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1 Introduction

The model of projection learning was introduced by Valiant [17], motivated
by constraints imposed on learnability by biology. Projection learning aims
to learn a target concept over some large domain, in this paper {0, 1}n, by
learning some of its projections (or restrictions) to a class of smaller domains,
and combining these projections. Valiant proved a general mistake bound for
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URL: www.cs.uic.edu/~sloan (Robert H. Sloan).
1 Research supported in part by by the National Science Foundation under grants
CCR-0100336 and CCF-0431059.
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the resulting algorithm under certain conditions. The basic assumption un-
derlying projection learning is that there is a family of simple projections that
cover all positive instances of the target, where simple means belonging to
some efficiently learnable class. The projections describing the target in this
way can also be thought of as a set of experts, each specialized to classify a
subset of the instances, such that whenever two experts overlap they always
agree in their classification.

Perhaps the most natural special case of this framework, also discussed by
Valiant, is when the projection domains are subcubes of a fixed dimension,
and the restrictions of the target to these domains are conjunctions. In this
case, the algorithm learns a class of disjunctive normal forms (DNF) called
projective DNF. The class of projective DNF expressions does not appear to
have been studied at all before Valiant’s work. As the learnability of DNF
is a major open problem in computational learning theory 4 , it is of interest
to those who study computational learning theory to identify new learnable
subclasses and to understand their scope.

In this paper we discuss various combinatorial and learnability properties of
projective DNF. We give some basic properties of projective DNF by com-
paring them to standard classes such as DNF with terms of bounded size or
with a bounded number of terms, and decision lists. We also present lower
and upper bounds for the exclusion dimension of projective DNF. The exclu-
sion dimension, or certificate size [2, 7, 8], of a concept class is a combinatorial
parameter that is closely related to its learning complexity in the model of
proper learning with equivalence and membership queries. Thus we obtain
bounds for the complexity of learning projective DNF in this model. For the
subclass of 1-projective DNF we prove a characterization theorem that gives
an explicit description of all such expressions.

One of the main goals of Valiant’s work is to find attribute-efficient learning
algorithms. The notion of an attribute-efficient learning algorithm goes back
to the seminal work of Littlestone [11]. His Winnow algorithm learns a (mono-
tone) disjunction of k variables out of a total of n variables with O(k log n)
mistakes. Thus Winnow is very efficient for learning problems where there are
many attributes but most of them are irrelevant. Valiant argues that learn-
ing in the brain, and also many real-life applications, has exactly that prop-
erty [17, 18]. In general, a learning algorithm is called attribute efficient if it
has a mistake bound that is polynomial in the number of relevant variables,
and only polylogarithmic in the total number of variables. One of the most at-
tractive features of both Winnow and Valiant’s projection learning algorithm

4 While this article was under review, Alekhnovich et al. showed that DNF is not
properly PAC learnable in polynomial time unless NP = RP [1], providing further
motivation to find positive learnability results.
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is their attribute efficiency.

The seemingly unrelated area of theory revision in machine learning is con-
cerned with the revision, or correction, of an initial theory that is assumed
to be a good approximation of a correct theory. A typical application of the-
ory revision is the refinement of an initial version of a theory provided by a
domain expert. In that context it is argued that a large and complex theory
cannot be learned from scratch, but it is necessary to start with a reasonably
close initial theory. The usual assumption of theory revision is that the correct
theory can be obtained from the initial one by a small number of syntactic
modifications, such as deletions or additions of literals. An efficient revision
algorithm is required to be polynomial in the number of literals that need to
be modified and polylogarithmic in the total number of literals. Wrobel gives
a general survey of the theory revision literature [19, 20]; efficient revision in
the framework of learning with queries is discussed in detail in [5, 6].

Thus, the situation in theory revision is similar to the case of attribute-efficient
learning, but instead of assuming that only a few literal occurrences are rel-
evant, one assumes that only a few literal occurrences need to be modified.
Roughly speaking, attribute efficient learning requires efficient revision of an
empty initial formula. The argument for the biological relevance of attribute-
efficient learning can be extended to apply to revision, for example, in the case
of information hard-wired at birth.

In view of this relationship, it is an interesting general question whether
attribute-efficient learnability results can be extended to results on efficient
revision. Previously we gave a positive answer in the case of parity function,
where the relationship between the two tasks is simple [5]. As a next step, we
show here that Winnow is in fact an efficient algorithm for revising disjunc-
tions as well. This in turn raises the question whether Valiant’s more general
results on the attribute-efficient learnability of projective DNF can also be
extended to efficient revision. We show that projective DNF can be revised
efficiently by using, just as Valiant does, the original Winnow algorithm on
two levels. In our setting, the initial weights are adapted to the task of revi-
sion. The correctness proof uses a potential function argument; this approach
differs from that of Valiant.

We note that the problem of revising is somewhat related to the problem
of tracking changing target concepts, which is discussed in several previous
papers (see, e.g., [3, 13]). Compared to the model of tracking a changing target
concept, our model is less general, as it assumes only a single change from an
initial concept to the target. On the other hand, the tracking model starts
from scratch, and thus, in order to simulate our setting, the initial formula
(which may be large) has to be built up by adding all its relevant variables,
and all these additions may enter into the mistake bound of the algorithm.
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Thus it appears that there is no direct implication between our results and
those of Auer and Warmuth on tracking disjunctions [3].

After some preliminaries given in Section 2, Section 3 contains the definition of
projective DNF and a discussion of some of their properties. Section 4 contains
the bounds for the exclusion dimension. The characterization of 1-PDNF is
presented in Section 5. Section 6 presents the formal model of revision and
the revision algorithms. Finally, we mention some open problems and make
further remarks in Section 7.

2 Preliminaries

We use various standard terms from propositional logic, such as variable, con-
junction, and disjunction. We call elements of {0, 1}n vectors, and denote spe-
cific vectors as strings over {0, 1}, sometimes using exponential notation. Thus
for the vector (0, 0, 0, 1, 0) ∈ {0, 1}5 we will write either 00010 or 0310. We also
use notation such as xxi=1 to denote vector x ∈ {0, 1}n with its i’th compo-
nent fixed to 1. We always use n for the number of propositional variables; all
vectors will be from {0, 1}n unless we specifically state otherwise.

The weight of vector x is the number of its ones, denoted |x|. The vector en
I

is the characteristic vector of I ⊆ [n], and the vector gn
I is its componentwise

complement ([n] = {1, . . . , n}). With a slight abuse of notation we also use
en

i (resp. gn
i ) to denote en

{i} (resp. gn
{i}). The all 1’s vector is written 1; the

all 0’s vector is written 0. For a Boolean function f : {0, 1}n → {0, 1}, we
write T (f) = {x ∈ {0, 1}n : f(x) = 1} for the set of its true vectors. For
x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ {0, 1}n we write x ≤ y if xi ≤ yi for
1 ≤ i ≤ n, and we write x∧y (resp. x∨y and x⊕y) for (x1∧ y1, . . . , xn∧ yn)
(resp. (x1∨y1, . . . , xn∨yn) and (x1⊕y1, . . . , xn⊕yn)). We call x∧y the meet,
and x ∨ y the join of x and y.

