input (2, 0), (2, 0), for which
the optimal solution has a makespan of 2, making the competitve ratio of at least 1.5. This
proves that there is no deterministic online algorithm having a competitive ratio better than
1.25 for m = 2 machines.

Also, if we have m machines, then m jobs of (2, 0) are either all scheduled before t = 1 (in
which case one job (3, 1) makes the ratio at least 1.25) or not (in which case the ratio becomes
at least 1.5), so this result holds for an arbitrary number of machines.

Modifying this approach again, we can play against all the determistic algorithms with inputs
tailored to them: say, if the last (2, 0) is scheduled at t < 1, then we can throw in a job (4− t, t)
as well instead of the (3, 1). This would make the ratio at least 6−t

4
= 1.5 − t

4
for this input,

while the (2, 0) jobs alone give a ratio of 2+t
2

= 1 + t
2
. Parametrizing this the usual way, we get

that the best possible lower bound is achieved where 1.5− t
4

= 1 + t
2
, that is, t = 2

3
for which

the ratio becomes 4/3.

Hence we proved:

Proposition

There is no deterministic online algorithm for any number m of machines for the scheuling
problem in the time model, which has a competitive ratio better than 4/3.

By a somewhat more involved bad input construction, and a lengthier case analysis one can
prove also the following:

Proposition

There is no deterministic online algorithm for any number m of machines for the scheuling
problem in the time model, which has a competitive ratio better than 1.3473.

One competitive algorithm in this setting is the so-called INTV algorithm:

1. (Collecting phase.) We wait till the least time point T such that all the machines are idle
and there are unscheluded jobs.

2. (Distribution.) Let X be the set of unscheluded jobs at time point T . Let us compute an
optimal scheduling for X starting at time point T , assign them onto the machines, and
go back to the collecting phase.

As an example, let m = 3 and let us consider the input sequence

(1, 0), (1, 0), (2, 0), (3, 0), (2, 1), (2, 2), (3, 2), (1, 3), (2, 4), (1, 5).

At time point T = 0, there are four unscheduled jobs and all the machines are idle. So we
compute an optimal schedule for these four jobs (see the Figure below), and wait till T = 3,
when all the machines become idle again. Till T = 3, the jobs (2, 1), (2, 2), (3, 2) and (1, 3) are
accumulated, so at T = 3 we schedule them optimally to the three machines. Now the current
makespan is T = 6, so we wait till T = 6 and then we distribute the jobs (2, 4) and (1, 5) as

Szabolcs Iván, University of Szeged, Hungary 37 2018/12/09/23:02:23

well.

3,0

1,0 1,0

2,0

2,1

2,2

3,2

1,3

2,4

1,5

So in this case, INTV achieves a makespan of 8. Clearly, max{pj + tj} is a lower bound for the
optimum: as there is a job (2, 4), we cannot finish processing it before T = 6. In fact, this is
possible, so 6 is the optimum, see the Figure below.

3,0

1,0

1,02,0

2,1

2,2

3,2

1,3 2,4

1,5

However, INTV has a serious drawback: computing an optimal offline scheduling at the distri-
bution points is a hard9 problem. Instead of insisting to an optimal solution locally, in practice
we use an α-approximation algorithm for some constant α: such an algorithm can be imple-
mented to run in a short10 amount of time and the solution computed by the algorithm has at
most α times the cost as the optimal one.

For the offline variant of the scheduling problem, consider the following algorithm Longest
Processing Time, or LPT:

• We first sort the input sequence in decreasing order with respect to processing time,

• then we apply the LIST algorithm on the input in this particular order.

Proposition

LPT is a 4/3-approximation algorithm.

Proof

Let m > 1 be the number of machines. Assume to the contrary that p1 ≥ p2 ≥ . . . ≥ pn is
some input sequence (already sorted in decreasing order) such that L > 4

3
L∗ holds, where

L∗ denotes the cost of the optimal solution and L denotes the cost of LPT. Let us choose
this sequence to be a shortest possible one.

Then, LPT schedules pn so that its ending time is L and pn is the only such job: otherwise,

9a so-called “NP-hard”
10read as: polynomial instead of exponential

Szabolcs Iván, University of Szeged, Hungary 38 2018/12/09/23:02:23

for the sequence p1, . . . , pn−1 we would get a possibly smaller optimal cost while the same
LPT cost, so that would be a shorter counterexample.

Then, by the same reasoning as before (see the Figure above) we get that

L∗ ≥
∑n

i=1 pi
m

≥ m(L− pn) + pn
m

≥ L− pn.

Together with the assumption L > 4
3
L∗ this yields pn > L∗/3. Since pn is the smallest job,

we get that all the jobs are of size at least L∗/3.

Now let us consider an optimal schedule. We will transform it so that in each step the
makespan remains unchanged and after a number of steps, we arrive to the schedule
produced by LPT, which implies that LPT produces an optimal solution if pn > L∗/3.

In an optimal solution (having a makespan of L∗), there can be at most two jobs on each
machine (as three jobs of size greater than L∗/3 would make the load larger than L∗).

Let us consider the following two transformations:

1. If on a machine there are two jobs pi and pj with pi < pj, let us change their order:

⇒

2. If on a machine there are two jobs pi ≥ pj and on another one there is a single job
pk with pk < pi, let us put pj to the other machine instead:

pi pj

pk
⇒

pi

pjpk

3. If on a machine there are two jobs pi ≥ pj and on another one there are two jobs
pk ≥ p` with pi ≥ pk and p` < pj, then let us swap pj and p`:

pi pj

pk p`
⇒

pi

pjpk

p`

Neither of the above transformations increases the maximum load on the machines in-
volved, so the solution remains optimal after applying any of them. Actually, it can be
shown that after a finite number of steps (possibly reordering the machines as well) one

Szabolcs Iván, University of Szeged, Hungary 39 2018/12/09/23:02:23

arrives to a schedule depicted on the figure below:

≥
≥

≥
≥

≥

≥
≥

It is easy to see that this schedule is the one produced by the LPT algorithm: clearly, LPT
distributes the first m (largest) jobs to the machines, one job for each machine, then the
last n−m jobs fill the machines “bottom-up”. Thus, if pn > L∗/3, then LPT produces an
optimal solution, so L cannot be larger than 4

3
L∗ is this case either.

On the performance of INTV we can show the following:

Proposition

If we use an offline α-approximation algorithm in the distribution phase of INTV, then we
get a (2 · α)-competitive algorithm for online scheduling in the time model.

