1. Title: Tic-Tac-Toe Endgame database 2. Source Information -- Creator: David W. Aha (aha@cs.jhu.edu) -- Donor: David W. Aha (aha@cs.jhu.edu) -- Date: 19 August 1991 3. Known Past Usage: 1. Matheus,~C.~J., \& Rendell,~L.~A. (1989). Constructive induction on decision trees. In {\it Proceedings of the Eleventh International Joint Conference on Artificial Intelligence} (pp. 645--650). Detroit, MI: Morgan Kaufmann. -- CITRE was applied to 100-instance training and 200-instance test sets. In a study using various amounts of domain-specific knowledge, its highest average accuracy was 76.7% (using the final decision tree created for testing). 2. Matheus,~C.~J. (1990). Adding domain knowledge to SBL through feature construction. In {\it Proceedings of the Eighth National Conference on Artificial Intelligence} (pp. 803--808). Boston, MA: AAAI Press. -- Similar experiments with CITRE, includes learning curves up to 500-instance training sets but used _all_ instances in the database for testing. Accuracies reached above 90%, but specific values are not given (see Chris's dissertation for more details). 3. Aha,~D.~W. (1991). Incremental constructive induction: An instance-based approach. In {\it Proceedings of the Eighth International Workshop on Machine Learning} (pp. 117--121). Evanston, ILL: Morgan Kaufmann. -- Used 70% for training, 30% of the instances for testing, evaluated over 10 trials. Results reported for six algorithms: -- NewID: 84.0% -- CN2: 98.1% -- MBRtalk: 88.4% -- IB1: 98.1% -- IB3: 82.0% -- IB3-CI: 99.1% -- Results also reported when adding an additional 10 irrelevant ternary-valued attributes; similar _relative_ results except that IB1's performance degraded more quickly than the others. 4. Relevant Information: This database encodes the complete set of possible board configurations at the end of tic-tac-toe games, where "x" is assumed to have played first. The target concept is "win for x" (i.e., true when "x" has one of 8 possible ways to create a "three-in-a-row"). Interestingly, this raw database gives a stripped-down decision tree algorithm (e.g., ID3) fits. However, the rule-based CN2 algorithm, the simple IB1 instance-based learning algorithm, and the CITRE feature-constructing decision tree algorithm perform well on it. 5. Number of Instances: 958 (legal tic-tac-toe endgame boards) 6. Number of Attributes: 9, each corresponding to one tic-tac-toe square 7. Attribute Information: (x=player x has taken, o=player o has taken, b=blank) 1. top-left-square: {x,o,b} 2. top-middle-square: {x,o,b} 3. top-right-square: {x,o,b} 4. middle-left-square: {x,o,b} 5. middle-middle-square: {x,o,b} 6. middle-right-square: {x,o,b} 7. bottom-left-square: {x,o,b} 8. bottom-middle-square: {x,o,b} 9. bottom-right-square: {x,o,b} 10. Class: {positive,negative} 8. Missing Attribute Values: None 9. Class Distribution: About 65.3% are positive (i.e., wins for "x")