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Abstract. This paper examines the applicability of some learning techniques for speech recognition, more pre-
cisely, for the classification of phonemes represented by a particular segment model. The methods compared were
the IB1 algorithm (TiMBL), ID3 tree learning (C4.5), oblique tree learning (OC1), artificial neural nets (ANN),
and Gaussian mixture modeling (GMM), and, as a reference, a hidden Markov model (HMM) recognizer was
also trained on the same corpus. Before feeding them into the learners, the segmental features were additionally
transformed using either linear discriminant analysis (LDA), principal component analysis (PCA), or independent
component analysis (ICA). Each learner was tested with each transformation in order to find the best combination.
Furthermore, we experimented with several feature sets, such as filter-bank energies, mel-frequency cepstral coef-
ficients (MFCC), and gravity centers. We found LDA helped all the learners, in several cases quite considerably.
PCA was beneficial only for some of the algorithms, and ICA improved the results quite rarely and was bad for
certain learning methods. From the learning viewpoint, ANN was the most effective and attained the same results
independently of the transformation applied. GMM behaved worse, which shows the advantages of discriminative
over generative learning. TiMBL produced reasonable results; C4.5 and OC1 could not compete, no matter what
transformation was tried.

Keywords: speech and phoneme recognition, feature space transformations, discriminative and generative
learning

1. Introduction

Automatic speech recognition is a special pattern
classification problem in which one of the pattern’s
dimensions is time. Speech signals show very specific
dynamic variations along this axis and thus require
dedicated recognition techniques. One approach is to
segment the speech signal into its supposed building
blocks (e.g., phonemes), recognize these separately,
and then combine the recognition scores for the whole
signal. Because of the difficulties of segmentation,

however, HMM, in which utterances are processed
in small uniform chunks (called frames), became the
dominant technology instead, and their time variability
is handled by a neat probabilistic structure.

Lately, HMM has received a lot of criticism over its
time modeling capabilities, and there have been efforts
toward generalizations that work with phonetic seg-
ments rather than with frames. One goal of this study
is to evaluate several possible learning methods for a
particular phoneme model of such a probabilistic seg-
mental recognizer. A special reason for this was that
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we wanted to test certain classification techniques that
are well-known in the machine learning community but
are rarely seen in speech literature.

The other aim of this article is to study the ef-
fects of several feature vector transformation methods
on the learning algorithms. These techniques, namely
PCA, LDA, and ICA, are well-known among speech
researchers but are quite rarely used.

The statistical learning methods employed in clas-
sification problems are called either discriminative or
generative, depending on what they model. Discrimi-
native models describe the common feature space of all
the classes and focus on discriminating one class from
another. They do this either by finding proper parame-
ters for a set of separating surfaces of a given type (para-
metric modeling) or by representing the classes with
elements and distance metrics (nonparametric model-
ing). In our paper C4.5, OC1, TiMBL, and ANN rep-
resent the class of discriminative learners.

According to Bayes’ law, the conditional probability
P(C | x)of a classC for a vectorx can be obtained from
the formula

P(C | x) = P(x |C)P(C)
P(x)

. (1)

Thus, instead of modelingP(C | x) directly as discrim-
inative models do, another possibility is to estimate the
class-conditional probabilitiesP(x |C) for each class
separately. This is the so-called generative modeling
approach. Although it may seem a disadvantage that a
priori probabilitiesP(C) also have to be estimated, this
decomposition is actually very useful in speech recog-
nition because “acoustic” and “language” models can
then be handled separately. From the techniques stud-
ied in our article, HMM and GMM belong to the class
of generative learners.

The structure of this article is as follows. First, we
briefly describe the acoustic features that were used in
the experiments. Then we examine the feature transfor-
mation methods and afterward the learning algorithms
we applied. In the final part of this article, we discuss
aspects of the experiments, especially the corpus, the
test cases, and, of course, the results. We close with a
few ideas about how the phoneme classifiers might be
used as a part of a speech recognition system.

2. Acoustic Features

In the following we describe the feature extraction tech-
niques that were used in our tests. For each test, a certain
subset of these features was chosen. The only exception

was the HMM recognizer, which used its own features
(for details see Sections 5.1.1 and 6.3).

2.1. Critical Band Log-Energies

Before feature extraction, the energy of each word was
normalized. After this the signals were processed in
512-point frames (23.2 milliseconds), in which the
frames overlapped by a factor of 0.75. Fast Fourier
transform was applied on the frames. After that, crit-
ical band log-energies (CBLE) were approximated by
the use of triangular weighting functions. Twenty-four
such filters were used to cover the frequency range from
0 to 11,025 Hz, the bandwith of each filter being 1 bark.
The energy values were then measured on a logarithmic
scale.

2.2. Mel-Frequency Cepstral Coefficients

In order to incorporate the most common preprocess-
ing method, that is, MFCC into our features, we made
additional tests after taking the discrete cosine trans-
form (DCT) of the CBLEs calculated previously. The
test used the first 16 coefficients (including the zeroth
one). Noticed that because the spectrum has already
been smoothed by the critical band filters, the calcu-
lation of the cepstrum does not fulfil its original task
of removing the effect of pitch. Instead, its supposed
benefit is the decorrelation of features. In fact, it can
be proved that the DCT approximates the PCA quite
closely for most signals (Akansu and Haddad, 1992),
so it is worth comparing the classification results for
MFCC with CBLEs plus PCA.

