
COMBINING TIME- AND FREQUENCY-DOMAIN CONVOLUTION IN CONVOLUTIONAL

NEURAL NETWORK-BASED PHONE RECOGNITION

László Tóth

MTA-SZTE Research Group on Artificial Intelligence

Hungarian Academy of Sciences and University of Szeged

tothl@inf.u-szeged.hu

ABSTRACT

Convolutional neural networks have proved very successful in

image recognition, thanks to their tolerance to small transla-

tions. They have recently been applied to speech recognition

as well, using a spectral representation as input. However, in

this case the translations along the two axes – time and fre-

quency – should be handled quite differently. So far, most au-

thors have focused on convolution along the frequency axis,

which offers invariance to speaker and speaking style varia-

tions. Other researchers have developed a different network

architecture that applies time-domain convolution in order to

process a longer time-span of input in a hierarchical man-

ner. These two approaches have different background moti-

vations, and both offer significant gains over a standard fully

connected network. Here we show that the two network archi-

tectures can be readily combined, like their advantages. With

the combined model we report an error rate of 16.7% on the

TIMIT phone recognition task, a new record on this dataset.

Index Terms— Deep neural network, convolutional neu-

ral network, rectified linear unit, speech recognition, TIMIT

1. INTRODUCTION – RELATION TO PRIOR WORK

Convolutional Neural Networks (CNNs) have been success-

fully used in image processing for a long time [1]. However,

their applicability to speech recognition had not really been

explored before the current renaissance of artificial neural net-

work (ANN) technologies. Compared to standard neural net-

works, the main difference is that CNNs process the input

in small localized parts, looking for the presence of relevant

local features. By pooling the output of these local feature

detectors, the network can be made more translation tolerant.

The CNNs developed for image recognition can be more or

less directly applied to a time-frequency representation of a

speech signal. However, while in the case of standard im-

ages translations along the two axes can be handled similarly,

This publication was supported by the European Union and co-funded

by the European Social Fund. Project title ”Telemedicine-focused research

activities in the fields of mathematics, informatics and medical sciences”,

project number: TÁMOP-4.2.2.A-11/1/KONV-2012-0073.

for speech spectrograms shifts along the two axes have quite

different meanings. As for the frequency axis, the formant

positions of the same phone may vary slightly from speaker

to speaker, and also for different speaking styles. Building a

model that is less sensitive to these types of variances was the

main motivation for applying convolution along the frequency

axis [2, 3]. All these studies found that CNNs consistently

outperform deep neural networks (DNNs) on the same task.

The advantage of allowing small shifts along the time axis

is less obvious. It can be useful within the range of a couple

of frames [4], but beyond that the smearing of the timing in-

formation seems to be harmful. Indeed, the recent studies by

Abdel-Hamid et al. and Sainath et al. found that convolution

along the time axis brings only negligible benefits [5, 6].

Independently of the above teams, Veselý et al. developed

a slightly different neural network structure that successfully

exploits time-domain convolution [7]. The key to the success

of this model is that during pooling the position information is

not discarded. Hence in this model the main role of convolu-

tion is not shift invariance, but of allowing the model to hier-

archically process a fairly long time-span of input. Recently,

we implemented a version of Veselý’s model using rectified

linear neurons, which seem to be better building units of deep

networks than the standard sigmoid neurons [8, 9, 10, 11].

Using this model we reported a record phone recognition ac-

curacy on TIMIT [12].

In this paper, we make a natural extension of our earlier

work: we combine the frequency-domain convolution tech-

nique of Abdel-Hamid and Sainath [2, 3, 5, 6] with the time-

domain convolution method of Veselý et al. [7, 12]. To our

knowledge, these two approaches have not been combined be-

fore. The recognition experiments we report on TIMIT show

what can be expected from combining the two techniques, and

we also set a new record on this database.

