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Abstract—In speech recognition there has been a trend to 

incorporate more and more knowledge about human 

hearing into the feature extraction step. One such approach 

is the application of localized spectro-temporal analysis, 

which is inspired by neurophysiological studies. Here we 

experiment with extracting features from the patches of the 

widely used criticial-band log-energy spectrum by applying 

the two-dimensional cosine transform. Compared to earlier 

similar studies with the spectrogram representation, we find 

that our method is not worse, and faster. In experiments 

with noisy speech the proposed representation proves more 

noise-robust than the conventional mel-frequency cepstral 

features. 

I. INTRODUCTION 

The traditional feature extraction methods used in 
speech recognition have a mathematical basis, and take 
only the most fundamental properties of articulation and 
hearing into consideration. For example, the most 
commonly applied mel-frequency cepstral coefficients 
(MFCC) [1] smooth out the fine details of the spectrum, as 
it is known that phonetic information is carried mainly by 
the spectral envelope. Also, it warps the linear frequency 
scale to the quasi-logarithmic mel scale, which is known 
to fit human hearing better. But in other respects it is just a 
mathematical tool based on conventional signal 
processing algorithms such as the Fourier transform and 
the cosine transform. Although it is not strictly necessary 
that processing methods which seek to mimic human 
hearing should outperform the purely mathematical 
algorithms, in general it seems reasonable to expect a 
better behavior from the methods that approximate the 
properties of human hearing more closely. One such 
property is the joint spectro-temporal sensitivity of the 
receptive fields of cortical cells [2]. Compared to what is 
known about the time-frequency tuning of these cells, the 
resolution of the conventional MFCC representation is 
much narrower in time and much wider in frequency. In 
this paper we experiment with a quite simple modification 
of the MFCC algorithm that works with localized spectro-
temporal patches of the spectral representation instead of 
the narrow time-span and global frequency-span windows 
of the standard MFCC technique. The main purpose of 
these experiments is to show that the proposed localized 
spectro-temporal features are no worse than the 
conventional feature set when applied in phonetic 
classification. 

                                                           
This research was partially supported by the TÁMOP-4.2.2/08/1/2008-
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In addition to the neurophysiological and psycho-
acoustic findings, there is a further, purely practical 
argument for applying a localized feature extraction 
method: when the signal is corrupted with band-limited 
noise, a spectrally global analysis technique such as the 
MFCC will result in all the features being contaminated 
by the noise. When using localized patches, however, only 
a subset of the features will be affected, and therefore this 
approach should be more robust to noise. To test this 
hypothesis, a second set of experiments will be presented 
that compares the performance of the conventional and the 
proposed representation with varying noise levels. 

II. CONVENTIONAL FEATURE EXTRACTION 

All feature extraction methods seek to perform some 
sort of spectral analysis of the speech signal. As the signal 
is continuously changing, it is normally sliced up into 
small, uniform-sized pieces ('frames') of 20-30 
milliseconds, during which the signal can be considered 
quasi-stationary. Then some spectral analysis is performed 
over these frames, typically using widespread signal 
processing tools such as the fast Fourier-transform (FFT). 
Though more sophisticated tools, for example filter banks 
adjusted to the sensitivity of the human ear may also be 
applied [3], here we will try to keep the computational 
complexity low, and we will use the simple FFT-based 
spectrogram as a starting point. This is also the first step 
of MFCC computation [1]. 

In some of the experiments we will extract the time-
frequency patches directly from the spectrogram. We, 
however, would like to make our feature extraction as 
similar to the MFCC calculation as possible. The second 
step of MFCC extraction is the warping of the frequency 
scale. This is motivated by the fact that the human ear has 
a sensitivity that gradually decreases at higher frequencies, 
in contrast to the linear resolution provided by the FFT. 
The MFCC algorithm simulates this by summing bands of 
the Fourier spectrum using triangular-shaped weighting 
functions that are placed uniformly along the auditory-
motivated mel-scale and which have a shape that is a 
coarse approximation of the critical bands of human 
hearing. The typical resolution of this representation is 
100 feature vectors (i.e. columns) per second along the 
time axis and 25-50 spectral bands (i.e. rows) along the 
frequency axis. The energy values of both the conventio-
nal spectrogram and the critical-band energy spectrum are 
usually displayed on a decibel (i.e. logarithmic) scale. 
Figs. 1 and 2 show a comparison of the resulting mel-
scaled critical-band energy spectrum with the original, 
linearly scaled spectrogram. Clearly, the former has a 
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Figure 1.  The classic spectrogram representation of a sentence. 