2.3. Formant Band Gravity Centers

In addition to the preceding experiments, we also
wanted to do some with more phonetically based
features, such as formants. However, because we had
no reliable formant tracker, we instead used formant
band gravity centers (FBGC) as a crude approxima-
tion for formants (Albesano et al., 1999). The grav-
ity centers were calculated from the power spec-
trum in the four frequency bands [200 Hz, 1400 Hz],
[1000 Hz, 3000 Hz], [2500 Hz, 4000 Hz], and [3000 Hz,
11025 Hz]. The formula for the gravity centerG(a, b)
of a band [a,b] is

G(a, b) =
∫ b

a f S( f ) df∫ b
a S( f ) df

, (2)

whereS( f ) denotes the power spectrum.
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Because the gravity centers can give misleading
values at parts that have no clear formant structure
(e.g., silence), the “spreading ratio”D(a, b) of the gra-
vity center was employed as a kind of measure for the
strength or reliability of the formant. We defined this
as the ratio of the deviance of the spectrum in intensity
and frequency. That is,

D(a, b) = Di (a, b)

D f (a, b)

=
√

1
b−a

∫ b
a S2( f ) df − ( 1

b−a

∫ b
a S( f ) df

)2√∫ b
a f 2S( f ) df∫ b

a S( f ) df
− G2(a, b)

.

(3)

Thus the four gravity centers and four spreading
ratios gave eight additional features.

3. Segmental Features

Although HMM is the most widely used technology
for speech recognition, it is not without its critics when
it comes to its phoneme modeling abilities. The most
important criticisms against HMM as a phoneme model
are that (Ostendorf, 1996b)

• its duration modeling abilities are poor
• because it works with uniform-sized frames, it does

not permit the incorporation of long-term (segmen-
tal) measurements
• it assumes that the frames that belong to a given state

are independent.

One possible way of overcoming these limitations is
to work within a segmental framework like that of
Glass et al. (1996) or Ostendorf et al. (1996a). Because
working with variable-sized segments instead of
frames introduces many new problems, switching to
such an approach requires very strong justification.
One convincing proof would be if we found phoneme
models that not only were intuitively more appealing
but also led to better classification results. Recently,
great efforts have been made to find good segmen-
tal phoneme models (Fukada et al., 1997; Ostendorf,
1996b; Gales and Young, 1993; Gish and Ng, 1993).

Compared with these sophisticated techniques we
followed a very simple procedure, the idea having been
taken from Halberstadt (1998). For each feature we
took the average of the frame-based measurements for
the first quarter, the central part, and the last quarter

of the phoneme. In this way we obtained 3n features for
each phoneme, wheren is the number of the features for
one frame. Our reasons for modeling the segments this
simple way were twofold. On the one hand, we needed
to describe each phoneme with the same number of fea-
tures; otherwise, the discriminative learners could not
have been applied at all. On the other hand, we wanted
to use features that were very closely related to the
original spectrum and learn what the transformations
being studied would produce from them.

In HMM the duration of the phonemes is modeled
only implicitly: the usual three-state left-to-right model
remains in a state with an exponentially decaying prob-
ability, which is quite a poor approximation of how the
length of phonemes (or rather, phoneme thirds) is dis-
tributed in the real world. In segmental models phone-
mic duration can be modeled explicitly, which we think
is especially important in languages such as Hungarian,
in which most of the phonemes have a “short” and a
“long” version (that is, duration has a distinctive role).
Our experiments showed that adding duration to the
segmental feature set indeed increased classification
accuracy, so duration was used in all of our experi-
ments. However, our statistical measurements pointed
out that the duration of the phonemes has a huge scat-
ter. This means that speaking rate normalization would
be very beneficial for recognition.

4. Feature Vector Transformations

Before executing a learning algorithm, additional vec-
tor space transformations may be applied on the ex-
tracted features. The role of these methods is twofold.
First, they may improve classification performance,
and second they may also reduce the dimensionality
of the data. This is because these techniques search for
a transformation that emphasizes more important fea-
tures and suppresses or even eliminates less desirable
ones.

Although some nonlinear extensions of these meth-
ods have been presented in recent years, we restrict our
investigations to their linear versions. From these linear
PCA, ICA, and LDA will be dealt with in this article.

Without loss of generality we will assume that the
original data set lies inIRn, and that we havel elements
x1, . . . , xl in the training set andt elementsy1, . . . , yt

in the testing set. After applying a feature vector trans-
formation method, the new data set lies inIRm (m≤ n),
the transformed training and testing vectors being
denoted byx′1, . . . , x

′
l andy′1, . . . , y

′
t , respectively.
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We search for an optimal (in some cases orthogonal)
linear transformationIRn → IRm of the form x′i =
A>xi , i ∈ {1, . . . , l }, noting that the precise definition
of optimality can vary from method to method.