A literal is an unnegated or negated variable. Negation of a variable x is
denoted by x̄. Unnegated variables are called positive literals; negated variables
negative literals. A conjunction of literals is also called a term. The empty
conjunction (denoted by >) is always true. For a term t, we write Lit(t)
for the set of literals in t. A k-conjunction is a conjunction of k literals. A
disjunctive normal form (DNF) is a disjunction of terms. A k-DNF is a DNF
such that each of its terms contains at most k literals. A K-term DNF is a
DNF with at most K terms.

A decision list [14] is an ordered list of pairs L = (c1, b1), . . . , (cm, bm), where
c1, . . . , cm−1 are terms, cm = >, and b1, . . . , bm ∈ {0, 1}. Decision list L evalu-
ates to b` on vector x ∈ {0, 1}n if c1, . . . , c`−1 are false and c` is true on x. A
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decision list is a k-decision list if all its terms have size at most k.

A Boolean function f is monotone if x ≤ y implies f(x) ≤ f(y), it is a-unate
if g(x) = f(x ⊕ a) is monotone, where a ∈ {0, 1}n, and it is unate if it is
a-unate for some a ∈ {0, 1}n. A term is monotone if it consists of unnegated
variables. Given a ∈ {0, 1}n, a term is a-unate if the sign of every literal in it
agrees with a—that is, a literal is positive iff the corresponding component of
a is 0. For example, if n = 3 and a = 101 then x̄1 x2 is a-unate.

We use the standard model of mistake bounded learning [11], which proceeds in
a sequence of rounds (or trials). In each round the learner receives an instance
x, and produces a prediction ŷ. Then the correct classification y is revealed.
If ŷ 6= y then the learner made a mistake. The mistake bound of the learning
algorithm is the maximal number of mistakes, taken over all possible runs,
that is, sequences of instances.

In addition to the standard mistake-bounded model, as a technical tool for
the learning result, we also consider a model of learning in the presence of
noise. In the model of learning monotone disjunctions with attribute errors
(Auer and Warmuth [3], also used by Valiant [17] with a different name) it
may happen that y is not the correct classification of x. It is assumed that the
error comes from some components (or attributes) of x being incorrect, and
the number of attribute errors committed in a round is the minimal number of
components that need to be changed in order to get the correct classification.
More precisely, if in round r the classification yr is not the correct classification
of xr, then, if yr = 1 then AttrErr(r) = 1 (as it is enough to switch one bit
on to satisfy a disjunction), and if yr = 0 then AttrErr(r) is the number
of variables that are included in the target disjunction and which are set
to 1 in xr. The total number of attribute errors for a given run, denoted
#AttributeErrors, is the sum of the attribute errors of the rounds. This
notion is used only for technical purposes: it plays an important role inside
some proof, but does not appear in any results.

A subcube (or simply cube) is any set of vectors that is of the form T (t) for
some conjunction (i.e., term) t. For terms t1, t2, where t1 6≡ 0, it holds that
t1 → t2 iff T (t1) ⊆ T (t2) iff t1 is subsumed by t2 (i.e., Lit(t1) ⊇ Lit(t2)).

Proposition 1 A set A ⊆ {0, 1}n is a cube iff for every x,y ∈ A and every
z ∈ {0, 1}n such that x ∧ y ≤ z ≤ x ∨ y, it also holds that z ∈ A.

PROOF. The ⇒ direction is easy to see.

The ⇐ direction follows by noting that the condition implies that the ∧ and
the ∨ of all the vectors in A is in A, and every vector between these two vectors

5



is also in A. The conjunction of those literals to which value 1 is assigned by
both of the above vectors is a term that is satisfied by exactly the vectors in
A. 2

It follows, in particular, that if a cube contains two vectors with weights w1 <
w2, then it also contains vectors of weight w for every w1 < w < w2.

3 Projective DNF

In this section we introduce projective disjunctive normal forms and we briefly
discuss some of their properties.

Definition 2 A DNF formula ϕ is a k-projective DNF, or k-PDNF if it is
of the form

ϕ = ρ1c1 ∨ · · · ∨ ρ`c` , (1)

where every ρi is a k-conjunction, every ci is a conjunction and for every i it
holds that

ρiϕ ≡ ρici. (2)

A Boolean function f : {0, 1}n → {0, 1} is k-projective if it can be written as
a k-PDNF formula. The class of n-variable k-projective functions is denoted
by k-PDNFn.

The k-conjunctions ρi are also called k-projections, or, when k is clear from
context, simply projections. Conditions (1) and (2) mean that when restricted
to the subcube T (ρi), the formula ϕ is equivalent to the conjunction ci, and
every true point of ϕ arises this way for some restriction. This corresponds to
the intuition, described in the Introduction, that the restrictions to a prespec-
ified set of simple domains are simple, and the whole function can be patched
together from these restrictions.

Note that in order to specify a k-PDNF, it is not sufficient to specify its
terms, but for each term one has to specify its ρ-part and its c-part; that is,
the projection and the corresponding conjunction have to be distinguished. If
necessary, we indicate this distinction by placing a dot between the two parts.
For example,

(x · y) ∨ (z · y) and (x · y) ∨ (x̄ · yz) (3)
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are two different 1-PDNF for the same function. The dots are omitted when-
ever this does not lead to confusion. The conjunctions ρi and ci may have
common literals. The requirement (2) is equivalent to requiring that

ρjρici ≡ ρiρjcj (4)

for every i and j. This makes it easy to verify that a given expression, such
as those in (3), is indeed a k-PDNF. It also shows that the disjunction of any
set of terms of a k-PDNF is again a k-PDNF.

If a function is k-projective, then it is k′-projective for every k′ with k ≤ k′ ≤ n.
Note that the complete DNF (consisting of n-conjunctions corresponding to
the true points of f) shows that every n-variable function is n-projective.

We briefly discuss the relationship between projective DNF and some other
standard classes. Let k-DNFn, resp. K-term-DNFn, denote the class of n-
variable Boolean functions expressible as a k-DNF, resp. K-term DNF. Let
k-DLn denote the class of k-decision lists on n variables.

Proposition 3 Assume k < n, and let K = 2k
(

n
k

)
. Then

k-DNFn ⊂ k-PDNFn ⊂ K-term-DNFn .

PROOF. Every k-DNF can be expanded into a DNF with every term con-
taining exactly k literals, and such a DNF can be viewed as a k-PDNF: the
terms are the projections themselves. The number of k-conjunctions over a
given set of n variables is 2k

(
n
k

)
; thus every k-PDNF over n variables is a

DNF with at most K terms. The properness of the first inclusion follows by
noting that x1 ∧ · · · ∧ xn is a k-PDNF for every k ≥ 1. The second proper
inclusion follows from Proposition 8 below. 2

Proposition 4 For every k < n it holds that k-PDNFn ⊆ (k+1)-DLn. There
is a constant 0 < α < 1 such that the inclusion is proper if n is sufficiently
large and k ≤ αn.