2. CONVOLUTIONAL NEURAL NETWORKS

CNNs differ from standard ANNs in several ways. First, they

process their input in small local patches. Because of this

requirement of locality, they are trained on a time-frequency



Fig. 1. Illustration of the network structure applied here. For clarity, full connections between layers are denoted here by

just a single line. (a) Network topology with frequency-domain convolution only. (b) Network topology with time-domain

convolution only. Substituting network (a) for of the ‘convolutional sub-networks’ (grey boxes) of figure (b) provides the

proposed network structure that performs convolution along both axes.

representation instead of the usual MFCC features. Second,

the convolutional units process several blocks of input which

are slightly shifted in time or/and frequency. These blocks are

processed using the same weights, a feature known as ‘weight

sharing’. Afterwards, the neural activations obtained at the

various positions get pooled, for which several strategies ex-

ist. These pooled activations may be processed further by

additional convolutional layers or by fully connected layers.

2.1. Convolution along the frequency axis

Fig 1a shows the structure of our convolutional network in

the case where only frequency-domain convolution is applied.

The input to the network consists of the output of 40 mel filter

bank channels plus the frame-level energy, along with the cor-

responding ∆ and ∆∆ parameters. This input representation

is the same as the one we used earlier [8, 12] and it was also

applied by other researchers experimenting on TIMIT [15, 2].

The convolutional layer of the network consists of a set

of ‘filters’ that take their input from localized time-frequency

blocks. These filters process several, slightly shifted versions

of the input window using the same weight set. In the case

of frequency-only convolution, shifting is applied only along

the frequency axis (symbolized by white arrows in Fig 1a).

Then the neural activations obtained from these shifted inputs

get pooled. In our implementation, the amount is shifting will

be measured in mel channels. For example, a pooling size

r will mean that the convolutional layer processes and pools

r input windows shifted by 0, 1, .., r mel banks. We applied

the most popular max-pooling rule [2], though other pooling

strategies are also possible [6]. The local input window will

be 15 frames along time (like that in [2]), while the optimal

size along frequency will be found experimentally.

Along with the size, we will also vary the number of filters

used to cover the whole frequency range of 40 mel channels.

There are two strategies for combining the information ob-

tained from these different spectral regions. Abdel-Hamid et

al. argue that the spectral phenomena occurring at distant fre-

quency regions are different, so weight sharing makes sense

only within a limited bandwidth. This reasoning leads to the

limited weight sharing scheme [2]. However, Sainath et al.

showed that full weight sharing may also give similarly good

results [6]. Here we will apply limited weight sharing, which

was found to perform better on TIMIT [2].

Lastly, the output of the convolutional layer may be pro-

cessed by additional layers. Our model applies three fully

connected layers for this purpose, but it is also possible to

stack several convolutional layers on each other. For exam-

ple, Sainath et al. got the best performance with a model of 2

convolutional layers plus 4 fully connected layers [6].

2.2. Convolution along the time axis

The convolutional filters of the model described above could

be easily modified so that they perform pooling not only in

frequency, but also in time. As the nice results obtained with



time-delay neural networks showed, invariance to small shifts

in time may indeed be advantageous [4]. Recently, both

Abdel-Hamid et al. and Sainath et al. experimented with

convolution along time, but the improvements were much

smaller than that got with convolution along frequency [5, 6].

Independently of these teams, Veselý et al. developed

a different network architecture that performs convolution

along time [7]. This architecture was motivated by the suc-

cess of hierarchical ANN models, where a neural network is

trained on (a context of) acoustic feature vectors, and then a

second network is trained on (a context of) posterior output

vectors got from the first network [13, 14]. Veselý showed

that even better results can be obtained if the two networks

are trained as one unit, by propagating the error down from

the upper to the lower network. Such a network complex

will inherently be deep, as both the upper and lower parts are

made of several layers. The performance of such networks

can be significantly improved by RBM pre-training [15]. But

is was recently found that similarly good results can be ob-

tained without pre-training by building the network out of

rectified linear units (ReLUs) [8, 9, 10, 11].