All transformation methods mentioned previously
use the following general unified strategy for obtaining
then×m matrixA:

• The column vectors ofA, denoted bya1, . . . ,am

(determined successively in some methods) are sup-
posed to be normalized.
• The algorithm uses a differentiable method-

dependent objective functionτ( ) : IRn→ IR for
selecting optimal linear directions (orthogonality is
also assumed in some methods).

Actually, with the linear transformationA we select
a new (possibly orthogonal) basis for representing the
data. To obtain a particular basis we first choose a real-
valued objective functionτ( ) that serves as a measure
for selecting the proper directions. A feature vector
transformation method searches form optimal direc-
tions. One way of obtaining these is to look for unit
vectors that form the stationary points ofτ( ). Intu-
itively, if larger values ofτ( ) indicate better directions
and the chosen directions needs to be independent in
some ways, then choosing stationary points that have
large values is a reasonable strategy.

In the following subsections we describe the PCA,
LDA, and ICA algorithms one by one. In the literature
there are several different approaches for discussing the
addressed methods (Battle et al., 1998; Comon, 1994;
Fukunaga, 1989; Hyv¨arinen, 1997, 1998; Tipping and
Bishop, 1997). Our primary goal here was to describe
the principles of each in a broad and comparative way.
That is why we chose to deviate slightly from the way
these transformations are usually presented.

4.1. Linear Principal Component Analysis

PCA is a ubiquitous technique for data analysis and
dimension reduction. Normally in PCA,

τ(a) = a>Ca
a>a

, (4)

whereC is the sample covariance matrix

C = 1

l

l∑
i=1

(xi − µ)(xi − µ)>, µ = 1

l

l∑
i=1

xi . (5)

Practically speaking, Eq. (4) definesτ(a) as the vari-
ance of the{x1, . . . , xl} n-dimensional point-set pro-
jected onto thea vector. Therefore, this method prefers
directions having a large variance. It can be shown
that stationary points of Eq. (4) correspond to the
right eigenvectors of the sample covariance matrixC,
where the eigenvalues form the corresponding opti-
mum values. If we assume that the eigenpairs ofC
are(c1, λ1), . . . , (cn, λn) andλ1 ≥ · · · ≥ λn, then the
transformation matrixA will be [c1, . . . , cm], in other
words, the eigenvectors with the largestm eigenvalues.
Because the sample covariance matrixC is symmetri-
cal positive semidefinite, the eigenvectors are orthog-
onal and the corresponding real eigenvalues are non-
negative. After this orthogonal linear transformation
the dimensionality of the data will bem, and the sam-
ple x′i = A>xi , i ∈ {1, . . . , l } represented in the new
orthogonal basis will be uncorrelated; in other words,
its covariance matrixC′ is diagonal. The diagonal ele-
ments ofC′ are them dominant eigenvalues ofC.

In our experiments,m (the dimensionality of the
transformed space) was chosen to be the smallest inte-
ger for which

λ1+ · · · + λm

λ1+ · · · + λn
> 0.99 (6)

holds. There are many other alternatives, however, for
finding a reasonablem. Because PCA behaves very
sensitively when the magnitude of the components in
the feature vector are significantly different, the data
were first standardized, where the mean vector of the
training data became the zero vector and the deviance
of each component became 1.

4.2. Linear Discriminant Analysis

The goal of LDA is to find a new (not necessarily
orthogonal) basis for the data that provides the opti-
mal separation between groups of points (classes). The
class label of each point is supposed to be known be-
forehand. Let us assume that we havek classes and
an indicator functionf ( ) : {1, . . . , l } → {1, . . . , k},
where f (i ) gives the class label of the pointxi . Let
l j ( j ∈ {1, . . . , k}, l = l1 + · · · + lk) denote the num-
ber of vectors associated with labelj in the data. The
functionτ(a) is similar to that employed in PCA:

τ(a) = a>Ba
a>Wa

, (7)
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whereW is the within-class scatter matrix, andB is
the between-class scatter matrix. Here the within-class
scatter matrixW shows the weighted average scatter
of the covariance matricesCj of the sample vectors
having labelj :

W =
k∑

j=1

l j

l
Cj , (8)

Cj = 1

l j

∑
f (i )= j

(xi −µj )(xi −µj )
>, µj = 1

l j

∑
f (i )= j

xi

(9)

and the between-class scatter matrixB represents the
scatter of the class mean vectors,µj around the overall
mean vectorµ:

B =
k∑

j=1

l j

l
(µj − µ)(µj − µ)>. (10)

The value ofτ(a) is large when its nominator is large
and its denominator is small. Therefore the within-class
averages of the sample projected ontoa are far from
each other, and the variance is small in each of the
classes. The larger the value ofτ(a) is, the farther the
classes are spaced out and the smaller their spreads are.

Much like in PCA, it can be shown that stationary
points of (7) correspond to the right eigenvectors of
W−1B, where the eigenvalues form the correspond-
ing optimal values. As in PCA, we again select them
eigenvectors with the greatest real eigenvalues. Since
W−1B is not necessarily symmetrical, the number of
the real eigenvalues can be less thann. Moreover,
the corresponding eigenvectors will not necessarily be
orthogonal.