PROOF. Let ϕ = ρ1c1 ∨ · · · ∨ ρ`c` be a k-PDNFn formula. We construct a
(k +1)-decision list for ϕ as follows. For each i in order, we put |ci|+1 entries
into the list. The first |ci| entries consist of the conjunction of ρi and the
negation of one literal of ci, with truth value 0. The last is just the conjunction
ρi with truth value 1. This corresponds to the fact that when ρi is satisfied,
ϕ evaluates to 0 if and only if ci is not satisfied. Finally, after all ` terms are
handled, we have the default truth value 0, because ϕ can only be satisfied by
satisfying some term ρici.
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For the proper inclusion consider
∧bn

2
c

i=1(xi ∨ yi). This is a 2-CNF expression,
and thus it is a (k + 1)-DL for every k: (x̄1ȳ1, 0), . . . , (x̄bn

2
cȳbn

2
c, 0), (>, 1). On

the other hand, it is an easily seen and often used fact that every equivalent
DNF has at least 2b

n
2
c terms. Thus there cannot be an equivalent k-PDNF

expression for any k satisfying 2k
(

n
k

)
< 2b

n
2
c. The proper inclusion then follows

by standard calculation. 2

We also give some bounds for the number of n-variable k-projective functions.
In view of Proposition 3, an upper bound is provided by the straightforward
upper bound for the number of K-term DNFs. The exponent of the lower
bound matches the exponent of the upper bound in order of magnitude for
every fixed k.

Proposition 5 The following bounds hold for |k-PDNFn|:

3b
n

k+1c(d
k

k+1
ne

k
) ≤ |k-PDNFn| ≤ 3n 2k (n

k).

PROOF. For the lower bound, let ` < n be fixed. For any k-element subset
I ⊆ [`] consider the k-conjunction ρI =

∧
i∈I xi and the term t∗I =

∧
i∈[`]\I x̄i.

Form the expression∨
I⊆[`],|I|=k

ρI t∗I tI ,

where the tI ’s are arbitrary conjunctions of some literals from {x`+1, . . . , xn}.
Different choices of the tI ’s represent different k-projective functions. Thus

the number of k-projective functions is at least (3n−`)(
`
k): in each of the

(
`
k

)
terms variables x`+1, . . . , xn can be negated, unnegated or missing. The bound

follows by choosing ` =
⌈

k
k+1

n
⌉
. 2

4 Exclusion dimension

We present the definitions of specifying sets and the exclusion dimension, fol-
lowing the terminology of Angluin [2]. (With minor variations, exclusion di-
mension is called unique specification dimension by Hegedüs [7] and certificate
size by Hellerstein et al. [8].)

Let f be an n-variable Boolean function. A set A ⊆ {0, 1}n is a specifying
set of f with respect to a class C of Boolean functions if there is at most one
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function in C that agrees with f on A. (So clearly {0, 1}n is always a specifying
set.) The specifying set size of f with respect to C is

specC(f) = min{|A| : A is a specifying set for f with respect to C},

and the exclusion dimension of the class C is

XD(C) = max{specC(f) : f 6∈ C}.

A specifying set A for f 6∈ C such that no function in C agrees with f on A is
also called a certificate of exclusion (or simply certificate) for f with respect
to C. In our constructions below, we will usually give certificates of exclusion,
which clearly give upper bound for the specifying set size.

For the rest of this article specifying sets are always with respect to k-PDNF,
so we write spec(f), omitting the subscript C.

A function f is minimally non-k-projective if it is not k-projective, but any
f ′ with T (f ′) ⊂ T (f) is k-projective.

Proposition 6 If f is minimally non-k-projective, then spec(f) ≥ |T (f)|−1.

PROOF. Suppose |A| ≤ |T (f)|−2 for some A ⊆ {0, 1}n. Let x, y ∈ T (f)\A
be two different vectors. As f is minimally non-k-projective, there is gx ∈
k-PDNFn (resp. gy ∈ k-PDNFn) such that T (gx) = (A ∩ T (f)) ∪ {x} (resp.
T (gy) = (A∩ T (f))∪ {y}). Now gx and gy are different elements of k-PDNFn

that agree with f on A, thus A is not a specifying set for f . 2

We now present a lower and an upper bound for the exclusion dimension of
k-PDNFn, which show that for fixed k the exclusion dimension is Θ(nk). We
begin with a lemma that characterizes k-PDNF, give some examples, and then
continue to the main theorem of this section that gives the bound.

Lemma 7 (a) A function f is k-projective iff for every x ∈ T (f) there is a
k-conjunction ρ such that x ∈ T (ρ) and T (f) ∩ T (ρ) is a cube.

(b) If for every x ∈ T (f) there is a k-conjunction ρ such that T (f)∩ T (ρ) =
{x}, then f is k-projective.

PROOF. We show only (a), as (b) follows directly from (a). If f is k-
projective then it can be written as ϕ = ρ1c1∨· · ·∨ρ`c`. Consider an x ∈ T (f).
Then ρici(x) = 1 for some i, thus x ∈ T (ρi). The definition of PDNF implies
that T (f) ∩ T (ρi) = T (ρici), which is a cube.
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For the other direction, let us assume that for every x ∈ T (f) there is a k-
projection ρx such that x ∈ T (ρx) and T (f)∩T (ρx) = Qx is a cube. Then Qx

can be written as T (ρxcx) for some conjunction cx, and f can be written as
the k-PDNF expression

∨
x∈T (f) ρxcx. 2

We illustrate Lemma 7 with the following example. We claim that the function
f(x1, x2, x3, x4) = x1x2 ∨ x3x4 is not 1-projective. Call a vector that violates
condition (a) in the lemma k-deviant, or simply deviant. It suffices to show that
1 is deviant. For symmetry reasons, we only need to show that T (f) ∩ T (x1)
is not a cube. Indeed, it contains 1101 and 1011, but it does not contain
1101∧1011 = 1001. Another application is given by the following proposition,
which was already referred to in Proposition 3.

Proposition 8 For every k and n ≥ k+2 there is a non-k-projective function
with |T (f)| = k + 3.

PROOF. Let T (f) = {en
i : 1 ≤ i ≤ k + 2} ∪ {0}. Then 0 is k-deviant, as

every k-conjunction ρ satisfied by 0 contains at least two en
i ’s, but T (f)∩T (ρ)

does not contain the join of these two unit vectors, and thus it cannot be a
cube according to Proposition 1. 2

The proposition gives a (k + 3)-term DNF function which is not k-projective.

As k + 3 < 2k
(

n
k

)
, this gives the second separation in Proposition 3.

Theorem 9 (a) For all n and k,

XD(k-PDNFn) ≤ 3

(
n

k

)
+ 1 ,

and
(b) if n ≥ 4k(k + 1), then

XD(k-PDNFn) ≥
(
bn/4c

k

)
− 1 .