Recently, we implemented a Veselý-type hierarchical net-

work using ReLUs, and we got a recognition accuracy on

TIMIT that matched the best previous result [12]. Fig. 1b

shows the structure of this network. The input of the net-

work is decomposed into several blocks along the time axis.

These get processed by sub-networks that use the same shared

weight set at each block position. Then, the output vectors of

the sub-networks get concatenated and processed further by

the upper part of the network. In our implementation there

are 5 local input blocks that each cover 9 frames of input, and

they are placed at every 5th frame. The sub-networks consist

of 4 fully connected layers (not shown in the figure), while

the upper part of the network contains 2 more hidden layers.

For more details, see [12].

By comparing the convolution carried out by this model

with the operation of the frequency-domain convolutional

network, we can see similarities and differences. Using the

notation introduced earlier, the time-domain convolutional

model applies a pooling size of 1 with full weight sharing

among the filters. An obvious difference is that the input

blocks are processed by just one layer of neurons in one case,

and by a sub-network of several layers in the other.

When comparing our solution with the time-domain con-

volution scheme applied by others [5, 6], the key difference

seems to be that while they put the convolutional filters only

at one time position and increase their range by increasing

the pooling size r, we place several filters (sub-networks) at

different places along time, and this place information is pre-

served when passing the sub-network’s output to the higher

layers. In fact, as we use a pooling size of 1, the main role of

convolution in our model is not to allow shift invariance, but

rather to enable the model to hierarchically process a fairly

wide range of input without increasing the number of weights.

Network topology devel. set core test set

fully connected 18.6% 20.6%

convolution in time 15.4% 18.7%

Table 1. Phone error rates for the baseline fully connected

network and for the net that applies convolution along time.

2.3. Convolution along both time and frequency

Combining the two models described above into one that per-

forms convolution along both axes is straightforward: the net-

work shown in Fig. 1a should be substituted for the sub-

networks in Fig. 1b. The merged model will be trained by

backpropagation in two phases, as proposed in our earlier

study [12]. First, the sub-network is trained, then the output

layer is discarded and the full network is constructed with ran-

domly initialized weights in the upper layers. Only the upper

part is trained for one iteration, and then the whole network is

trained until convergence is reached.

3. EXPERIMENTAL SETTINGS

The results reported are phone recognition error rates on the

well-known TIMIT database. The training set consisted of

the standard 3696 ‘si’ and ‘sx’ sentences, while testing was

performed on the core test set (192 sentences). A random

10% of the training set was held out as the ‘development

set’, which was used for validation purposes and for tuning

the meta-parameters. To get frame-level labels for training,

forced alignment was performed with a conventional context-

dependent HMM of 858 tied states. The phone label outputs

were mapped to the usual set of 39 labels in the evaluation

phase. During decoding a phone bigram language model was

used, with the language model weight and the phone insertion

penalty parameters set to 1.0 and 0.0, respectively.

The neural networks were trained using semi-batch back-

propagation, the batch size being 100. The training target

function was the standard frame-level cross-entropy cost. The

initial learn rate was set to 0.001 and held fixed while the er-

ror on the development set kept decreasing. Afterwards it was

halved after each iteration, and the training was halted when

the improvement in the error was smaller than 0.1% in two

subsequent iterations. All the neurons of the networks were

rectified linear units, apart from the softmax output layer.

4. RESULTS AND DISCUSSION

A fully connected deep network with 4 hidden layers of 2000

rectified linear units served as our baseline [8]. The first line

of Table 1 shows the recognition error rates got by using this

network. One may notice that these results are worse than the

ones we reported in [8], and the reason is that in that study we

used a sparsity penalty function during training, which was

not applied here.



Number of Width of Number of units Error on

filters filters per filter devel. set

4 12 768 16.6%

5 10 638 16.6%

6 8 554 16.9%

7 7 485 16.6%

8 6 433 16.5%

Table 2. Phone error rates obtained by applying convolution

along frequency, using various sets of convolutional filters.