In our tests with LDA, the eigenvectors belonging
to the dominant eigenvalues ofW−1B were chosen as
basis vectors for the transformed space, but onlyk− 1
of them at most. Although there exist statistical tests for
finding the optimal number of dimensions for the new
feature space, we followed this simple method during
our investigations. We should point out, however, that
the ideal circumstances for LDA, those needed to use
its full power, are the following:

• All classes have an identical covariance matrixCj

• Each class can be represented by a single Gaussian
distribution

4.3. Independent Component Analysis

ICA (Comon, 1994) is a useful feature extraction tech-
nique, originally developed in connection with blind
source separation. The goal of ICA is to find directions
along which the distribution of the sample set is the least
Gaussian. The reason for this is that along these direc-
tions the data are supposedly easier to classify. Several
measures can be used to assess whether distribution
is non-Gaussian. We always choose from those ones
which are nonnegative and give zero for the Gaussian
distribution. A useful measure of being non-Gaussian
is negentropy, but obtaining this quantity via its def-
inition is computationally very difficult. Fortunately,
some simpler easily computable approximations exist
for the negentropy of a variabley with zero mean and
unit variance, for example,

J(y) ≈ (E[G(y)] − E[G(ν)])2, (11)

whereG( ) : IR→ IR is an appropriate doubly differ-
entiable contrast function,E( ) denotes the expected
value, andν is a standardized Gaussian variable. Three
conventionally used contrast functions areG1, G2, and
G3:

G1(y) = y4

G2(y) = log(cosh(y))

G3(y) = − exp

(
− 1

2
y2

) (12)

It is worth noting that in Eq. (11)E(G(ν)) is a constant,
its value depending on the contrast functionG. For
instance, in the case ofG1( ) its value is 3.

Hyvärinen (1997, 1998) proposed a fast iterative al-
gorithm called FastICA that uses these contrast func-
tions. This method defines the functionalτ( ) used for
the selection of the base vectors of the transformed
space by replacingy with a>x in the negentropy func-
tions earlier:

τG(a) = (E(G(a>x))− E(G(ν)))2. (13)

Before running FastICA, however, some preprocess-
ing steps need to be performed.

Centering. An essential step is to shift the original
sample setx1, . . . , xl with its meanµ to obtain a set
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x̃1, . . . , x̃l , with a mean of0:

x̃1 = x1− µ, . . . , x̃l = xl − µ (14)

Whitening. The goal of this step is to transform the
x̃1, . . . , x̃l samples via an orthogonal transformationQ
into a space where the covariance matrix

Ĉ = 1

l

l∑
i=1

x̂i x̂>i (15)

of the pointŝx1=Qx̃1, . . . , x̂l =Qx̃l is the unit matrix.
With the PCA discussed earlier we can transform the

covariance matrix into a diagonal form, the elements in
the diagonal being the eigenvalues of the original co-
variance matrix. Thus, it only remains to transform each
diagonal element to 1. This can be done by dividing the
normalized eigenvectors of the transformation matrix
by the square root of the corresponding eigenvalue.

Consequently, the whitening procedure can be com-
puted this way:

Q := [c̃1, . . . , c̃n]>



1√
λ̃1

0 · · · 0

0 1√
λ̃2

· · · 0

...
...

. . . 0

0 0 · · · 1√
λ̃n


,

(16)

where the eigenpairs of the matrix

C̃ = 1

l

l∑
i=1

x̃i x̃>i (17)

are(c̃1, λ̃1), . . . , (c̃n, λ̃n).
Of course, as in the case of PCA, we can do a

dimension reduction as well if we use only the firstm
dominant eigenvalues and corresponding eigenvectors
for the construction ofQ.

After centering and whitening the following state-
ments hold:

• For any normalizeda the mean ofa>x̂1, . . . ,a>x̂l is
0, and its variance is 1. In fact we need this because
Eq. (11) requires thaty has a 0 mean and variance
of 1, and so because of the substitutiony = a>x̂,
a>x̂ must also have this property.

• For any matrixR the covariance matrix̂CR of the
transformed pointsRx̂1, . . . ,Rx̂l remains the unit
matrix if and only ifR is orthogonal, since

ĈR = 1

l

∑
Rx̂1(Rx̂1)

>

= R
(

1

l

∑
x̂1x̂>1

)
R> = RIR> = RR>

(18)

Actually, FastICA is an approximate Newton itera-
tion method that finds such an orthogonal basis for the
centered and whitened data, where the values of the
measure for being non-Gaussian,τG( ), for the base
vectors are large. Note that because the data remain
whitened after an orthogonal transformation, ICA can
also be considered as an extension of PCA.

In the experiments we applied a dimension reduction
during the whitening procedure. The value ofm was
chosen as in PCA, and for the contrast function we
usedG1.

4.4. Summary

Stated briefly, the most important properties of the tech-
niques just discussed are that.

PCA concentrates on those independent directions with
the largest variances.