PROOF. For the upper bound, we will calculate an upper bound on the size
of a certificate of exclusion for any f 6∈ k-PDNFn with respect to k-PDNFn.

To show that a a function f is not k-projective, it suffices to present a deviant
vector x (i.e., x violates Condition (a) of Lemma 7) together with a certificate
of x’s deviance. For the certificate of x’s deviance it suffices to specify, accord-
ing to Proposition 1, for every k-conjunction ρ with ρ(x) = 1, three vectors
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x1,x2,x3 such that ρ(x1) = ρ(x2) = ρ(x3) = 1, x1 ∧ x2 ≤ x3 ≤ x1 ∨ x2 and
f(x1) = f(x2) = 1, f(x3) = 0. The number of k-conjunctions with ρ(x) = 1

is
(

n
k

)
. Thus the upper bound follows: 1 for x itself, and then 3 vectors each

for at worst all of the k-conjunctions.

For the lower bound, in view of Proposition 6, it is sufficient to construct a
minimally non-k-projective n-variable function fn,k that takes the value 1 at
many points. First we describe the construction in the case when n is even
and k = 1. Let n = 2s, and let T (fn,k) = {ai = (gs

i , e
s
i ) : i = 1, . . . , s} ∪ {0}.

We claim that fn,k is minimally non-1-projective. The non-1-projectivity of
fn,k follows from the fact that 0 is deviant: any 1-projection ρ containing 0
must be a negative literal, and thus it contains some vector(s) ai, but it does
not contain any vector of positive weight less than s. Thus, by the remark
following Proposition 1, T (fn,k) ∩ T (ρ) is not a cube. On the other hand,
the ai’s are not deviant for fn,k. This holds as they satisfy the condition of
part (b) of Lemma 7: the 1-conjunction xs+i contains only ai from T (fn,k).
Now we show that every f ′ with T (f ′) ⊂ T (fn,k) is 1-projective. Indeed, if
f ′(0) = 0 then this follows from part (b) of Lemma 7 directly. Otherwise the
only thing to note is that if f ′(ai) = 0, then the 1-conjunction x̄i contains only
0 from T (f ′).

For the construction in the general case we use the following lemma. In the
lemma we consider {0, 1}p to be the p-dimensional vector space over GF (2).

Lemma 10 Let A be a p × p 0–1 matrix such that both A and A ⊕ I are
nonsingular. Assume that k(k + 1) < 2p and define the mapping

h(b1, . . . ,bk) = (b1 ⊕ Ab, . . . ,bk ⊕ Ab),

where b1, . . . ,bk ∈ {0, 1}p and b = b1 ⊕ · · · ⊕ bk. Then it holds that

(a) h is a bijection, and
(b) for every b1, . . . ,bk−1 and d1, . . . ,dk there is a bk different from
b1, . . . ,bk−1, such that the components of h(b1, . . . ,bk) are all different from
the di’s.

PROOF. If h(b1, . . . ,bk) = (d1, . . . ,dk), then d1 ⊕ · · · ⊕ dk = b ⊕ (k mod
2)Ab, which is equal to b (resp., (A ⊕ I)b), if k is even (resp., odd). Thus,
knowing d1, . . . ,dk we can first determine b, and then we can determine every
bi by bi = di ⊕ Ab. Hence h is injective, and thus it is also bijective.

For (b), note that a value for bk can fail to satisfy the requirement only if it is
either equal to one of the bi’s, or it makes bi⊕Ab = dj for some 1 ≤ i, j ≤ k.
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In each case we can solve for bk, thus there are altogether at most k + k2 bad
choices. Choosing any of the other 2p−(k+k2) vectors meets our requirements
for bk. 2

Now we continue the proof of Theorem 9 with the general case k > 1. First,
we need a matrix that fulfills the conditions of Lemma 10. It is easily verified
that, for example, the matrix A with all 0’s except a1,1 = ap,1 = ai,i+1 = 1
(where i = 1, . . . , p − 1) is such a matrix. It is clear from the definition of h
that if the bi’s are all different, then the components of h(b1, . . . ,bs) are also
all different, and if we permute the bi’s then the components of the image are
permuted in the same way. Thus if I = {b1, . . . ,bk} ⊆ {0, 1}p, then with an
abuse of notation we can write h(I) for the k-element subset of {0, 1}p formed
by the components of h(b1, . . . ,bk).

Now let p =
⌊
log n

2

⌋
, and put s = 2p. If I is a k-element subset of [s], let aI =

(gs
I , es

h(I), 0n−2s), and define fn,k by T (fn,k) = {aI : I ⊆ [s], |I| = k} ∪ {0}.

We claim that fn,k is minimally non-k-projective. The argument for this is
very similar to the argument in the special case above. The projection ρI =∧

i∈h(I) xs+i contains only aI from T (fn,k) by part (a) of Lemma 10, and if aI is
not contained in T (f ′), then the projection ρ0 =

∧
i∈I x̄i contains only 0 from

T (f ′). It only needs to be shown that 0 is deviant for fn,k. Let ρ be any k-
conjunction containing 0. We can assume that every literal x̄i in ρ has i ≤ 2s,
as the other literals do not exclude any aI . We show that besides 0 there is an
aI in T (ρ), which implies the claim by the remark following Proposition 1. If
all the literals come from the first s variables then aI corresponding to these
literals clearly satisfies the requirements. Otherwise, let us assume that the
literals in ρ are of the form x̄i, for i ∈ I1 ∪ I2, I1 ⊆ [s], I2 ⊆ [s + 1, 2s], |I2| > 0
and |I1|+ |I2| = k. By part (b) of Lemma 10 there is an I ⊆ [s], |I| = k, I1 ⊂ I
such that h(I) ∩ I2 = ∅, and by definition, aI ∈ T (ρ). 2

Using the results on the relation between the exclusion dimension and the
complexity of learning with membership and proper equivalence queries [2, 7, 8]
we get the following.

Proposition 11 The class k-PDNFn can be learned with O
(
n 2k

(
n
k

)2
)

mem-

bership and proper equivalence queries.

PROOF. The query complexity of a class C is at most O(XD(C)·log |C|) (see,
e.g., [2]). The result follows by using the upper bound on the size of k-PDNFn

from Proposition 5, and the upper bound on its exclusion dimension from
Theorem 9. 2

12



The number of queries is polynomial in n for every fixed k. On the other hand,
the running time of the learning algorithm is not necessarily polynomial.

Blum [4], using ideas from Littlestone and Helmbold et al. [9, 12], shows that
1-DL is efficiently learnable in the mistake-bounded model. It follows from
a straightforward generalization of this result and Proposition 4 that for ev-
ery fixed k, the class k-PDNF is learnable with polynomially many improper
equivalence queries and with polynomial running time.