Fig. 2. The influence of pooling size on the phone error rate.

4.1. Convolution along time

The architecture of 1b (with sub-networks of fully connected

layers) was investigated in our earlier study [12]. Hence, here

we will only repeat the results got with the best configura-

tion. The input to this network consisted of 5 input blocks,

each covering 9 frames of input context with an overlap of 4

frames. The sub-network consisted of three layers with 2000

neurons per layer, plus an uppermost ‘bottleneck’ layer of 400

neurons. The upper part of the network had two further hid-

den layers of 2000 neurons. The second line of Table 1 shows

the results obtained with this network using the two-step train-

ing strategy presented briefly in Section 2.3. The error rate

improvement over the baseline with this model was approxi-

mately 2% absolute (9% relative) on the core test set.

4.2. Convolution along frequency

In the first experiment with this model we attempted to find

the optimal number of convolutional filters along the fre-

quency axis. For this purpose, we varied the number of filters

between 4 and 8. The size of the filters was chosen so that

the neighboring filters overlapped by 2-3 mel channels. The

spectral input to each filter was extended by the energy [2].

The filter width was set to 15 frames (the same as that for the

baseline system), and the number of neurons in the convolu-

tional layer were always set such that the number of weights

remained the same as in the baseline system. The pooling

size was always set to 3.

The results obtained on the development set are summa-

rized in Table 2. As can be seen, all the scores are quite sim-

ilar, so we decided to continue the experiments with the con-

figuration of 7 filters. These filters are 7 mel-channels wide,

while Abdel-Hamid uses a filter size of 8 channels [2] and

Sainath prefers a filter size of 9 channels [3].

Network topology devel. set core test set

convolution along both axes 14.2% 17.6%

the above plus dropout 13.9% 16.7%

Table 3. Phone error rates obtained without and with dropout,

using the network that applies convolution along both axes.

The goal of the next experiment was to find the opti-

mal pooling size. As shown in Fig. 2, a pooling size of 5

gave the best result on the development set. In comparison,

Abdel-Hamid found r = 6 to be optimal for TIMIT [2], while

Sainath et al. reported that r = 3 performed best on other

databases [3]. We think that the optimal value may depend

slightly both on the database and the filter size. We note that

it also makes sense to combine various pooling sizes within

the same model [16]. Similar to convolution along time, the

best model reduced the error on the core test set by almost

2% absolute (9% relative), compared to the baseline result.

4.3. Convolution along both time and frequency

Finally, the networks performing frequency-domain convolu-

tion and time-domain convolution were combined, and the re-

sults are shown in Table 3. Although the score improvements

of the two systems did not fully add up, the score of 17.6% we

got is more than 1% (5% relative) better than the best scores

of the two separate systems.

The training of this merged model was repeated with the

application of dropout [18]. Tuning separate dropout param-

eters for each layer would require sophisticated optimization

methods [9], so we simply used the same dropout rate for all

layers. The results shown in Table 3 were obtained with a

dropout rate of 0.25. On the core test set the error dropped

significantly, achieving 16.7%. By comparison, to our knowl-

edge the previous best result was 17.7%, using a special re-

current ANN architecture [17]. The improvement on the de-

velopment set was much smaller, and a close examination re-

vealed that in this case the number of deletion errors greatly

increased. This is caused by a mismatch between the error cri-

teria used during training and testing, which could be avoided

by applying a sequence-level training objective [19, 20, 21].

5. CONCLUSIONS AND FUTURE WORK

Here, we proposed a new ANN architecture that combines the

time-domain convolution method and the frequency-domain

convolution method developed earlier by different authors.

We found that the advantages of the two models can be

combined, producing a new record of 16.7% on the TIMIT

database. However, with the proposed architecture there is

still plenty of room for further experimentation. Most impor-

tantly, the place and order of information integration along

frequency and along time can be varied within the network.

We plan to study the effect of such modifications in the future.