 
Figure 2. The critical-band energy representation of the sentence 

of Fig 1. The black boxes (left to right) show the shape of the feature 
extraction patches used by a) the classic MFCCs b) the TRAP 

features c) localized spectro-temporal features. 

much coarser resolution, and it emphasizes the lower 
frequencies while the high-frequency parts are suppressed. 

The final step of MFCC extraction is the application of 
the discrete cosine transform (DCT) to each spectral slice; 
that is, each column of the critical-band energy plot. This 
smooths the unimportant details of the spectral curve and 
retains only the envelope profile, and at the same time it 
also has an additional decorrelating effect. As smoothing 
is actually achieved by keeping just the first 10-15 DCT 
coefficients, this step inherently performs a dimensionality 
reduction as well. 

One column of either the classic or the critical-band 

spectrogram gives a static picture of a very small time 

instant of the speech signal. However, many 

psychoacoustic experiments demonstrate that for the 

recognition of phones in fluent speech the dynamics of 

the spectrum is more important [4]. In speech technology 

this observation led to the introduction of the so-called 

delta features, which are derivative-like values extracted 

using a couple of earlier and later values of each static 

feature. For example, the HTK software package [5] we 

are going to use in the experiments applies the formula 
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where the resulting Δt's are the delta coefficients 

corresponding to the c static coefficient at time index t, 

and the default value of the window size Θ is 2. 
Usually the same computation is repeated on each Δ, 

leading to the set of ΔΔ values, and the concatenation of 
the static MFCCs, the Δ's and the ΔΔ's yields the classic 
feature set of speech recognition. 

III. LOCALIZED SPECTRO-TEMPORAL FEATURES 

The method of processing the speech signal in uniform 
20-30 millisecond chunks has its roots in the speech 
coding tradition, and is retained mostly for technical 
convenience. Humans can barely recognize such short 
speech excerpts, which clearly shows that they are not an 
optimal choice for the basic unit of classification. Though 
the Δ and ΔΔ features capture pieces of information from 
the neighboring 4-4 frames, both physiological and 
psychoacoustic experimental results indicate that the 
human brain extracts information from even longer time 
spans, processing frequency bands quasi-separately [2, 6]. 
Based on these findings, several modifications have been 
proposed for the feature extraction step, which can be 
viewed as changing the size and shape of the time-
frequency patch extracted from the spectral map (we 

illustrate some of these in Fig. 1). The simplest idea is to 
work with larger windows along the time-axis: in neural-
net based recognizers it is now standard practice to train 
the system on 9 neighboring MFCC vectors [7]. The main 
drawback of this method is that the number of features 
grows significantly, and hence the application of 
dimension reduction methods such as principal component 
analysis (PCA) and linear discriminant analysis (LDA) 
may be necessary. Also, these features are still global 
along the frequency axis, while several psychoacoustic 
studies suggest that the windows should be localized in 
frequency as well. These studies motivated the 
introduction of the TRAP model by Hermansky et al. In 
this scheme each frequency band is processed separately, 
and the corresponding results are combined only at a later 
step; the time-span of the processed trajectory patterns 
even goes up to 1 second in certain experiments [8]. This 
setup can be interpreted as a sort of 'inverse' arrangement 
compared to the classic MFCC windows (see Fig. 1 
again). 

An obvious generalization is when the patches are 
localized in both time and frequency [9]. Here we are 
going to work with patches like this by following the 
study of Bouvrie et al. [10], and apply two-dimensional 
DCT to process the localized time-frequency patches 
extracted from the spectral map (cf. Fig. 1). Though the 
studies of human perception can be indicative of the 
proper size of these time-frequency patches, in machine 
learning experiments different values may result in 
optimal recognition performance, due to the various 
properties and peculiarities of the signal processing and 
machine learning algorithms applied. Thus the best we can 
do is to vary the sizes and look for the optimal parameters 
by empirical evaluation. A detailed description of these 
experiments are presented in the following two sections. 

IV. EXPERIMENTS WITH CLEAN SPEECH 

All the experiments we report are phone classification 
experiments on the well-known TIMIT speech corpus 
[11]. In the train-test partitioning of the data we followed 
the widely accepted standard: the full set of the 3696 train 
sentences were used for training, and testing was always 
executed on the full test dataset of 1344 utterances. The 
train and test sets consisted of 142910 and 51681 phone 
instances, respectively. The phonetic labels of the 
database were fused into 39 categories, which is again 
standard practice [12]. 