Hence,

• INTV is 2-competitive

• if we use LPT during the distribution phase, then the resulting INTV+LPT algo-
rithm is 8/3-competitive.

Proof

Let us consider an output of the INTV algorithm in which we use an offline α-
approximation heuristic in the distribution phase. Let T3 stand for the length of the
last phase, T2 stand for the length of the previous one, and let T1 be the start of the phase
before the last (see the Figure below).

T1 T2 T3

Then, the cost of the INTV algorithm is T1 + T2 + T3. Observe that all the jobs that got
scheduled in the last phase arrive after T1. Thus, only to schedule these jobs we have to
use a makespan of at least T1 +T ′3 where T ′3 is the optimal cost of scheduling all these jobs
without timestamps (that is, in the list model). As the algorithm uses an α-approximating

Szabolcs Iván, University of Szeged, Hungary 40 2018/12/09/23:02:23

offline sub-scheduler, we have T3 ≤ α · T ′3.

Similarly, only for scheduling those items that got scheduled in the phase before the last
one, we have to use a makespan of at least T ′2, the optimal offline cost of scheduling them
without timestamps and again, we have T2 ≤ α · T ′2.

Putting these together we get

L∗ = T1 + T2 + T3 ≤ (T1 + T3) + T2 ≤ (T1 + α · T ′3) + α · T ′2
≤ α · (T1 + T ′3) + α · T ′2 ≤ 2α · L.

Another, and even better and conceptually simpler algorithm is the so-called ONLINE LPT
algorithm which does not work in phases:

• As soon as there is an idle machine and at least one unscheduled job, let us schedule a
longest job onto an idle machine.

Running the ONLINE LPT for our previous example

(1, 0), (1, 0), (2, 0), (3, 0), (2, 1), (2, 2), (3, 2), (1, 3), (2, 4), (1, 5)

on m = 3 machines again (see the Figure below), at time T = 0 we have three idle machines so
we schedule the three longest jobs (3, 0), (2, 0) and one of the (1, 0)s, then we wait. At T = 1
one machine becomes idle and we have an (1, 0) job and a (2, 1) job to be scheduled so we put
the longer one, (2, 1), to the idle machine and wait. At T = 2 the second machine becomes
idle and we have three jobs, (1, 0), (2, 2) and (3, 2), so we assign (3, 2) to the second machine.
Then at T = 3 we have the jobs (1, 0), (2, 2) and (1, 3) and two machines, so we put (2, 2) and
(1, 0) to the two idle machines. At T = 4 the longest job (2, 4) is assigned to the idle machine
and finally, at T = 5 we put the last two jobs onto the two idle machines, yielding (for this
particular input) an optimal solution.

3,0

2,0

1,0 2,1

3,2

1,0

2,2

2,4

1,3

1,5

The performance of ONLINE LPT is much harder to analyze but is possible:

Proposition

The ONLINE LPT algorithm is 3/2-competitive.

The List Access problem

The (most basic version of the) List Access problem is the following: we have a (singly-linked)
list of items of length m. For convenience, we set the list initially to be (1, 2, 3, . . . ,m). A
request is a number p ∈ {1, . . . ,m}. The cost of serving p is the current position of p in the
list (this models the traversal cost of the list when seeking for p).

Szabolcs Iván, University of Szeged, Hungary 41 2018/12/09/23:02:23

Before handling the next request, we are allowed to do the following operations: i) we can swap
two adjacent elements in the list for a cost of 1, and ii) we can move the last requested element
p into the front of the list, for free.

The objective is to minimize the total combined cost paid.

For example, when m = 3 so the initial list is (1, 2, 3), and the request sequence is 3, 2, 3, 2,
then

• if we do not move the elements at all, then we pay 3 for querying 3 since that’s on the
third position, and pay 2 for the item 2, being the third element of the list. As both
elements are queried twice, we pay 3 + 2 + 3 + 2 = 10 in total.

• A better approach is to move the 3 to front after its first query. Then, after the first
query our list is (3, 1, 2) and we payed a cost of 3 so far. Now if we move 2 to the front as
well after serving the next query we end up with the list (2, 3, 1) and we spent 6 so far,
which is at this point more than the original cost of 5 so far; but it pays off as handling
the next two requests 3, 2 we only pay an additional cost of 2 + 1 = 3, yielding a total
cost of 9.

• An even better approach is to use non-free swaps in the beginning: swapping the first two
elements we get the list (2, 1, 3), then swapping the last two elements we have (2, 3, 1)
and so far we have a cost of 2. Now serving all the requests we pay an additional cost of
2 + 1 + 2 + 1 = 6, thus we only spend 8.

The reader can verify by a case analysis that these values are optimal for the given set of
operations, thus it might worth to spend a cost for the swaps.

Of course one may introduce more modifier operations, like “sorting the list for some reasonable
cost“, “reverse the list” etc for some nonnegative cost. However, for all of these cases it is easy
to show a lower bound:

Proposition

In any model of the List Access problem in which we are able to reverse the list for some
possibly nonzero cost, there is no deterministic online algorithm with a competitive ratio
better than 2.

Proof

For any deterministic online algorithm A, the worst possible input is the one which always
requests the last element of the list. For such an input of length n, given an initial list of
length m, the total cost achieved by A is at least m · n.

We show that there are two (deterministic) algorithms A1 and A2 such that if we run both
of them on some input of length n, given an initial list of length m, then the sum of their
total cost is “around” m · n as well – meaning that on any possible input, at least one of
them has a cost “around” m·n

2
, giving an upper bound on the optimal cost, thus a lower

bound 2 for the competitive ratio of A.

The two algorithms are not that mystic: A1 does not change the order of the elements in
the list, only pays p for each request p. The other one, A2 first reverses the list, say for
a cost of f(m) (in our basic model f(m) = O(m2), we only have to apply a bubble sort),
after which it does not change the order of the elements, and thus pays m − p for each
incoming request p.

Szabolcs Iván, University of Szeged, Hungary 42 2018/12/09/23:02:23

Thus, after an initialization cost of f(m), the two algorithms pay m in total per request,
hence after n requests the sum of their total cost is f(m) + n ·m, hence one of them pays

at most f(m)+n·m
2

. Setting the number of requests n to be n = f(m) (say), we get a lower

bound of 2·f(m)·m
f(m)·(m+1)

= 2m
m+1

= 2− 2
m+1

which converges to 2 if m tends to infinity, proving
the claimed lower bound.

Now let us consider the following algorithm Move To Front, or MTF:

• Whenever we get a request, let us move the accessed element to the front.