5 A characterization of 1-PDNF

In this section we give a description of 1-projective functions. First let us note
that if ϕ is a 1-PDNF that includes two complementary projections, that is,
of the form xt1 ∨ x̄t2 ∨ · · · for some variable x, then by deleting everything
else besides these two terms, we get an equivalent formula. Indeed, as every x
satisfying ϕ satisfies either x or x̄, it follows from the definition of projective
DNF that x also satisfies the corresponding term.

We formulate a notion of irredundancy for 1-PDNF, which we call p-
irredundancy to distinguish it from the usual notion of irredundancy for DNF.
Unlike the standard notion, p-irredundancy of a 1-PDNF is easy to decide.

Definition 12 A 1-PDNF formula ϕ = ρ1t1 ∨ · · · ∨ ρ`t` is p-irredundant if
the following conditions all hold:

(a) Lit(ρiti) 6⊆ Lit(ρjtj) for every 1 ≤ i 6= j ≤ `,
(b) ρi 6∈ Lit(ti) for every 1 ≤ i ≤ `,
(c) if ` ≥ 3 then ρi 6= ρ̄j for every 1 ≤ i 6= j ≤ `.
(d) ρi 6∈ Lit(ti), for 1 ≤ i ≤ `

Otherwise, ϕ is called p-redundant.

The first condition says that no term implies another, the second that in each
term the projection and conjunction parts are disjoint, and the third that if
there are at least three terms, then no two projections are complementary.

Given a 1-PDNF expression, one can easily transform it into a p-irredundant
form as follows. First delete any term violating (d). Next check if there are
two complementary projections, and if there are, then delete all the other
terms, thereby guaranteeing (c). Otherwise, delete every term subsumed by
another term, ensuring (a). Finally, if in a remaining term the t-part contains
the projection literal, then delete the projection literal from that term. The
final expression is a p-irredundant 1-PDNF, which is equivalent to the original
one.

13



The above algorithm runs in polynomial time, thus we have:

Proposition 13 There is a polynomial algorithm which, given a 1-PDNF ex-
pression, transforms it into an equivalent p-irredundant 1-PDNF expression.

Next we give a description of those p-irredundant 1-projective DNF that rep-
resent either a monotone or an a-unate function, and then we give the general
description. We assume w.l.o.g. throughout this section that each 1-PDNF
in question determines a non-constant function and has terms that do not
contain any complementary literals.

Lemma 14 A formula ϕ is a p-irredundant 1-PDNF formula representing a
monotone (resp. a-unate) function if and only if it is either of the form

ϕ = ρ1t ∨ · · · ∨ ρ`t, (5)

where ρ1, . . . , ρ` are different unnegated variables (resp. literals whose signs
agree with a) not contained in t, and t is a monotone (resp. a-unate) term,
or it is of the form

ϕ = ρt ∨ ρ̄tt′, (6)

where ρ is an unnegated variable (resp. its sign agrees with a) and t, t′ are
monotone (resp. a-unate) terms not containing ρ or ρ̄.

PROOF. We prove only the monotone case, as the a-unate case follows by
considering the monotone function obtained by replacing x with x⊕ a. (Note
that f(a) is k-PDNF iff f(x⊕a) is.) It follows directly from the definitions that
every expression of the form of Equation (5) or (6) is indeed a p-irredundant
1-PDNF expression.

Let ϕ be an arbitrary monotone p-irredundant 1-PDNF formula. Separating
the negated and unnegated projections, let us write ϕ as

ϕ =
∨
i∈I

(xi · ti) ∨
∨
j∈J

(x̄j · tj).

(This representation of ϕ is convenient for the following series of claims.)

Claim 15 The index set I is nonempty, and t` is monotone for all ` ∈ I ∪ J .

PROOF. The first part of the Claim holds because ϕ determines a non-
constant monotone function, thus ϕ(1) = 1.

14



To prove monotonicity for ti, i ∈ I, note that 1 is contained in every unnegated
projection, thus by projectivity xiti(1) = ϕ(1)—and this can only hold if ti is
monotone.

Finally, let us consider a term x̄jtj with j ∈ J . Asssume for contradiction that
term tj contains negative literal x̄s for some 1 ≤ s ≤ n. (Note that s 6= j by
p-irredundancy.) Let x be any vector satisfying the term x̄j · tj and thus ϕ.
By monotonicity xxs=1 must satisfy ϕ. However, then, by projectivity, xxs=1

must satisfy tj, a contradiction. 2

Claim 16 For all i ∈ I, we have T (ϕ) ⊆ T (ti).

PROOF. Let x ∈ T (ϕ), so ϕ(x) = 1. By monotonicity ϕ(xxi=1) = 1, by
projectivity ti(x

xi=1) = 1, and by (b) of p-irredundancy ti(x) = 1, which
proves the claim. 2

Claim 16 can be used to show that the first half of ϕ (consisting of the terms
with positive literals as projections) is in the right form. Claim 17 does this.

Claim 17 There must be a single term t such that we can write

ϕ =
∨
i∈I

(xi · t) ∨
∨
j∈J

(x̄j · tj).

PROOF. Consider any two terms xiti and xjtj from ϕ. From Claim 16 we
get T (xiti) ⊆ T (ϕ) ⊆ T (tj) and T (xjtj) ⊆ T (ϕ) ⊆ T (ti). Thus

Lit(tj) ⊆ Lit(xiti) and Lit(ti) ⊆ Lit(xjtj). (7)

It must be the case that xj 6∈ Lit(xiti) and xi 6∈ Lit(xjtj), as otherwise using
(7) it follows that ϕ is p-redundant. But then Lit(tj) = Lit(ti). 2

Putting together Claims 15 and 17, it follows that we are done if J = ∅. The
remaining case (i.e., when J 6= ∅) is handled by the following Claim.

Claim 18 Let π be a monotone p-irredundant 1-PDNF formula of the form

π =
∨
i∈I

(xi · t) ∨
∨
j∈J

(x̄j · tj),

where I and J are nonempty sets, furthermore tj, j ∈ J and t are monotone
terms. Then π = xit ∨ x̄itt

′ for some variable xi and some monotone term t′.
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PROOF. It follows from Claim 16 that T (x̄jtj) ⊆ T (π) ⊆ T (t), thus Lit(t) ⊆
Lit(x̄jtj), and so Lit(t) ⊆ Lit(tj) (note that x̄j 6∈ Lit(tj), as tj is positive).
Thus π can further be written as

π =
∨
i∈I

(xi · t) ∨
∨
j∈J

(x̄j · tt′j),

where now I, J 6= ∅ and t, t′j are monotone terms. If |J | = 1 and I = J = {i}
for some i, then we are done.

Otherwise, there are terms (xi · t) and (x̄j · tt′j) in π such that i 6= j. By
projectivity T (x̄jxit) = T (xix̄jtt

′
j) 6= ∅, and so either t′j = xi or t′j is the

empty term. But t′j = xi would imply that π is p-redundant; thus t′j is the
empty term.