6. REFERENCES

[1] Y. Lecun and Y. Bengio, “Convolutional networks for

images, speech and time series,” in The Handbook of

Brain Theory and Neural Networks, Michael A. Arbib,

Ed. 1995, pp. 255–258, MIT Press.

[2] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn,

“Applying convolutional neural network concepts to hy-

brid NN-HMM model for speech recognition,” in Proc.

ICASSP, 2012, pp. 4277 – 4280.

[3] T. N. Sainath, A. Mohamed, B. Kingsbury, and B. Ram-

abhadran, “Deep convolutional neural networks for

LVCSR,” in Proc. ICASSP, 2013, pp. 8614–8618.

[4] Waibel, A. and Hanazawa, T. and Hinton, G. and

Shikano, K and Lang, K. J., “Phoneme recognition us-

ing time-delay neural networks,” IEEE Trans. ASSP,

vol. 37, no. 3, pp. 328–339, 1989.

[5] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring

convolutional neural network structures and optimiza-

tion techniques for speech recognition,” in Proc. Inter-

speech, 2013, pp. 3366 – 3370.

[6] T. N. Sainath, B. Kingsbury, A. Mohamed, and B. Ram-

abhadran, “Improvements to deep convolutional neural

networks for LVCSR,” in Proc. ASRU. 2013, accepted,

in print.

[7] K. Veselý, M. Karafiát, and F. Grézl, “Convolutive bot-

tleneck network features for LVCSR,” in Proc. ASRU,

2011, pp. 42 – 47.

[8] L. Tóth, “Phone recognition with deep sparse rectifier

neural networks,” in Proc. ICASSP, 2013, pp. 6985–

6989.

[9] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving

deep neural networks for LVCSR using rectified linear

units and dropout,” in Proc. ICASSP, 2013, pp. 8609–

8613.

[10] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang,

Q. V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean,

and G. E. Hinton, “On rectified linear units for speech

processing,” in Proc. ICASSP, 2013, pp. 3517–3521.

[11] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier

nonlinearities improve neural network acoustic models,”

in Proc. ICML, 2013.

[12] L. Tóth, “Convolutional deep rectifier neural nets for

phone recognition,” in Proc. Interspeech, 2013, pp.

1722–1726.

[13] H. Ketabdar and H. Bourlard, “Enhanced phone poste-

riors for improving speech recognition systems,” IEEE

Trans. ASLP, vol. 18, no. 6, pp. 1094–1106, 2010.

[14] J. Pinto et al., “Analysis of MLP based hierarchical

phoneme posterior probability estimator,” IEEE Trans.

ASLP, vol. 19, no. 2, pp. 225–241, 2010.

[15] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic

modeling using deep belief networks,” IEEE Trans.

ASLP, vol. 20, no. 1, pp. 14–22, 2012.

[16] L. Deng, O. Abdel-Hamid, and D. Yu, “A deep convo-

lutional neural network using heterogeneous pooling for

trading acoustic invariance with phonetic confusion,” in

Proc. ICASSP, 2013, pp. 6669 – 6673.

[17] A. Graves, A. Mohamed, and G. E. Hinton, “Speech

recognition with deep recurrent neural networks,” in

Proc. ICASSP, 2013, pp. 6645–6649.

[18] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,

and R. Salakhutdinov, “Improving neural networks by

preventing co-adaptation of feature detectors,” CoRR,

vol. abs/1207.0580, 2012.

[19] B. Kingsbury, “Lattice-based optimization of sequence

classification criteria for neural-network acoustic mod-

eling,” in Proc. ICASSP, 2009, pp. 3761–3764.

[20] A. Mohamed, D. Yu, and L. Deng, “Investigation of full-

sequence training of deep belief networks for speech

recognition,” in Proc. Interspeech, 2010, pp. 2846–

2849.

[21] K. Veselý, A. Ghoshal, L. Burget, and D. Povey,

“Sequence-discriminative training of deep neural net-

works,” in Proc. Interspeech, 2013, pp. 2345–2349.