In all the experiments a multi-layer perceptron neural 
net [13] was applied as a classifier. It contained one 
hidden layer of 500 neurons; the output layer applied the 
softmax nonlinearity, while the hidden neurons worked 
with the sigmoid function. The number of output neurons 
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was set to the number of classes (39), while the number of 
inputs varied, as will be described later. The neural net 
was trained using standard backpropagation on 90% of the 
training data in semi-batch mode, and cross-validation on 
the remaining 10% was used as the stopping criterion. The 
cross-validation data was of course selected randomly. 

A. Experiments with the conventional spectrogram 

In the first set of experiments we sought to reproduce 
the results of Bouvrie et al. [10]. They use the 
conventional spectrogram as the time-frequency 
representation from which the localized feature patches 
are extracted. The spectrogram is obtained with the 
following parameters: the signal was cut into frames with 
32 sample hops applying the Hamming window, and each 
frame was Fourier-transformed using a 1024-point FFT. 
We tried two configurations for the frame size, namely 
300 samples were used for the narrow- and 150 for the 
wide-band cases. Then the log-magnitude of the resulting 
spectrum was taken, and it was normalized so as to have 
unit variance and a mean of zero for each utterance.  

The next step is the extraction of the time-frequency 
patches, which was done by computing a sliding localized 
two-dimensional DCT over the spectrogram. The window 
and step sizes were again chosen based on the suggestions 
in [10] (with a slight modification – substituting even 
window sizes by odd ones – for symmetry reasons). 
Namely, 51 by 21 bin windows were applied in the narrow 
band case, and 41 by 51 bin windows in the wide-band 
case (always giving the height first). The step sizes were 
25 bin for the frequency, and 2 bin for the time axis in 
both cases. In contrast to [10], the 51 by 21 bin window 
size was tested not only with the narrow-band, but with 
the wide-band spectral representation as well. 

By default, the DCT returns the same number of 
coefficients as the size of its input array. Similar to the 1D 
case – that is, the computation of MFCC – one can throw 
away the coefficients which correspond to higher 
modulation frequencies. With this step we smooth out the 
unnecessary fine details from the spectrum and reduce 
feature dimensionality at the same time. Bouvrie et al. 
propose keeping only the 6 lowest-order 2D-DCT 
coefficients corresponding to the upper left 3x3 triangle of 
the coefficient matrix [10]. Apart from this configuration, 
in certain cases we also experimented with retaining more 
(9 or 15) coefficients in a similar manner. 

Next, for the phone classification experiments we had 
to form a fixed-length feature vector from the variable 
number of 2D-DCT coefficients extracted from the 
patches belonging to each phonetic segment. For this 
purpose we followed the technique proposed by 
Halberstadt [14], which was also found to work well by 
other authors [15, 16]. Each phonetic segment was divided 
into three parts along the time axis, and the coefficients 
belonging to the same patch index and DCT coefficient 
index were averaged over time within these segments. 
Two further segments were composed from the 30-30 
milliseconds of the signal before and after the segments, 
and were processed in a similar way. This technique 
yields a pooled feature vector that consists of the same 
number of components for each segment – five times the 
number of patches along the frequency axis and the 
number of DCT coefficients retained – independent of the 
segment duration. After, the segment duration was also 
appended to this segmental feature vector. 

The results obtained with various patch sizes are shown 
in Table I. As a baseline result, the score obtained with the 
conventional MFCC features is also presented; these were 
extracted using the HCopy module of the HTK toolkit [5]. 
With the default parameters, 13 mel-cepstral coefficients 
were calculated over 25 ms time frames every 10 ms, and 
the vectors were augmented with the Δ and ΔΔ 
coefficients, as described in Section 2. The 39-component 
feature vectors were converted into a segmental feature 
vector of fixed size using the same averaging method 
outlined above. Including duration, each phonetic segment 
was represented by 196 features. 

As the results show, the proposed features are quite 
insensitive to the exact parameters (resolution and patch 
size). All three scores are similar to the MFCC result, and 
the best one even slightly outperforms it. Because of the 
big patch sizes and the larger number of features, 
however, the extraction of the 2D-DCT features takes 
much longer than that of the conventional MFCCs. We 
will address this problem in the next subsection. 

We should mention here that all our results are 
consistently better than those presented in [10], both with 
the conventional and the localized spectro-temporal 
features. We attribute this to the fact that though the 
processing of the patches was similar, we applied a 
different type of classifier. 