Note that if we run MTF on (3, 2, 3, 2) we spend a cost of 10, but in general, MTF performs
surprisingly well:

Proposition

MTF is 2-competitive.

Proof

We use the so-called potential method for proving this one. To this end, let us start from
the initial configuration (1, 2, . . . ,m), and let A be some algorithm (online or not) that
also processes the requests. Let MTF (t) and A(t) be the total cost of MTF and A,
respectively, having processed the first t requests. That is, MTF (0) = A(0) = 0.

We define a “potential function” Φ(t) as follows: let Φ(t) be the number of pairs of elements
in the list that are in different order in the two lists of MTF and A, having processed the
first t requests. For example, if after processing the first three requests the list of MTF is
(3, 1, 4, 2, 5) while the list of A is (1, 4, 5, 3, 2), then the value of Φ(3) is 3: the pairs that
are in different order are (1, 3), (2, 5) and (3, 4).

We will show by induction on t that

MTF (t) + Φ(t) ≤ 2 · A(t)

holds for each t, proving the claim, since A is arbitrary and Φ is nonnegative, thus
MTF (I) ≤ Opt(I) holds for each input I then.

For t = 0 the claim holds, since MTF(0) = Φ(0) = A(0) = 0.

Now assume the (t + 1)th request comes for an element x. Let p be the number of those
items preceding x in both lists; q be the number of those items preceding x in the list of
MTF, but not in the list of A; and r be the number of those items preceding x in the list
of A only. (See the figure below.)

List of MTF

List of A

x

x

p+ q items

p+ r items

Now let MTF serve x first. Then,

• the cost of MTF increases by p+ q + 1,

Szabolcs Iván, University of Szeged, Hungary 43 2018/12/09/23:02:23

• and at the same time, the potential Φ increases by p − q: the q items originally
preceding x in the list of MTF only now come after x in that list as well, this
decreases the potential by q, while the p items originally preceding x in both lists
will have a different order in the two lists now.

Thus, the sum MTF+Φ increases by (p+ q + 1) + (p− q) = 2p+ 1.

After this, let A serve x as well. At this point, x is the first item of the list of MTF:

List of MTF

List of A

x

x
p+ r items

Now the access cost of x is p + r + 1 for A which is at least p + 1. Thus at this point we
have

MTF (t+ 1) + Φ(t+ 1) = MTF (t) + Φ(t) + 2p+ 1 ≤ 2 · A(t) + 2p+ 1

≤ 2 · (A(t) + p+ 1) ≤ 2 · A(t+ 1),

so the invariant holds at this point. Now A can do the following:

• Moving x to the front for free. This way A(t+1) does not change, while the potential
decreases by p+ r, and so the invariant still holds.

• Swapping two adjacent elements of the list costs A one (thus increases the right-
hand side by 2), while changes (either increases or decreases) the potential, that is,
the left-hand side by one (as only the relative order of the particular pair involved
changes), and so the invariant still holds.

Thus, the invariant MTF+Φ ≤ 2 · A holds for any A, including the optimal solution as
well, showing 2-competitiveness of MTF.

Adding randomization to the mix, one can come up by the following algorithm BIT:

• Initially, we assign uniformly at random a bit to each element of the list.

• When a request arrives to an element p, we flip the bit associated to p.

• If we flipped the bit so that it became 1, we move the element to the front; otherwise we
don’t modify the list.

Without proof we state that this randomized algorithm performs better than any deterministic
one:

Proposition

BIT is 1.75-competitive.

As a note, the best known randomized algorithm is the so-called “COMB” (short for “com-
bined”) algorithm, which runs BIT with a probability of 80% and another simple 2-competitive
deterministic algorithm called TIMESTAMP with a probability of 20%. The competitive ratio
of COMB is 1.6.

Szabolcs Iván, University of Szeged, Hungary 44 2018/12/09/23:02:23

The Bin Packing problem

In the Bin Packing problem, the input is a sequence a1, a2, . . . , an of real numbers 0 < ai < 1,
interpreted as sizes of items arriving. We want to store these items into unit-size bins, trying
to minimize the number of bins used. Formally, for the request ai we have to output a bin
index τi ∈ {1, 2, . . .} such that for each bin index b ≥ 1, the sum

∑
τi=b

ai is at most 1. We want

to minimize the number maxi τi of used bins.

For this problem, we are interested in the asymptotic competitive ratio

lim sup
n→∞

{ cA(I)

Opt(I)
: Opt(I) ≥ n

}
of an algorithm A, that is, we only care about the ratio if the optimal solution’s cost tends
towards infinity.

We start by proving a lower bound:

Proposition

There is no deterministic online algorithm for Bin Packing with an asymptotic competitive
ratio better than 4/3.

Proof

As usual, for a deterministic online algorithm A we can give a bad enough input I and
show that the competitive ratio of A is at least 4/3 on at least one prefix I ′ of I. Since we
now want a lower bound for the asymptotic competitive ratio, we also have to ensure that
Opt(I ′) ≥ n for a parameter n.

So let us fix n and consider the following sequence I, consisting of 2n items of size 0.4,
then an additonal 2n items of size 0.6.

After running A on the complete sequence, for each used bin there are four possibilities:

• A bin can contain only one item of size 0.4. Let k1 be the number of these bins.
Observe that these bins were already used after processing the first 2n items.

• A bin can contain two items of size 0.4. Let k2 be the number of these bins. These
bins were already used after processing the first 2n items.

• A bin can contain an item of size 0.4 and an item of size 0.6. Let k3 be the number
of these bins. These bins were already used after processing the first 2n items.

• A bin can contain only one item of size 0.6. Let k4 be the number of these bins.
These bins were not used yet after processing the first 2n items.

So A uses in total k1 + k2 + k3 + k4 bins. The optimal cost is 2n for the whole sequence
(the optimum pairs one item of size 0.4 and one item of size 0.6). We also know that
k1+2k2+k3 = 2n (that’s the total count of items of size 0.4 inside the bins) and k3+k4 = 2n
(that’s the total count if items of size 0.6 at the end).

Also, considering only the first 2n items, A already used k1 + k2 + k3 bins after processing
the 2n items of size 0.4. For this prefix, the optimal cost is n (the optimum puts two items
of size 0.4 into each bin).

Szabolcs Iván, University of Szeged, Hungary 45 2018/12/09/23:02:23

Hence, the competitive ratio of A on inputs with an optimal cost of at least n is at least

max

{
k1 + k2 + k3 + k4

2n
,
k1 + k2 + k3

n

}
for some numbers k1, k2, k3 and k4 such that k1 + 2k2 + k3 = 2n and k3 + k4 = 2n.