If π contains only two terms, it must be of the form π = xi · t∨ x̄j · t. If xj 6∈ t,
then it is not monotone (in variable xj). If xj ∈ t, then it is not p-irredundant
(violates condition (d) of the definition).

From now on we have that π has at least three terms. Since t′j is the empty
term, we have T (x̄jt) ⊆ T (π), and by monotonicity T (t) ⊆ T (π). With Claim
16. this implies T (t) = T (π). But then for every other term x̄ktt

′
k of π it holds

that T (x̄kπ) = T (x̄kt), meanwhile by projectivity T (x̄ktt
′
k) = T (x̄kπ), so t′k is

the empty term. Therefore

t ≡ π =
∨
i∈I

(xi · t) ∨
∨
j∈J

(x̄j · t) ≡

∨
i∈I

xi ∨
∨
j∈J

x̄j

 t.

This can only hold if some variable occurs both in I and J , contradicting
condition (c) of the definition of p-irredundancy for π. 2

This completes the proof of the lemma. 2

The example of (3) shows that the representation as a p-irredundant 1-PDNF
is not always unique. Also, it is an interesting consequence of the theorem
that there are monotone 1-PDNF functions, which cannot be written as a
monotone 1-PDNF. Consider, for example, the 1-PDNF

(x · 1) ∨ (x̄ · yz),

representing the monotone function x∨ yz. If there were an equivalent mono-
tone 1-PDNF, then it could be transformed into a monotone p-irredundant
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1-PDNF, which must look like the first case in the theorem. But then the
minimal true vectors must have Hamming distance at most 2, which is not
the case for this function.

Theorem 19 A formula ϕ is a p-irredundant 1-PDNF formula if and only if
it is either of the form

ϕ =
s∨

i=1

(ρi
1ti ∨ · · · ∨ ρi

`i
ti),

where ρi
u 6∈ Lit(ti) and ρ̄j

u ∈ Lit(ti) for every i 6= j and 1 ≤ u ≤ `j, or it is of
the form

ϕ = xt ∨ x̄t′ ,

where x 6∈ Lit(t) and x̄ 6∈ Lit(t′).

PROOF. Again, one direction of the theorem is immediate from the defini-
tion of p-irredundancy. For the other direction, if there are two complementary
projections in ϕ, then by condition (c) of p-irredundancy, it must be of the
form xt∨x̄t′. Otherwise, let us assume that ϕ is of the form ϕ = ρ1t1∨· · ·∨ρ`t`.
Consider any two terms ρiti and ρjtj. If T (ρiti) ∩ T (ρjtj) 6= ∅, then ρiti ∨ ρjtj
is unate, and by Lemma 14 it must be the case that ti = tj. On the other
hand, if T (ρiti) ∩ T (ρjtj) = ∅, then by projectivity, it holds that T (ρiρjtj) =
∅, thus ρ̄i ∈ Lit(tj). Thus for every term ρiti, those terms ρjtj for which
T (ρiti)∩ T (ρjtj) 6= ∅ have the same conjunction part, and all the other terms
contain ρ̄i in their conjunction part. 2

Informally, the first case of the theorem says the following. Let us consider
a term in a p-irredundant 1-PDNF to consist of a “stem” t and a “petal” ρ.
Then the petal of each term is not included in its stem (that much is clear
from the definition of p-irredundancy) and if two terms have different stems
then each stem contains the negation of the other one’s petal. In other words,
each stem consists of the negations of all the petals corresponding to terms
with different stems, plus, possibly, some other literals.

6 Revising disjunctions and k-PDNF

In this section we consider two different revision algorithms. First we define
the revision distance between two k-PDNFs, which is used in our complexity
measure.
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The distance of two terms t and t∗ is |t⊕t∗|, the number of literals occurring in
exactly one of the two terms. Similarly, the distance between two disjunctions
is also the number of literals occurring in exactly one of the two disjunctions.

The revision distance between an initial k-PDNF formula ϕ0 and a target
k-PDNF formula ϕ of the form

ϕ0 = ρ1t1 ∨ · · · ∨ ρ`t` ∨ ρ`+1t`+1 ∨ · · · ∨ ρ`+dt`+d ,

ϕ = ρ1t
∗
1 ∨ · · · ∨ ρ`t

∗
` ∨ ρ′1t

′
1 ∨ · · · ∨ ρ′at

′
a

is

dist(ϕ0, ϕ) = d +
∑̀
i=1

|ti ⊕ t∗i |+
a∑

i=1

(|t′i|+ 1),

where {ρ`+1, . . . , ρ`+d}∩ {ρ′1, . . . , ρ′a} = ∅. The distance is not symmetric, and
this reflects the fact that we are interested in the number of edit operations
required to transform ϕ0 to ϕ. These edit operations are the deletion of a
literal or a term, the addition of a new empty term of the form ρ · >, and
the addition of a literal. For example, the d term in the definition of dist
corresponds to the deletion of the d terms ρ`+1t`+1, · · · , ρ`+dt`+d.

Given an initial formula ϕ0 and a target formula ϕ, we want our mistake bound
to be polynomial in the revision distance e = dist(ϕ0, ϕ), and logarithmic (or
polylogarithmic) in all other parameters. In this case, that means logarithmic
in n and, for k-PDNF, in the total number of projections of size k, which is
2k
(

n
k

)
.

We begin by demonstrating that the original Winnow [11], with appropriately
modified initial weights (see Figure 6.1), is an efficient revision algorithm in
the mistake bound model—even in the presence of attribute errors, if we are
willing to tolerate a number of mistakes polynomial in the number of attribute
errors as well as the usual parameters. (Previous work on theory revision has
not given much consideration to noise.) We will use this result to show how
to use an algorithm similar to Valiant’s PDNF learning algorithm to revise
PDNF. There, two levels of Winnow are run, and even with noise-free data,
mistakes made by the lower-level Winnows will represent attribute errors in
the input to the top-level Winnow.

Throughout this section, we will sometimes need to discuss both the compo-
nents of vectors and which round of a mistake-bounded algorithm a vector is
used in. When we need to discuss both, we will write vr,i to denote component
i of the value that vector v takes on in round r.
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Initialization: For i = 1, . . . , n initialize the weights to

w0,i =
{

1 if variable xi appears in ϕ0
1
2n

otherwise

The hypothesis function in round r is

hr(x) =
{

0 if wr−1 · x < 1/2
1 otherwise

In round r predict ŷr = hr(xr)
If ŷr 6= yr, then update the weights for i = 1, . . . , n to

wr,i = wr−1,i · 2xr,i(yr−ŷr)

Fig. 1. Algorithm RevWinn(ϕ0)

6.1 Revising disjunctions

Consider a version of Winnow, which we call RevWinn, presented in Fig-
ure 6.1. Note that this is Littlestone’s Winnow2 [11] using different initial
weights, with his parameters set to α = 2, and θ = n/2 (except that we have
divided all the weights by n, because we feel it makes the analysis below a
little easier to follow).