LDA prefers those directions along which the class
centers are far away and the average variance of the
classes is small.

ICA besides keeping the directions independent
chooses ones along which the measure of being non-
Gaussian is large.

Figure 1 demonstrates the effects of PCA, LDA, and
ICA on a two-dimensional (artificially generated) set
of points consisting of three classes.

Naturally when we applied a certain transformation
on the training set before learning, we applied the same
transformation on the test data during testing.

5. Learning Methods

The following sections briefly present the generative
and discriminative learning techniques applied in the
experiments.
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Figure 1. The original data and their transformations.

5.1. Applied Generative Learners

5.1.1. Hidden Markov Model. HMM is currently the
dominant technology in speech recognition (Rabiner
and Juang, 1993). This is why in the tests the HMM
was trained on its “standard” features and not on those
used in all the other experiments. The intention behind
this was to have a reference point for the current state-
of-the-art technology by which to judge things.

The HMMs for the experiments were trained using
the FlexiVoice speech engine (Szarvas et al., 2000).
The system used a feature vector of 34 components
that consisted of 16 Linear Prediction Coding-derived
cepstrum coefficients plus the frame energy and the
first derivatives of these. The frame size was 30 mil-
liseconds, whereas the stepsize was 10 milliseconds.

One model was assigned to each of the phonemes;
that is, 28, 11, and 5 models were trained for the
groupings grp1, grp2, and grp3, respectively (see
Section 6.1). The phoneme models were of the three-
state strictly left-to-right type; that is, each state had
one self-transition and one transition to the next state.
In each case, the observations were modeled using a

mixture of four Gaussian components with diagonal
covariance matrices. The models were trained using
the Viterbi training algorithm.

5.1.2. Gaussian Mixture Model. GMM (Alder,
1994; Duda and Hart, 1973) assumes that the class-
conditional probability distributionp(x |C) can be
well-approximated by a distribution of the form

f (x) =
k∑

i=1

ckN (x, µi ,Ci), (19)

whereN (x, µi ,Ci) denotes the multidimensional nor-
mal distribution with meanµi and covariance matrix
Ci , k is the number of mixtures, andci are nonnegative
weighting factors that sum to 1.

Unfortunately, there is no closed formula for the
optimal parameters of the mixture model. Normally,
the expectation-maximization (EM) algorithm (Alder,
1994; Dempster et al., 1977) is used to find proper
parameters, but it guarantees only a locally optimal so-
lution. This iterative technique is very sensitive to ini-
tial parameter values, so we usedk-means clustering
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(Rabiner and Juang, 1993) to find a good starting
parameter set. Sincek-means clustering again guar-
anteed finding only a local optimum, we ran it 15 times
with random parameters and used the one with the high-
est log-likelihood to initialize the EM algorithm. Af-
ter experimenting, the best values for the number of
mixturesk was found to be 3, 7, and 20 for the three
groupings used in the tests (see Section 6.1).

In all cases, the covariance matrices were forced to
be diagonal, because training full matrices would have
required much more training data (and computation
time as well).

5.2. Applied Discriminative Learners

5.2.1. C4.5. C4.5 (Quinlan, 1993) is based on the
well-known ID3 tree learning algorithm. It is able to
learn predefined discrete classes from labeled exam-
ples. The result of the learning process is an axis-
parallel decision tree. This means that during the train-
ing, the sample space is divided into subspaces by
hyperplanes that are parallel to every axis but one.
In this way, we get manyn-dimensional rectangular
regions that are labeled with class labels and orga-
nized in a hierarchical way that can be encoded into the
tree. Because C4.5 considers attribute vectors as points
in an n-dimensional space, using continuous sample
attributes naturally makes sense.

For knowledge representation, C4.5 uses the “divide
and conquer” technique, which means that regions are
split during learning whenever they are insufficiently
homogeneous. Splitting is done by axis-parallel hyper-
planes, and thanks to this learning is very fast. Thus, the
greatest advantage of the method is time complexity. In
the worst case it isO(dn2), whered is the number of
features andn is the number of samples. Unfortunately,
the simple learning strategy in certain cases results in
a huge number of regions that are needlessly split.

In general, three main cases should be mentioned in
which C4.5 faces serious challenges:

• Nonrectangular regions. Even with reasonable
feature space transformations (see Section 4),
the phoneme classes are found in nonrectangular
regions. To achieve the desired accuracy, C4.5 should
increase the number of regions without limit, but
some reduction is inevitable because of time and
space considerations. No matter how carefully it is
done, the reduction of tree size increases misclassi-
fication rate.

• Poorly separated regions.When the algorithm di-
vides the search space, its goal is to create near-
homogeneous regions. Also, early splits determine
the direction toward which the whole procedure pro-
gresses. However if the samples are scattered or
noisy (e.g., classes that are distributed randomly
along certain axes) there is scarce guidance for
the initial divisions. The overall result is a set of
numerous regions (in other words, large decision
trees) with a substantial number of misclassifica-
tions, although only a few well-placed regions would
ensure the same accuracy.
• Fragmented regions. Irrelevant attributes force

C4.5 to create too many regions as the examples
become mixed along one or more axes. The con-
sequence is errors similar to those we mentioned
earlier.