Converting this to an LP problem we get the following set of constraints:

k1 + 2k2 + k3 = 2n

k3 + k4 = 2n

k1 + k2 + k3 + k4 ≤ t · 2n
k1 + k2 + k3 ≤ t · n

min t

Here of course the variables ki are nonnegative integers. It turns out that instead of solving
this MILP (Mixed Integer Linear Programming, as there are both integral and real-valued
variables) problem for each n and computing the limit of t as n tends to infinity, one can
simply switch to the real-valued relaxation of the problem where the variables xi ≥ 0 are
denoting the values ki

n
and after dividing each constraint by n we get:

x1 + 2x2 + x3 = 2

x3 + x4 = 2

x1 + x2 + x3 + x4 ≤ 2 · t
x1 + x2 + x3 ≤ t

min t

Feeding these values to our favourite LP solver gives us the optimal solution t = 4
3

(where
x1 = 0, x2 = 2/3, x3 = 2/3 and x4 = 4/3). This corresponds in general to the solution
where till the end we put two items of size 0.4 to 2n/3 bins, a 0.4 + 0.6 pair to 2n/3 bins
and a single item of size 0.6 to 4n/3 bins – this can be achieved by, say, packing two items
of size 0.4 into a single bin, then make a singleton bin, and iterate this till we run out of
the items of size 0.4 – this way we use 4n/3 bins instead of the optimal n up till this point,
then as the items of size 0.6 arrive, we fill the bins containing only one item fitst, then
open a new bin for each of the remaining items. This online algorithm indeed produces an
asymptotic competitive ratio of 4/3 on this particular set of inputs.

The above approach can be generalized. Let us fix a sequence s = (a1, α1), (a2, α2), . . . , (am, αm)
with 0 < ai < 1 being item sizes and 0 < αi being coefficients. For each n, such a sequence
represents the input sequence of α1 · n items of size a1, followed by α2 · n items of size a2, etc,
finally αm ·n items of size am. In the proof above, we worked with the sequence (0.4, 2), (0.6, 2).
For each such fixed sequence s there are finitely many possibilities of putting items into unit-
size bins: each option can be represented by an integer vector (p1, . . . , pm) with 0 ≤ pi being
an integer for each i: this vector represents a bin which, after processing the whole input,
contains p1 number of items of size a1, p2 items of size a2 etc. (We distinguish between ai
and aj here even if their size is the same.) So let us define the set of packing patterns as the
set P = {(p1, . . . , pm) ∈ Nm

0 :
∑
piai ≥ 1}. Although (0, 0, . . . , 0) can be seen as a packing

pattern, we do not consider it to be one, so we exclude it from P .

In our proof above we had four packing patterns in P : (1, 0), (2, 0), (1, 1) and (0, 1). To each
pattern p ∈ P we introduce a real-valued variable xp ≥ 0 as before, the intended semantics of

Szabolcs Iván, University of Szeged, Hungary 46 2018/12/09/23:02:23

xp being that we use xp · n bins of type p after processing the whole sequence.

With these patterns one can easily formalize that the total number of items of type i is αi · n:
for each 1 ≤ i ≤ m we introduce the constraint∑

(p1,...,pm)∈P

pixi = αi.

Also, for each prefix (a1, α1), (a2, α2), . . . , (aj, αj) we compute the optimal cost Optj (or an

upper bound for that). Let βj stand for the value
Optj
n

(note that if we cannot give a linear
bound for Optj, then we don’t end up with an LP problem). Now after processing this prefix
of the input, exactly those bins are used by the algorithm that have a nonzero entry pk > 0 for
some k ≤ j, so we can write the following constraint for each j:∑

(p1,...,pm)∈P,p1+...+pj>0

xp ≤ βj · t

and by minimizing t we end up by a lower bound for the asymptotic competitive ratio of the
Bin Packing problem.

By choosing a complicated enough sequence s, a lower bound of 1.5401 is known for the possible
asymptotic competitive ratio for Bin Packing with this method.

Probably the simplest, and still competitive algorithm is the following one called Next Fit (NF):

• We manage a single open bin. When the next item arrives, we put it into the open bin if
it fits; otherwise, we close the open bin, open a new one and put the item in that.

As an example, if the input sequence is 0.9, 0.2, 0.9, 0.2, 0.9, 0.2, 0.9, 0.2, 0.9, 0.2, then Next Fit
opens a new bin for each incoming item. An optimal packing would pack the five items of size
0.2 into a single bin and the five items of size 0.9 into separate bins, thus the optimal solution
uses six bins, making the competitive ratio 10

6
for this input.

To give a lower bound for the asymptotic competitive ratio of Next Fit, let us fix the integer n
and consider the sequence 1− 1

2n
, 1
n
, 1− 1

2n
, 1
n
,. . . of 2n items in total. Again, Next Fit uses a

separate bin for each of these items, making its cost 2n, while the optimal solution would put
all the small items into a single bin, so the optimal cost is n + 1. Hence, the optimal cost of
this sequence tends to infinity as n does so; the ratio 2n

n+1
converges to 2, so the asymptotic

competitive ratio of Next Fit is at least 2.

However, it is at most 2 as well: for any pair of consecutive bins we have that the total size of
the items in the two bins is at least 1 (otherwise we would not have opened a new bin). Hence,
if Next Fit uses n bins, then the total size of items in these bins is at least bn

2
c, which is clearly

a lower bound for the optimum – or, to put it into another form, if the optimum is n, then
Next Fit uses at most 2n+ 1 bins. As 2n+1

n
also converges to 2, we get:

Proposition

The asymptotic competitive ratio of Next Fit is 2.

In some cases it is reasonable to put an upper bound for the number of open bins (like
when we have an actual storage room with limited capacity). Given an integer k ≥ 1, the
HARMONIC(k) algorithm maintains k open bins, with each bin storing items whose size falls
within a specific interval. Within each size category, the algorithm manages a Next Fit:

Szabolcs Iván, University of Szeged, Hungary 47 2018/12/09/23:02:23

• When the ith item (of size ai) arrives, let us compute its category:

– if 1
2
< ai ≤ 1, then the category of the item is 1,

– if 1
3
< ai ≤ 1

2
, then the category of the item is 2,

– if 1
4
< ai ≤ 1

3
, then it is 3, etc,

– finally, if ai ≤ 1
k
, then its category is k.

• Now if the item fits in the open bin of its category, we pack it there; otherwise, we close
the bin of that category, open a new one and pack the item there.