Note that throughout, all of the weights are always in the interval (0, 1]. This
can be seen using an induction argument as follows. Initially the statement is
true. Now assume that the weights after round r− 1 are all between 0 and 1.
If yr = ŷr, then the weights are not changed. If yr = 0 and ŷr = 1, then some
weights are halved, and some unchanged—thus the statement will be true after
round r. If yr = 1 and ŷr = 0, then wr−1 · xr < 1/2, so the sum of the weights
of components having 1 in vector xr is less then 1/2. As RevWinn doubles
the weights of exactly these components, the statement will remain true after
round r.

Theorem 20 The number of mistakes made by Algorithm RevWinn with
initial (monotone) disjunction ϕ0 and target (monotone) disjunction ϕ is

O(#AttributeErrors + e log n) ,

where e = dist(ϕ0, ϕ), and n is the number of variables in the universe.

PROOF. Consider any run of the algorithm of length R. Let I be the set of
indices i of variables that appear in both the initial and target disjunctions,
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such that for at least one round r variable xr,i = 1 but yr = 0. Let J be the set
of indices of variables that appear in the target disjunction but not in the initial
disjunction. Let us also introduce the notation I ∪ J = {1, . . . , n} \ (I ∪ J).
When no confusion arises, we will sometimes refer to a variable xi belonging
to one of these sets when we really should say that the variable’s index belongs
to the set.

We will use later the fact that any variable in both ϕ0 and ϕ that is not in I
never has its weight changed from 1.

For the proof we use a potential function Φ(w) that is somewhat different
from those used in some other cases for analyzing Winnow (e.g., in [3, 10]).
Put Φ(w) =

∑n
i=1 Φi(w), where

Φi(w) =
{

wi − 1 + ln 1
wi

if i ∈ I ∪ J
wi otherwise.

It can be verified that Φi(w) ≥ 0 for any w ∈ (0, 1]n.

Let ∆r = Φ(wr−1)−Φ(wr) denote the change of the potential function during
round r. We will derive both upper and lower bounds on

∑R
r=1 ∆r that will

allow us to relate the number of mistakes made by RevWinn to e, n, and
#AttributeErrors.

First we derive an upper bound:

R∑
r=1

∆r = Φ(w0)− Φ(wR)

≤Φ(w0)−
∑

i∈I∪J

wR,i

=
∑
i∈I

Φi(w0) +
∑
j∈J

Φj(w0) +
∑

i∈I∪J

(w0,i − wR,i) . (8)

For i ∈ I we initialized w0,i = 1 so Φi(w0) = 0. Also, |J | ≤ e, and Φj(w0) =
ln(2n)− (2n− 1)/2n < ln(2n) for j ∈ J , so the sum of the first two terms is
at most e ln(2n). Now we need to bound the third term. The variables that
appear neither in ϕ nor in ϕ0 have initial weights 1/2n, and so altogether can
contribute at most 1/2 to the sum. There are at most e variables in ϕ0 that
are not present in ϕ, so those variables can contribute at most e to the sum.
Finally, as noted earlier, the weights never change for those variables in both
ϕ0 and ϕ but not in I. Thus we get

R∑
r=1

∆r ≤ e ln 2n + e + 1/2 . (9)

20



To get a lower bound on the sum, we begin by deriving a lower bound on the
change in potential in one round. Now

∆r =
∑

i∈I∪J

(
wr−1,i − wr,i + ln

wr,i

wr−1,i

)
+

∑
i∈I∪J

(wr−1,i − wr,i)

=
n∑

i=1

(wr−1,i − wr,i) +
∑

i∈I∪J

ln
wr,i

wr−1,i

. (10)

Examining the RevWinn code, we see that there are three cases for updating
weights at the end of a round r: no change in any weights, some or all weights
are decreased, which we will call a “demotion” round, and some or all weights
are increased, which we will call a “promotion” round. Obviously, when no
update is done in round r (i.e., ŷr = yr), then ∆r = 0.

In a demotion round, ŷr = 1 and yr = 0. By the definition of I and J , in this
case AttrErr(r) = |(I ∪ J) ∩ xr|. 5 Also, the total weight of components
being on in xr is at least 1/2 (recall how ŷr is evaluated), and the weight of
each of those components is halved. So, using (10),

∆r ≥ 1/4 + |(I ∪ J) ∩ xr| ln
(

1

2

)
= 1/4− (ln 2)AttrErr(r) . (11)

In a promotion round, ŷr = 0 and yr = 1. We know that the components of xr

that are on have total weight less than 1/2 (again, by the evaluation rule of
ŷr), and that each of these components is multiplied by 2. So the first term in
(10) is at least −1/2. Thus ∆r ≥ −1/2+ |(I ∪J)∩xr| ln 2. Now if yr = ϕ(xr),
then |(I ∪ J) ∩ xr| ≥ 1, because we know that ŷr = 0 and we know that all
the weights of variables in both ϕ0 and ϕ but not in I are 1. If yr 6= ϕ(xr),
then AttrErr(r) = 1. Thus, in a promotion round, it always holds that

∆r ≥ −1/2 + (ln 2)(1−AttrErr(r)) . (12)

Finally, let M− denote the total number of demotions and M+ the total num-
ber of promotions. Then (11) and (12) give us

R∑
r=1

∆r ≥
∑

{r:ŷr=1,yr=0}
(1/4− (ln 2)AttrErr(r))

+
∑

{r:ŷr=0,yr=1}
(ln 2− 1/2)− (ln 2)AttrErr(r)

5 With mild abuse of notation, we write S ∩xr to denote the set of indices that are
both in the set S and set to 1 in the vector xr.
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= M−/4 + (ln 2− 1/2)M+ − (ln 2)#AttributeErrors .

Combining this with (9) gives the desired mistake bound. 2

Notice that, unlike other uses of potential functions in mistake-bound proofs,
we do not make any claims about the relation between the value of the po-
tential function used here and the distance between the actual weight vector
wr and a weight vector for the target. Indeed, we do not see any obvious rela-
tion between the value of this potential function and any measure of distance
between wr and a weight vector for the target.

Remark 21 Using the De Morgan rules one can easily modify the code of
Algorithm RevWinn to make it revise conjunctions instead of disjunctions,
and have the same mistake bound. Call the resulting algorithm RevWinnC.

6.2 Revising k-PDNF

Now we give a revision algorithm for k-PDNFs. We use Valiant’s two-level algo-
rithm [17] for learning PDNFs, except that we use the different initial weights
in the individual copies of Winnow that were discussed in the previous sub-
section. We present this as Algorithm Rev-k-PDNF (see Figure 2). Rev-k-
PDNF consists of a top-level RevWinn algorithm that handles the selection
of the appropriate projections. On the lower level, instances of RevWinnC
are run, one for each projection, to find the appropriate term for that par-
ticular projection. Each instance of RevWinnC maintains its own separate
hypothesis hρ for one of the 2k

(
n
k

)
projections ρ. We will write this as hρ

r when
we need to indicate the current hypothesis in a particular round r.