5.2.2. OC1. The oblique classifier 1 (OC1) algorithm
(Murthy et al., 1994) learns by creatingobliquedeci-
sion trees. The advantages and drawbacks are similar
to those of C4.5, although in many cases OC1 produces
better results. Having more freedom when splitting re-
gions not surprisingly increases accuracy and decreases
tree size. Then some nonrectangular regions become
efficiently learnable.

OC1 chooses oblique splits through its perturbation
algorithm performing random jumps. There are two
corollaries of this. One is that it eliminates the prob-
lem of early splits being so crucial. The other is that
it ensures an efficient algorithm, the time complexity
being of O(dn2 logn). This is only logn times more
than that seen in C4.5.

5.2.3. TiMBL. TiMBL (Daelemans et al., 1999) is a
memory-based learner that means a new example is
evaluated by using up the previous examples stored
in the memory. Because no rule or decision is made
before the actual classification, this approach is called
lazy learning. Typically, this kind of machine learn-
ing has a very short training time but the classification
of new data takes rather a long time. The storing and
processing of millions of examples can also be serious
handicap. TiMBL is based on IB1, which is a version
of thek-nearest neighbor algorithm with a special dif-
ference metric. TiMBL has many advanced tools to get
the most out of thek-NN approach. Information the-
ory is applied to both the difference metrics and the at-
tribute weighting. Measuring the information gain ratio
of different attributes yields valuable information about
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useful and information-poor attributes as well. In this
way, irrelevant features can be skipped over. Because of
the underlying strategy, however, evidently redundant
features run the risk of being overweighted, which may
corrupt the classification by excessively dominating the
metric.

TiMBL has a tree storing model as a solution for the
time and space problems mentioned before. Training
examples are stored in a treelike manner to decrease
both computational time and memory required for data
storage.

One of the key problems is that IB1 is designed to
run on discrete features. Generally speaking, it can deal
with numerical features only by making them discrete.

5.2.4. Artificial Neural Networks. ANN
(Schürmann, 1996) now count among the conventional
pattern recognition tools, so we will not describe them
here. In the experiments, we used the most common
feed-forward multilayer perceptron network with the
backpropagation learning rule. The number of neurons
in the hidden layer was set to be three times the number
of features (this value was chosen empirically based on
preliminary experiments). Training was stopped when,
for the last 20 iterations, the decrease in the error be-
tween two consecutive iteration steps stayed below a
certain threshold.

6. Experimental Results

The classification techniques were compared using a
relatively small1 corpus that consists of several speak-
ers pronouncing Hungarian numbers. More precisely,
20 speakers were used for training and 6 for testing,
and 52 utterances were recorded from each person.
The ratio of male and female talkers was 50% : 50%
in both the training and the testing sets. The record-
ings were made using a cheap commercial microphone
in a reasonably quiet environment, at a sample rate of
22050 Hz. The whole corpus was manually segmented
and labeled. Because the corpus contained only num-
bers, we had occurrences of only 32 phones, which is
approximately two thirds of the Hungarian phoneme
set. Because some of these labels represented only
allophonic variations of the same phoneme, some labels
were fused, and so we actually worked with a set of 28
labels. We made tests as well with two other groupings,
where the labels were grouped into 11 and 5 classes,
respectively, based on phonetic similarity. We had two
good reasons for doing experiments with these gross

phonetic classes. First, this way we could increase the
number of training examples in each class and inspect
the effects of this on the learning algorithms. Second,
our speech recognition system has a first-pass, in which
the segments are classified into gross phonetic cate-
gories only.

Hence we had three phonetic groupings, denoted by
grp1, grp2, andgrp3 from this point on. With the first
grouping, the number of occurrences of the different
labels in the training set was between 40 and 599. This
value was between 120 and 1158 for the second group-
ing and between 716 and 2158 for the third grouping.

6.1. Evaluation Method

The task of pattern classification is to map a given
feature vectorx to one of the classesC. The stan-
dard machine learning algorithms we tried (C4.5, OC1,
TiMBL) do just this. That is, they return a label (i.e.,
a class) for each test vector. With these methods, the
calculation of the recognition rate is quite straightfor-
ward.

The learning methods that model the a posteriori
probabilities P(C | x) return a probability value for
each classC given a test vectorx. The so-called Bayes’
decision rule states (Sch¨urmann, 1996) that the opti-
mal way of converting these values to a class label is to
choose the class with the maximum a posteriori prob-
ability. We used this rule to calculate the classification
error for these techniques.

Finally, some of the learning techniques (HMM
and GMM) model the class-conditional probabilities
P(x |C). From this,P(C | x) can be obtained by em-
ploying Eq. (1). Thus, according to the Bayes’ de-
cision rule, we have to choose that class for which
P(x |C)P(C) is maximal. (P(x) is independent ofC
and so can be omitted.) Instead of doing this, we did
not multiply by the factorP(C) in the evaluation, be-
cause handling this probability traditionally belongs to
the language model. Also, preliminary tests showed
that multiplication withP(C) led only to marginal im-
provements, clearly because the relative frequencies of
the phonemes were quite well-balanced.