For example, if the input is 0.4, 0.2, 0.3, 0.6, 0.4, 0.4, 0.2, 0.3 and k = 4, then we proceed as
follows: as 1

3
< 0.4 ≤ 1

2
, the first item goes into the Category 2 bin, the item 0.2 being smaller

than 1/4 goes into the Category 4 bin, then 0.3 goes to the category 3 bin, then the 0.6 goes
into the category 1 bin (at this point we are already using four bins for the four items but that’s
not a problem for the asymptotic competitive ratio), then the 0.4 still fits into the Category 2
bin (which now holds items of total size 0.8), the next 0.4 does not fit into its Category 2 bin,
so we close that bin, open a new one for Category 2 and put this item there. Then, 0.2 still
fits into its Category 4 bin, and 0.3 fits into its Category 3 bin. (See the Figure below for the
result.)

0.6

Cat 1

0.4

0.4

Cat 2 (closed)

0.4

Cat 2

0.3

0.3

Cat 3
0.2
0.2

Cat 4

Sure, for this particular example only 3 bins are enough (we can pack the open bins of Category
1 and 2 into a single bin, and also the rest can go into a single bin as well) but let us analyze
the asymptotic competitive ratio of the HARMONIC(k) algorithm.

Proposition

The asymptotic competitive ratio of HARMONIC(k) is at most 1.69103 for a large enough
k.

Proof

We apply here the so-called weight function method. In general, the weight function
method works as follows: for each item size x, we define a weight w(x) ≥ x such that

• the total weight which fits into a single bin is upperbounded by some constant U and

• HARMONIC(k) puts a total weight of at least L into each closed bin.

Clearly, as for each fixed k, HARMONIC(k) leaves at most k bins open. So if the total
weight of the items is W , then the optimum is at least W/U by the first property, and the
cost of HARMONIC(k) is at most W/L + k by the second one, making the asymptotic
competitive ratio at most U/L.

Szabolcs Iván, University of Szeged, Hungary 48 2018/12/09/23:02:23

For HARMONIC(k), our particular weight function is

w(x) =



1 if 1
2
< x ≤ 1

1
2

if 1
3
< x ≤ 1

2
1
3

if 1
4
< x ≤ 1

3
1
4

if 1
5
< x ≤ 1

4

. . .
k
k−1x if x ≤ 1

k
.

Let us first show that HARMONIC(k) puts a total weight of at least L = 1 into each
closed bin. Clearly, if the category of a bin is some j < k, then exactly j items go into the
bin before it gets closed: as items in those category have a weight of 1/j, the total weight
is indeed 1 in these bins.

Now for a closed bin of category k, the total size of the items is at least k−1
k

, since we close
such a bin when some item of size at most 1

k
does not fit. As these items of size x have a

weight k
k−1x, their total weight is at least

∑
k
k−1x = k

k−1
∑
x ≥ k

k−1 ·
k−1
k
≥ 1.

Now let us prove some upper bound on the possible sum
∑
w(x) if

∑
x < a for some

constant a. For this, we define the density %(x) = w(x)
x

of an item of size x. Clearly, since
w(x) ≥ x, the density is always at least one. Also, if an item is of size x ≤ 1

j
for some

j < k, then its density is less than j+1
j

.

Clearly, if we use an item of size x > 1/2, then it’s better to use an item of size x = 1
2

+ ε
for some small enough ε > 0. In this case, the total weight in the bin becomes at least
1 + k

k−1 ·
1
2

(if we fill the rest with small items). Otherwise, the maximum density available

by any item is smaller than 3/2. So the best option is to use one item of size x = 1
2

+ε. For
the remaining space, if we use an item of size x = 1

3
+ ε, then the total weight in the rest

of the bin becomes at least 1
2

+ k
k−1

1
6
. Otherwise, the maximum available density becomes

4
3
, thus the total weight in the rest of the bin is at most 2

3
. Thus the best option is to use

one item of size x = 1
3

+ ε.

Now the remaining space in the bin is 1
6
− 2ε. If we use an item of size x = 1

7
+ ε, then

the weight we can pack in is at least 1
6

+ k
k−1

1
42
> 8

42
, while if we don’t do that, then the

maximum possible density is 8
7
, yielding a possible weight of at most 8

42
.

In the next step the best option becomes to use an item of size x = 1
43

+ε (provided k ≥ 43
of course, otherwise just simply use a small item) and so on: the total weight of items in
the bin will be at most 1 + 1

2
+ 1

6
+ 1

42
+ . . . ≈ 1.69103.

If there is no upper bound on the number of the open bins, then one can come up with the
following two algorithms First Fit and Best Fit:

• Both algorithms manage open bins, never close a bin.

• If the next item arrives, then they only a new bin only if the new item does not fit into
any of the already used bins.

• Otherwise, First Fit puts the item into the first possible bin; Best Fit picks the bin among
the possible ones which is most fully loaded.

Szabolcs Iván, University of Szeged, Hungary 49 2018/12/09/23:02:23

As an example, running the algorithms First Fit and Best Fit on the input
0.5, 0.6, 0.3, 0.4, 0.2, 0.5, 0.4 we end up with the following configurations respectively:

0.5

0.3
0.2

0.6

0.4

0.5

0.4

0.5

0.4

0.6

0.3

0.2

0.5
0.4

So on this particular input, First Fit produces an optimal packing while Best Fit does not, but
of course it can happen the other way around.

Both of these algorithms are asymptotically better than Next Fit:

Proposition

The asymptotic competitive ratio of both First Fit and Best Fit is 1.7.

Proof

Again, we can use the weight function method here. Our current weight function is:

w(x) =
6

5
x +


0.4 if 1

2
< x

0.1 if 1
3
< x ≤ 1

2
3
5
x− 0.1 if 1

6
< x ≤ 1

3

0 if x ≤ 1
6

First we prove some upper bound of total weight that can be pushed into a single bin.
Clearly, as the weight is nonnegative, we can assume that

∑
x = 1. Then, the sum of the

6
5
x parts of the weight function becomes 6

5
= 1.2 and so we have to show that the sum of

the second parts, also called the “penalty”, cannot exceed 0.5. Clearly, we only have to
consider those items of size greater than 1

6
(since the smaller ones have a penalty of zero),

and the number of these combinations is finite:

• We can use one item of size x > 1
2
. Then the penalty is 0.4.

• We can use one item of size x > 1
2

and one item of size 1
3
≤ y ≤ 1

2
. Then the total

penalty is 0.5.