For each projection ρ, introduce a new Boolean variable vρ. We denote by v
the vector formed by all these variables, and its current value in round r will
be denoted by vr. The top level RevWinn learns a disjunction over these
variables; its hypothesis in round r is denoted by hr. In round r, we define
variable

vr,ρ = ρ(xr)h
ρ
r(xr) .

Algorithm Rev-k-PDNF predicts hr(vr) in round r.

Theorem 22 Suppose that the initial and target formulas are, respectively,
the k-PDNFn formulas

ϕ0 = ρ1t1 ∨ · · · ∨ ρ`t` ∨ ρ`+1t`+1 ∨ · · · ∨ ρ`+dt`+d ,

ϕ = ρ1t
∗
1 ∨ · · · ∨ ρ`t

∗
` ∨ ρ′1t

′
1 ∨ · · · ∨ ρ′at

′
a ,
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1: Initialize a RevWinn instance for the top-level algorithm with initial
disjunction vρ1 ∨ · · · ∨ vρ`+d

.
2: Initialize a RevWinnC instance for each k-projection ρi with parameter

ti for ρ1, . . . , ρ`+d respectively and with parameter > for the rest.
3: for each round r with instance xr do
4: Set each vr,ρ = ρ(xr)h

ρ
r(xr)

5: Predict ŷr = hr(vr)
6: if ŷr 6= yr

7: Update the weights of the vρ variables in the top-level RevWinn for
the mistake hr(vr) 6= yr

8: for each ρ with ρ(xr) = 1 and vr,ρ 6= yr

9: Update the low-level RevWinnC instance ρ for a vr,ρ 6= yr mistake
on xr

Fig. 2. The procedure Rev-k-PDNF(ϕ0). The k-PDNF to be revised to another
k-PDNF is ϕ0 = ρ1t1 ∨ · · · ∨ ρ`+dt`+d.

and e = dist(ϕ0, ϕ). Then algorithm Rev-k-PDNF makes O(ek log n) mis-
takes.

PROOF. The top-level RevWinn revises a disjunction over the vρ’s. There
will be two sources of mistakes. First, the initial disjunction is not correct;
it needs revising. Second, the values of the vρ’s will sometimes be erroneous,
because the low-level RevWinnC’s are imperfect—that is, vr,ρ 6= ρt(xr) might
occur in some round r for some term (ρ · t) of ϕ. (The actual input x and
classification y are assumed to be noiseless.)

Theorem 20 tells us how to calculate the overall number of mistakes of the
top-level RevWinn as a function of three quantities: the revision distance,
which is d + a, the total number of variables, both relevant and irrelevant
for the disjunction, which is 2k

(
n
k

)
, and the total number of attribute errors,

which we will now calculate.

In fact, we will not count all the attribute errors. We will count (actually
provide an upper bound on) only those attribute errors that occur when
RevWinn is charged with a mistake.

For i = 1, . . . , `, the RevWinnC instance corresponding to projection ρi

predicts vρi
according to hρi . That RevWinnC instance updates for a mistake

only when the overall algorithm makes a mistake (i.e., ŷr 6= yr), its prediction
was different from yr, and ρi(xr) = 1. Now yr = ϕ(xr) = t∗i (xr) (the last
equation holds because of projectivity and because ρi(xr) = 1). This means
that the mistake bound for this RevWinnC tells us how many times this
RevWinnC can make errors on rounds when the overall algorithm makes
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an error; after that number of mistakes, this RevWinnC will then always
predict correctly. By Remark 21 the mistake bound on this RevWinnC is
O(|ti ⊕ t∗i | ln n).

For j = 1, . . . , a a similar argument shows that there are at most O(|t′j| ln n)
rounds r where vr,ρ′

j
6= ρ′j(xr)t

′
j(xr) and the top-level RevWinn makes a

mistake. Put F = (
∑`

i=1 |ti ⊕ t∗i |+
∑a

j=1 |t′j|) ln n.

How many times can Rev-k-PDNF err when predicting? We just argued
that the total number of attribute errors that occur when the top-level
RevWinn makes a mistake is O(F ). The total number of variables that

the top-level RevWinn is working with is 2k
(

n
k

)
. Thus, the overall mistake

bound is, by Theorem 20, O(F + (d + a) log
(
2k
(

n
k

))
) = O(ek log n), since

F = O(e log n). 2

Remark: For learning an m-term k-PDNFn from scratch, that is, for revis-
ing the empty k-PDNFn to a target k-PDNFn, this algorithm has the same
asymptotic mistake bound as Valiant’s learning algorithm [17]: O(kms log n),
where s is the maximum number of variables in any term in the target.

7 Concluding Remarks

In this paper we examined the class of k-PDNF expressions, introduced by
Valiant [17] in the context of learning theory. We related this class to other
commonly studied classes of Boolean functions, gave combinatorial results
concerning its exclusion dimension, and provided a description of the subclass
of 1-PDNF functions. It would be interesting to get a description of k-PDNF
functions for larger k. Another direction could be to study the computational
complexity of algorithmic questions related to PDNF. The exclusion dimension
bound leaves open the question whether there is a computationally efficient
equivalence and membership query learning algorithm for k-PDNF.

Another contribution of the paper is the extension of Valiant’s [17] attribute-
efficient learning algorithm for PDNF to an efficient PDNF revision algorithm.
The resulting learning algorithm combines the biologically plausible features
of localized learning (provided by the projection learning framework) and ef-
ficient updating of previously obtained “close but not correct” concept. This
may form a step towards the design of biologically realistic learning algorithms
for expressive representation formalisms. In a recent paper, the result here on
Winnow’s revising disjunctions in the presence of noise has been extended to
revising PDNFs in the presence of noise [15].
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[7] Tibor Hegedűs. Generalized teaching dimensions and the query complexity of
learning. In Proc. 8th Annu. Conf. on Comput. Learning Theory, pages 108–
117. ACM Press, New York, NY, 1995.

[8] Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan, and Dawn
Wilkins. How many queries are needed to learn? J. ACM, 43(5):840–862,
1996.

[9] David Helmbold, Robert Sloan, and Manfred K. Warmuth. Learning nested
differences of intersection closed concept classes. Machine Learning, 5(2):165–
196, 1990. Special Issue on Computational Learning Theory; first appeared in
2nd COLT conference (1989).

[10] Jyrki Kivinen and Manfred K. Warmuth. Additive versus exponentiated
gradient updates for linear prediction. In Proc. 27th Annual ACM Symposium
on Theory of Computing, pages 209–218. ACM Press, New York, NY, 1995.

[11] N. Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2(4):285–318, 1988.

[12] Nick Littlestone. A mistake-bound version of Rivest’s decision-list algorithm.
Personal communication to Avrim Blum, 1989.

[13] Chris Mesterharm. Tracking linear-threshold concepts with Winnow. Journal
of Machine Learning Research, 4:819–838, 2003.

[14] Ronald L. Rivest. Learning decision lists. Machine Learning, 2:229–246, 1987.

25
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