6.2. Experiments

The experiments were performed on five feature sets
as described later. Because all sets contained duration,
we do not mention it separately.
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Set1consisted of the MFCC coefficients, because
these are the most commonly used features. To have
the opportunity of studying the importance of the co-
sine transform, we also made tests on the filter bank
energies themselves (Set3). By augmentingSet1and
Set3 with the gravity center features, we acquired
two further sets,Set2andSet4. We had expected the
addition of these phonetics-based features to lead to a
slight improvement.

Last, the largest set (Set5) contained all the features,
that is, filter bank energies, MFCC coefficients, and
gravity centers. Our interest was in seeing whether the
transformations could effectively select the important
ones and in finding out whether mixing all the features
would confuse the learning algorithms.

The same experiments were carried out on the three
phoneme groupingsgrp1, grp2, grp3, all the learn-
ing methods being tested not just on each set but with
each transformation technique. The only exception was
HMM, which we used as a comparison with the current
“standard” technique, so it used its own feature extrac-
tion method (see Section 5.1.1), but of course, with the
same training and test corpus.

Table 1. Recognition accuracies forgrp1 (28 phonemes).

TiMBL
C4.5

OC1
ANN

GMM MFCC MFCC +FBGC CBLE CBLE +FBGC all

none

79.96
61.20

65.13
87.89

79.20

78.60
66.00

70.51
87.12

75.18

80.02
65.20

69.74
90.84

74.14

79.61
68.00

69.50
88.06

74.23

79.96
65.90

69.89
88.65

74.35

LDA

83.27
65.50

72.93
87.65

86.76

82.86
70.10

72.10
86.50

85.82

83.39
66.10

71.69
87.35

85.82

82.62
77.10

72.64
86.35

85.99

x
x

x
x

x

PCA

76.54
50.80

60.52
86.29

83.57

75.53
48.90

60.34
87.53

82.51

81.86
60.60

69.21
85.05

85.17

78.54
63.10

66.96
88.00

81.62

77.26
56.10

65.54
88.95

83.39

ICA

74.35
53.30

54.43
85.82

80.44

75.35
43.20

49.53
87.65

76.77

74.76
54.70

54.91
86.41

79.55

75.00
34.20

44.92
87.94

76.60

76.59
37.60

46.93
88.89

79.49

For comparison, HMM scored 90.66% for this grouping. The maximum is typeset in bold.

Tables 1 through 3 show the recognition accura-
cies forgrp1, grp2, andgrp3. The columns show the
five feature sets, and the rows correspond to the ap-
plied transformation methods (including “none”). The
numbers in the diagonal correspond to the recognition
accuracies of TiMBL, C4.5, OC1, ANN, and GMM,
respectively.

6.3. Discussion

When inspecting the results, the first thing one notices
is that only the neural net could attain the performance
of the HMM, all the other learners produce an error rate
of 1.5 to 2 times bigger. We attribute this to the very
simple segment model that used only the feature aver-
ages for the three preselected segment parts. Actually,
the fact that the neural net could achieve the results of
the HMM in spite of this drastic data reduction clearly
showed the advantages of discriminative learning over
generative types.

The drawbacks of our primitive segment model-
ing become even more apparent when we compare
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Table 2. Recognition accuracies forgrp2 (11 phonetic categories).

TiMBL
C4.5

OC1
ANN

GMM MFCC MFCC +FBGC CBLE CBLE +FBGC all

none

87.05
77.00

79.26
88.89

84.28

85.83
78.70

78.37
89.83

82.45

88.29
77.70

82.89
90.96

83.92

87.76
75.70

80.85
91.49

83.39

87.82
76.90

82.11
91.43

85.22

LDA

84.81
80.40

83.92
90.07

89.01

85.57
84.10

83.92
89.73

88.87

82.86
81.90

83.33
89.72

88.53

85.52
82.60

84.16
89.78

88.42

x
x

x
x

x

PCA

81.67
60.50

71.10
87.65

87.17

82.32
61.90

72.52
89.13

87.77

87.05
75.50

77.07
91.73

87.77

86.28
74.30

78.61
91.25

87.88

84.57
68.80

73.64
90.84

87.23

ICA

80.73
53.20

66.19
89.80

85.58

81.20
53.20

63.53
89.83

82.74

82.38
66.30

68.85
89.01

85.82

82.26
48.00

62.47
89.83

83.22

82.15
49.30

57.45
91.49

83.63

For comparison, HMM scored 95.27% for this grouping. The maximum is typeset in bold.

the results of the HMM with those of the GMM, be-
cause HMM also uses Gaussian mixtures, but in a more
refined way. This comparison obviously indicates that
we must look for a more sophisticated segment repre-
sentation later on.

As for the other algorithms, from the results it seems
that C4.5 and OC1 are quite unsuitable for the task of
phoneme recognition, at least in this form. Neverthe-
less, forgrp3 (the case of gross phonetic categories),
they worked reasonably well, and their fast learning
may be a justification for their use in this case.