• We can use one item of size x > 1
2

and one item of size 1
6
< y ≤ 1

3
. Then the total

penalty is 0.4 + 3
5
y − 0.1 = 0.3 + 3

5
y ≤ 0.3 + 1

5
= 0.5.

• We can use one item of size x > 1
2

and two items of sizes 1
6
< y, z ≤ 1

3
. Then the total

penalty is 0.4 + 3
5
(y + z)− 0.2 = 0.2 + 3

5
(y + z) ≤ 0.2 + 0.3 = 0.5 since y + z ≤ 0.5.

• If we do not use an item of size x > 0.5, then the penalty of each item is at most
0.1. Since each item considered is larger than 1

6
, we can use at most five items, thus

the total penalty is at most 0.5.

Szabolcs Iván, University of Szeged, Hungary 50 2018/12/09/23:02:23

Thus, 1.7 is an upper bound for the possible total weight that can be fit into a single bin.

By a longer case analysis one can prove that if we run either FF or BF, then except for
a constant number of bins, each bin gets packed by a total weight of at least 1. Some
interesting cases:

• Those bins containing at least one item of size x > 1
2

have a weight of at least
6
5
· 1
2

+ 0.4 = 1 by this single item, so these bins are fine.

• If there are at least two items of size at least 1
3
, then the total weight in the bin is

at least 6
5
· 2
3

+ 0.2 = 0.8 + 0.2 = 1, so these bins are fine.

• Those bins containing items of a total size of at least 5
6

have a total weight of at least
1, so these bins are fine.

• So we only have to consider those bins of total size at most 5
6
. In the case of First

Fit, the first such bin might contain a weight less than one. However, the other such
bins can only contain items of size more than 1

6
(otherwise we would put them into

the first such bin).

• There cannot be more than two bins of total size at most 1
2

according either to First
Fit or Next Fit. So that’s an option for a second such bin of weight less than one,
but the other bins contain a weight more than 1

2
.

• If there is a bin containing a total size less than 2
3
, then all the later bins contain

items of size more than 1
3
, thus their total size it more than 2

3
. Hence there is at

most one such bin.

• So we have to consider only bins of total size at least 2
3

but at most 5
6
, which contain

only items with size between 1
6

and 1
2
, and with at most one item larger than 1

3
.

Continuing in this fashion we get the claimed result.

Bin packing variants: vector, box, and strip packing

The strip packing is a 2-dimensional generalization of the bin packing. Here, the input is a
sequence of pairs (wi, hi) with 0 ≤ wi, hi ≤ 1, representing rectangles of a given width and
height. We have to pack these rectangles without overlaps onto a strip of width 1 of infinite
height; the objective is to minimize the maximal used height.

As an example, if the input is the sequence (0.4, 0.6), (0.3, 0.3), (0.5, 0.4), (0.1, 0.7), (0.7, 0.1),
then a possible solution of cost 0.8 is depicted on the Figure below.

0.4, 0.6

0.3, 0.3

0.5, 0.4

0.1, 0.7

0.7, 0.1

Szabolcs Iván, University of Szeged, Hungary 51 2018/12/09/23:02:23

A possible way to define shelves inside the strip: a shelf has some height, fixed upon its
construction. Initially, there are no shelves. When a rectangle arrives, a shelf-based algorithm
has to decide whether to put the new rectangle onto a shelf (whose height is at least as large as
the height of the box and which has a large enough remaining width), or to open a new shelf
for the rectangle. In the latter case, the algorithm should determine the height of the new shelf
as well.

For example, one possible algorithm is the following:

• If the new item does not fit on any of the existing shelves, let us open a new shelf, having
height exactly the same as the height of the new box.

• Otherwise, put the item onto the first shelf on which it fits.

Running this algorithm (that can be seen as a generalization of First Fit) on the previous
example we get the solution depicted on the Figure below. Shelves are denoted by green
horizontal lines.

0.4, 0.6

0.3, 0.3

0.5, 0.4

0.1, 0.7

0.7, 0.1

Clearly, this algorithm can leave large empty areas: in fact, it is not competitive as shown by
the input (0.5 + 1

2n
, 1
2n

), (0.5 + 2
2n
, 1
2n

), (0.5 + 3
2n
, 1
2n

),. . . ,(0.5 + n
2n
, 1
2n

). On this input, each box
would get a fresh shelf, the total cost being larger than n/2, while in an optimal solution all
the boxes would fit in a single row, making the optimal cost 1.

A better class of algorithms is called Next Fit Shelf, or NFS, which is parametrized by a constant
0 < r < 1. The algorithm creates shelves of height exactly ri with i being an integer; note that
1 = r0 > r > r2 > r3 > For each such height, there will be at most one open shelf of that
given height. When an item of size (w, h) arrives, then the algorithm determines the smallest
possible shelf height on which it fits, that is, the integer i with ri+1 < h ≤ ri. If there is no
open shelf of this height ri, or if the new box does not fit on the open shelf of this height, the
algorithm opens a new shelf of height ri (closing the previous open shelf if such a shelf exists),
otherwise the item is placed on the open shelf.

As an example, for r = 0.5, the possible shelf heights are 1, 0.5, 0.25, 0.125 and so on. For
the same input sequence (0.4, 0.6), (0.3, 0.3), (0.5, 0.4), (0.1, 0.7), (0.7, 0.1) the run of NFS0.5

is the following (depicted on the Figure below). The first item has height 0.6 which needs a
height of 1, so we open a new shelf of height 1 for this item. Then, the next item of height
0.3 fits on a shelf of height 0.5, so we open a new shelf of this height. The item of height 0.4

Szabolcs Iván, University of Szeged, Hungary 52 2018/12/09/23:02:23

also fits on a shelf of height 0.5 so we place it next to the item (0.3, 0.3) since it has enough
remaining width to do that. Then, the item (0.1, 0.7) is put on the shelf of height 1, and the
item (0.7, 0.1) gets a new shelf of height 0.125.

0.4, 0.6
0.1, 0.7

0.3, 0.3
0.5, 0.4

0.7, 0.1

On this particular example, the algorithm has a cost of 1.625. Should a new item (0.3, 0.4)
arrive, it would be put onto a shelf of height 0.5. Since there is not enough width on the open
shelf of that height, the algorithm would close that open shelf and open a new one of height
0.5 for the new item.

Though the advantages of this algorithm might not be apparent inspecting this input, it is still
a constant competitive one:

Proposition

The algorithm NFSr is
(

2
r

+ 1
r(1−r)

)
-competitive and is asymptotically 2

r
-competitive.