B. Experiments with the critical-band energy map 

The resolution of the spectrogram used by Bouvrie et 
al. is much higher than that usually applied in speech 
recognition, both in time and frequency. Bringing it closer 
to the conventional resolution may yield a reduction in 
computational cost, and also make a comparison with the 
standard features more believable. Moreover, nowadays it 
is widely accepted that the mel-warping of the frequency 
scale is useful for recognition, and so feature extraction 
methods that work on the linear frequency scale have 
mostly been abandoned. Motivated by these facts we 
decided to repeat the experiments on the same critical-
band energy spectral representation that is used as the 
starting point of the MFCC computation, as described in 
Section 2. Fortunately, the HCopy module of HTK can be 
parametrized so that it calculates just the critical-band 
spectrum and skips the final step, the DCT computation. 
This way we could ensure that we worked on exactly the 
same spectral representation as the one from which the 
baseline MFCCs are obtained. 

In the first pilot studies we adjusted the window size 
and step of the spectral computation so that it agreed with 
the wide-band resolution used in the spectrogram-based 
experiments. That is, we did not decrease the resolution of 
the spectrum, but only activated the mel-scale frequency 
axis warping. More precisely, 104-105 frequency bands 

TABLE I.   
PHONE CLASSIFICATION ERROR RATES USING THE SPECTROGRAM 

Spectrogram 
resolution 

2D-DCT 
patch size 

No. DCT 
coeffs 

No. 
features 

Error 
rate 

Narrow-band 51x21 6 511 20.53% 

Wide-band 51x21 6 511 20.14% 

Wide-band 41x51 6 511 20.66% 

  MFCC 196 20.30% 
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were extracted from the spectrogram (the number varies 
slightly in order to support the full coverage of the spectral 
bands by the patches). This results in a smaller spectral 
map height than that of the spectrogram, so the patch size 
and the patch hop along the frequency axis were 
proportionally decreased to 15-17 and 6, respectively. The 
error rates obtained with two different patch sizes are 
shown in the first two rows of Table II. Inspiringly, both 
scores are better than the earlier results. 

The next step was to reduce the spectral resolution so 
that it was equivalent with that used for the MFCC 
computation. Applying the default MFCC settings, 100 
critical-band energy vectors were extracted per second 
from 25 ms frames. As the number of critical-band 
frequency channels was set to 26 during the MFCC 
extraction, we mainly experimented with this many 
channels, but other experiments were also carried out 
where the number of channels was four times or two times 
higher, or just the half (104, 52, and 13 – again 1-2 
channels were sometimes added to make the patches fit 
the full range). As both the time and frequency resolution 
of the spectral representation became much smaller than 
that of the spectrogram used in the previous subsection, 
the size of the time-frequency patches was also shrunk 
proportionally: for example, to 5 by 9 bins for the default 
26 frequency channel case. The patch step size was 2 
along the frequency axis and 1 along the time axis in this 
case, but, naturally, the proper step size again depends on 
the number of channels.  

Lots of combinations of the number of channels, patch 
size and patch step were tried, and the results obtained 
with the various parameter settings are presented in Table 
II. As can be seen, the best scores were again slightly 

better than the results obtained with the spectrogram. 
Apart from some 15-long patches that performed 
significantly worse, the results are quite similar, indepen-
dently of the actual settings. Hence the most important 
finding of these experiments was that the resolution of the 
input spectrum and the size of the DCT patches can be 
much smaller, therefore the computational costs can be 
decreased without losing recognition accuracy. Moreover, 
conventional tools such as the HCopy routine of HTK can 
be used for the critical-band log-energy extraction step. 

V. NOISY SPEECH EXPERIMENTS 

As the time-frequency window used by the conven-
tional MFCC extraction contains all the frequency bins of 
a given time instance, the corruption of just a few 
frequency bands by noise will ruin the values of all the 
coefficients extracted. With localized time-frequency 
patches, however, only a subset of the patches gets 
corrupted by the noise, and hence only a subset of the 
features will be affected. Consequently, one can 
reasonably expect that the proposed features are less 
sensitive to band-limited noise than the conventional 
MFCCs. To test this, we artificially contaminated the test 
dataset with pink noise of various levels. The spectral 
distribution of pink noise has the highest energy at 0 Hz, 
and gradually tails off at higher frequencies, so the patches 
at higher frequencies are less and less contaminated. The 
amplitude of the noise was tuned to get a signal-to-noise 
ratio of 20, 10 and 0 decibels in three different experimen-
tal settings. The noisy dataset was provided by the authors 
of [10]. We should again emphasize that in all the noisy 
experiments training was performed on the clean data and 
only the testing was executed on the noisy dataset. 