Proof

Key facts: the total height of all the open shelves cannot be too large as the sum of the
geometric progression is upperbounded; closed shelves are treated similarly to Next Fit:
their height is used by at least a fraction of r (otherwise we would have used a smaller
shelf for the item in question), and two consecutive shelves of the same height have to be
filled up to a total width of at least one.

The k-server problem

In the k-server problem, we have a metric space M , that is: a (finite or infinite) set M of
points, equipped by a distance d satisfying the following properties: d(x, y) ≥ 0; d(x, x) = 0
and for each x 6= y, d(x, y) > 0; and the triangle inequality d(x, y) + d(y, z) ≥ d(x, z). A
server configuration is a k-element multiset C ⊆ M . Initially, the servers are in some initial
configuration C0. A request is a point p of M . If we are in a configuration C and we get the
request p ∈M , then a response is a new configuration C ′ with p ∈ C ′. The cost of this response
is d(C,C ′), the minimum total cost of moving the servers from the configuration C to C ′.

Szabolcs Iván, University of Szeged, Hungary 53 2018/12/09/23:02:23

For example, assume k = 2, our metric space is the line with d(x, y) = |x − y|, and we are in
the configuration {1, 4}, at which point we get the request 3. Then it’s a possibility to move
our servers into the configuration {1, 3} for a cost of 1. Another option would be to move into
the configuration {3, 4} for a cost of 2. A third one is to move into the configuration {3, 10}
for a cost of 2 + 6 = 8, though this one seems to be not too well justified.

We call an algorithm (either online or not) lazy if it satisfies the following property: if we get
a request p in the configuration C, then

• if p ∈ C, then the new configuration becomes C,

• otherwise, the new configuration has the form C − {q} ∪ {p} for some q ∈ C.

That is, if it’s not needed to move a server, we don’t move them; otherwise, we choose one
server to serve the request, and we move only that one.

Proposition

Any algorithm, can be effectively transformed into a lazy one which cannot have a worse
cost on any input than the original algorithm. If the original algorithm is online, then so
is the new one.

For the k-server problems, we usually work with the weak competitive ratio: A is weakly c-
competitive if for any initial configuration C0 there exists some constant β such that cA(I) ≤
c ·Opt(I) + β.

The greedy algorithm is the lazy one which moves the server q that is closest to the request.
In most of the metric spaces, this is not a competitive algorithm. To see this, let our metric
space be the line, k = 2 and the initial configuration be {0, 4}. Upon the request sequence
1, 0, 1, 0, . . . , 1, 0 the greedy algorithm moves the first server back and forth between the two
points, and the cost diverges to infinity, while the optimal cost for a long enough sequence
would be 3, simply moving the server from 4 to 1 in the first step.

We’ve already seen a(n almost) special case of the k-server problem before. A metric space is
called uniform if the distance between different points is always 1. Then, the paging problem
becomes a k-server problem on a uniform metric space with the single difference of the initial
filling of the cache, which increases the cost by k. We’ve also seen that for the paging problem
there is no deterministic online algorithm having a competitive ratio better than k. This holds
in any metric space:

Proposition

If M has at least k + 1 points, then there is no deterministic online algorithm which is
better than weakly k-competitive.

Proof

The proof is similar to the one given for the List Access problem’s lower bound. Key
points: having k + 1 points we can always request the point which is not covered by the
servers. Also, we can define k algorithms with a grand total cost being equal to the cost
of this run, meaning that the optimum is at most the cost of the algorithm, divided by k.

So let A be a deterministic online algorithm and let the initial server configuration be
C0 = {p1, p2, . . . , pk} and pk+1 be a (k+1)th point. For each t, let qt = {p1, . . . , pk+1}−Ct−1.
The request sequence is now (q1, q2, . . . , qn). Clearly, the first query q1 is served by A from

Szabolcs Iván, University of Szeged, Hungary 54 2018/12/09/23:02:23

q2 since that’s the empty point after t = 1. Similarly, the second query is served from q3

and so on, so the total cost of A on this input is
n−1∑
i=1

d(qi, qi+1).

Now we define the lazy online algorithms A1, . . . , Ak as follows. In the first step, Ai serves
q1 = pk+1 from pi. For the remaining queries, if qt is not covered, then it gets served by
qt−1 (so the algorithms differ only in their first step).

Let Ci
t be the configuration of Ai after serving the tth request. Then formally, Ci

0 =
{p1, . . . , pk} for each i, Ci

1 = {p1, . . . , pk+1} − {pi} and

Ci
t+1 =

{
Ci
t if qt+1 ∈ Ci

t

Ci
t − {qt} ∪ {qt+1} otherwise

As the algorithms are lazy, we get that each Ci
t contains exactly k pairwise different points.

Clearly, qt ∈ Ci
t for each t ≥ 1 and i. We also claim that Ci

t 6= Cj
t if i 6= j and t ≥ 1. This

holds for t = 1 by the definition of the first step. Now assume this holds for t and let us
move to t+ 1. So let Ci

t 6= Cj
t .

• If qt+1 ∈ Ci
t ∩ C

j
t , then Ci

t+1 = Ci
t 6= Cj

t = Cj
t+1.

• If qt+1 ∈ Ci
t and qt+1 /∈ Cj

t , then Ci
t+1 = Ct 3 qt and Cj

t+1 = Cj
j − {qt} ∪ {qt+1}, and

this latter set does not contain qt, so these two sets are different.

• If qt+1 is not a member of either Ci
t or Cj

t , then Ci
t − {qt} 6= Cj

t − {qt} and also
Ci
t+1 6= Cj

t+1, so these two sets are different as well.

Thus all the possible k-element subsets of {p1, . . . , pk+1} containing qt occur as configura-
tions of the form Ci

t . Amongst these sets there is only one which does not contain qt+1, this
one pays d(qt, qt+1) when serving qt+1, for the others the request is covered and thus free
to serve. Hence the total cost payed by the k algorithms is d(qt, qt+1) for each step after

the very first one, which has a total cost of
k∑
i=1

d(pi, pk+1). Thus, the total cost of these

k algorithms is
k∑
i=1

d(pi, pk+1) +
n−1∑
i=1

d(qi, qi+1). Hence, the best one amongst them pays at

most 1
k

times this cost and so

Opt ≤

k∑
i=1

d(pi, pk+1) +
n−1∑
i=1

d(qi, qi+1)

k

thus the limit of the cost of the algorithm and the optimal cost tends to at least k as the
length of the request sequence tends to infinity, meaning A cannot perform better than
being weakly k-competitive.

On the line, the following algorithm Double Coverage, or DC, performs surprisingly well:

• Suppose our current configuration is C and the next request is p.

• If p ∈ C, then the new configuration is C as well.

• If p < minC or p > maxC, then we move the server which is closest to the request.

Szabolcs Iván, University of Szeged, Hungary 55 2018/12/09/23:02:23

• Otherwise, there are two servers x, y ∈ C between which p falls, say x < p < y. Let d be
the minimum of d(p, x) and d(p, y). We move both x and y towards p, their new positions
being x+ d and y − d, respectively.

Observe that DC is not a lazy algorithm.

As an example, let k = 3 and the initial server configuration be {1, 4, 10}. Assume the input is
the request sequence 6, 9, 0, 3, 7. Then the server configurations in order are {1, 6, 8} (moving
4 and 10 two units towards the request 6), {1, 6, 9} (8 serves 9), {0, 6, 9} (1 serves 0), {3, 3, 9}
(both 0 and 6 move towards 3, three units) and {3, 5, 7} (one of the 3s and the 9 is moved
towards 7, two units). The total cost of DC in this case is 4 + 1 + 1 + 6 + 4 = 16. The cost
given by the greedy algorithm is 8.

Proposition

The algorithm DC is weakly k-competitive on the line.

Proof

We again use the potential method. Let s1 ≤ s2 ≤ . . . ≤ sk be the server positions
according to the DC algorithm and let x1 ≤ x2 ≤ . . . ≤ xk be the server positions
according to some lazy algorithm A. Initially, si = xi for each i.

We define the following potential function Φ:

Φ = k ·
k∑
i=1

|xi − si| +
∑
i<j

(sj − si).

We claim that
DC(t) + Φ(t) ≤ k · A(t) + Φ(0)

holds for each t ≥ 0 where again , DC(t) and A(t) respectively denote the total cost of
DC and A, after processing the first t requests. The claim holds for t = 0.

Let the (t + 1)th request be for the point q and let it be served by A first. Assuming A
moves a server xi to q for a cost of d, the quantity A(t) increases by d, so the right-hand
side increases by k ·d. Clearly, DC(t) does not change at this point, nor the second term of

the potential function and the term
k∑
i=1

|xi−si| can change by at most d, thus the left-hand

side can increase by at most k · d as well. So at this point, the inequality still holds.

Now let DC serve q. We show that the left-hand side cannot increase by a case analysis.

• If q lies strictly between two servers sj < q < sj+1, then let d be the distance
min{q − sj, sj+1 − q}. In this case the cost of this step is 2d, the DC term increases
by this amount.

• For the second term of the potential function, the distance between sj and sj+1

decreases by 2d. For all the other servers sk, the total distance from sj and sj+1

from sk remains the same: one of the moving servers gets closer to sk, the other one
gets further to sk by the same amount. So the second term of the potential function
decreases by 2d.

Szabolcs Iván, University of Szeged, Hungary 56 2018/12/09/23:02:23

• For the first term of the potential function, one of the servers sj and sj+1 moves a
distance of d and gets to the point q on which there is a server present: by this, the

sum
k∑
i=1

|xi − si| decreases by d. The other server can increase this sum by at most

d, so the first term of the potential function cannot increase.

• Hence, if q lies strictly between two servers of DC, the inequality still holds. Oth-
erwise, if q falls outside the servers of DC, then DC moves a single server (either s1
or sk) for a cost of d. This way the first term of the potential function decreases by
k · d, the cost of DC increases by d, while the second term of the potential function
increases by (k−1)d. In total, the left-hand side does not change in that case either,
and the inequality still holds.

An algorithm which is conjectured to be weakly k-competitive for any metric space is the
so-called Work Function Algorithm. This algorithm requires the computation of the offline
optimum for each prefix of the input sequence. Let us denote for each possible server configu-
ration C and integer t by wt(C) the offline optimal cost of serving the first t requests, ending
up in the configuration C.

The computation of wt(C) can be done by induction on t:

• w0(C0) = 0 and for each C 6= C0, w0(C) =∞.

• If the tth request is p, and p /∈ C, then wt(C) =∞.

• Otherwise, wt(C) = minC′
{
wt−1(C

′) + d(C ′, C)
}

.

For an example, if we have the points 0, 2 and 5 in the metric space with d(x, y) = |x− y|, the
initial server configuration is {0, 5} and the request sequence is 2, 0, 2, then the computation
table is the following:

{0, 2} {0, 5} {2, 5}
∞ 0 ∞

2 3 ∞ 2
0 3 4 ∞
2 3 ∞ 6

For example, w2({0, 5}) is computed as follows: in the previous row, {0, 2} has a cost of 3, and
the cost of moving the servers from {0, 2} to {0, 5} is 3, producing a total cost of 6. The second
option is moving from {2, 5} to {0, 5} for a cost of 2. As w1({2, 5}) = 2, this option produces
a total cost of 2 + 2 = 4. This being the minimum, w2({0, 5}) becomes 4.

The work function algorithm is a lazy algorithm, which works as follows: if the tth request is p
is not in the current configuration C, then we choose the server q to serve p which minimizes
the sum wt(C − {q} ∪ {p}) + d(q, p).

Let us see the work function algorithm acting on this request sequence 2, 0, 2.

• The initial configuration is {0, 5}. If we move the server from 0 to serve the request 2,
the cost is w1({2, 5}) + d(0, 2) = 2 + 2 = 4. If we move the server from 5 to 2, the cost is
w1({0, 2}) + d(5, 2) = 3 + 3 = 6. So we choose 0 to serve the request and we are in the
configuration {2, 5}.

Szabolcs Iván, University of Szeged, Hungary 57 2018/12/09/23:02:23

• The next requested point is 0. If we move 2 to 0, the cost is w2({0, 5})+d(2, 0) = 4+2 = 6.
Moving 5 to 0 has the cost w2({0, 2}) + d(5, 0) = 3 + 5 = 8 so we move 2 to 0 and we are
in the configuration {0, 5}.

• The next requested point is 2. If we move 0 to 2, the cost is w3({2, 5})+d(0, 2) = 6+2 = 8.
If we move 5 to 2, the cost is w3({0, 2}) + d(5, 2) = 3 + 3 = 6. So we move 5 to 2 and we
are in the configuration {0, 2}.

Proposition

The work function algorithm is (2k − 1)-competitive for any metric space (and is shown
to be k-competitive for lots of cases).

Szabolcs Iván, University of Szeged, Hungary 58 2018/12/09/23:02:23