TABLE II.   
PHONE CLASSIFICATION RESULTS WITH THE CRITICAL-BAND ENERGY MAP 

Spectral 
resolution 

No. 
channels 

2D-DCT 
patch size 

Patch step 
(horizontal) 

Patch step 
(vertical) 

No. DCT 
coefficients 

No. 
features 

Error rate 

WB 105 17x21 6 2 6 511 19.55% 

WB 104 15x21 6 2 6 511 19.90% 

MFCC 105 17x5 6 1 6 511 20.71% 

MFCC 105 17x7 6 1 6 511 20.65% 

MFCC 105 17x9 6 1 6 511 20.31% 

MFCC 105 17x11 6 1 6 511 21.01% 

MFCC 50 9x9 3 1 6 481 20.60% 

MFCC 50 15x9 3 1 6 451 21.01% 

MFCC 52 7x7 3 1 6 511 20.53% 

MFCC 52 7x9 3 1 6 511 20.77% 

MFCC 53 9x7 3 1 6 511 20.22% 

MFCC 53 9x9 3 1 6 511 20.32% 

MFCC 26 5x9 2 1 6 361 20.43% 

MFCC 26 5x15 2 1 6 361 22.45% 

MFCC 26 7x9 2 1 6 361 20.27% 

MFCC 26 7x15 2 1 6 361 22.39% 

MFCC 26 5x9 2 1 9 541 20.04% 

MFCC 26 7x9 2 1 9 541 19.88% 

MFCC 14 7x9 2 1 9 271 20.66% 

MFCC 14 7x9 2 1 15 451 19.73% 

MFCC 13 5x9 2 1 6 181 21.87% 

MFCC 13 5x9 2 1 9 271 20.37% 

MFCC 13 5x9 2 1 15 451 19.79% 
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For the noisy tests we chose three configurations from 
the clean data experiments with 53, 26 and 13 critical 
bands. Of course, the MFCC tests were also repeated on 
the noisy test data to have a comparative baseline. The 
results obtained for pink noise are shown in Table III. As 
can be seen, the 2D-DCT features yielded lower error 
rates than the MFCCs in almost every case, especially 
with higher levels of noise. It also turned out, however, 
that the feature set extracted from the spectrogram 
behaved much better than the critical bands-based set. The 
reason might simply be the unlucky choice of the noise 
type: pink noise affects the higher frequencies less, while 
these frequencies are over-represented in the linear 
frequency-scale spectrogram compared to the critical-band 
energy map due to the mel-warped frequency scale of the 
latter. To justify this hypothesis we repeated the 
experiments with babble noise, which simulates the effect 
of several people talking in the background. The babble 
noise sample was taken from the NOISEX-92 database 
[17], and the FaNT tool was used to add the noise with the 
proper SNR [18]. This type of noise affects practically the 
whole spectrum, so one might expect less gain from a 
localized representation. As the results show (see Table 
III. again), the best 2D-DCT scores are indeed just slightly 
better than those obtained with MFCCs. One can also see, 
however, that in this case there was no significant 
difference between the performance of the spectrogram 
representation and the two best configurations of the 
critical-band-based method (53 channels and 26 channels). 

VI. CONCLUSIONS 

Our results support the findings of [10] in that the 
localized spectro-temporal features can result in the same 
or even better phone recognition accuracies than the 
conventional MFCC coefficients. We also showed that the 
same sort of 2D-DCT feature extraction can be performed 
on the conventional critical-band log-energy represen-
tation as well, yielding similar recognition accuracies 
while requiring less computational effort. Lastly, the expe-
riments with noisy speech demonstrated that the proposed 
representation is less sensitive to additive noise than the 
conventional feature set. In the future we plan to run more 
experiments with various types of band-limited noise. 
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TABLE III.   
PHONE CLASSIFICATION ERROR RATES WITH NOISE-CONTAMINATED TEST DATA 

Feature set Clean 
Pink noise Babble noise 

20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 

MFCC 20.30% 36.76% 63.00% 80.13% 31.58% 55.23% 77.46% 

2D-DCT on wide-band spectrogram 20.66% 31.15% 49.74% 72.70% 31.03% 52.59% 76.04% 

2D-DCT on critical bands 

53 chans, 9x7 patches, 6 coeffs 
20.22% 37.83% 60.35% 80.30% 30.93% 51.69% 76.84% 

2D-DCT on critical bands 

26 chans, 7x9 patches, 9 coeffs 
19.88% 35.65% 58.86% 78.69% 33.05% 52.59% 75.82% 

2D-DCT on critical bands 

13 chans, 5x9 patches, 15 coeffs 
19.79% 34.83% 57.75% 77.17% 35.06% 55.43% 77.25% 
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