Finally TiMBL (namely, the IB1 algorithm) worked
quite well, and it appears that in the case of sparse
training data it may work better than the parametric
learners. Its drawback however, is its long evaluation
time.

As regards the transformation techniques, first we
should explain the reason for the xs in the “all” column
of each table. In these cases, we could not apply LDA,
because the matrixW was ill-conditioned because of
the redundancy of the features. Hence, selecting fea-
tures for LDA requires a certain degree of providence.

Even so, LDA proved the most beneficial for all the
learners.

PCA fared slightly worse than LDA did, clearly be-
cause it works in a class- independent way. It proved
the most useful for the GMM, because of its decor-
relating effects. C4.5 and OC1 behaved quite un-
predictably, not being flexible enough to exploit the
benefits of PCA. The neural net was able to attain virtu-
ally the same results, independent of the transformation
applied. We should mention, however, that its conver-
gence was much faster after LDA.

Last, ICA did not fulfil our expections because it im-
proved on PCA only in a few cases (and in fact usually
resulted in a much worse performance, especially in
the case of C4.5 and OC1). To learn precisely why, we
plan to make further investigations and also to look at
some other versions of ICA.

On examining the features, the first thing to no-
tice is that each of the learners performed the same
or better with the filter bank energies (Set3) than they
did with the corresponding cosine-transformed version
(Set1). The only exception was the GMM, for which the
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Table 3. Recognition accuracies forgrp3 (5 gross phonetic categories).

TiMBL
C4.5

OC1
ANN

GMM MFCC MFCC +FBGC CBLE CBLE +FBGC all

none

92.84
85.90

86.23
93.03

91.63

92.43
86.10

87.06
92.85

89.87

93.38
87.50

88.48
95.69

91.90

92.90
83.50

87.94
95.63

91.49

92.90
87.20

88.01
94.56

91.73

LDA

89.36
89.00

90.43
92.69

91.43

89.45
91.30

90.96
93.50

92.32

88.88
88.50

89.13
92.49

91.37

91.43
91.80

91.90
93.20

92.97

x
x

x
x

x

PCA

87.76
71.10

81.97
92.73

92.55

89.36
73.90

83.16
93.14

92.08

91.07
85.40

88.12
95.21

92.08

91.13
91.90

90.96
94.80

93.38

89.24
79.00

88.42
94.98

93.79

ICA

85.40
68.90

74.53
91.73

90.43

87.29
63.80

77.84
92.06

89.01

88.06
60.90

79.14
94.40

90.25

87.76
62.20

75.71
93.56

90.54

86.70
61.30

74.23
94.27

89.30

For comparison, HMM scored 96.75% for this grouping. The maximum is typeset in bold.

decorrelating effect of the DCT proved beneficial—but
the PCA was always much better.

Another thing we realized was that the gravity center
features did not bring about any general improvement.
The main exception wasgrp3, in which they helped
in many cases. It seems that they are fairly useful in
identifying gross phonetic categories but not consistent
enough for classifying phonemes.

With the feature set “all,” we found that in general
it was neither better nor worse than the other sets. It
seems that although using all the features together did
not confuse the learners, it did not significantly help
them either.

Finally, we mention that the previous conclusions
were drawn from visual inspection of the results. For
a rigorous justification of our impressions we also run
significance tests. More precisely, paired two-sidedt-
tests were applied at the 5% significance level. These
tests confirmed that filter bank energies, LDA, and
ANN were the best feature set, feature space transfor-
mation method, and learning technique, respectively.

7. Beyond the Phoneme Level

Up to this point we have been concerned only with
phonetic classification. That is, in our experiments we
supposed that the start and end points of the phonemes
were known and that the classifiers return a “hard
label.” However, when using the phonetic classifiers
in a speech recognizer, the phonetic boundaries are not
actually known, and the phoneme models are supposed
to return probabilities. As regards the former problem,
finding “the” correct phonetic segmentation of an ut-
terance (if there is such thing at all) is still unsolved. So
if we insist on working with segments, the best we can
do is to try many possible segmentations, assign scores
to them, and pick the best one according to some evalu-
ation criterion. If the evaluation means mapping prob-
abilities to the segmentations, then the best one means
the most probable one—and we arrive at a probabilistic
framework (Glass et al., 1996).

Other authors arrived at a segmental probabilistic
structure in a different way. They have been trying to
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find models that overcome the limitations of the HMM,
yet keep its advantages. These authors aim at present-
ing a mathematically unified framework in which the
HMM is just a special case (Ostendorf et al., 1996a). A
survey of these probabilistic segmental recognizers is
far beyond the scope of this article, but we suppose that
our phonetic classifiers will be used in such a recogni-
tion system. For a description of our segmental recog-
nizer see Kocsor et al. (1999a; 1999b).

The second problem we mentioned earlier is that the
usual speech recognition frameworks (be they frame-
based or segmental) expect the acoustic module to re-
turn probabilities and not hard labels. This clearly does
not cause a problem for the methods that model the
class-conditional or the a posteriori probabilities, but
we have to do something in the case of those nonpara-
metric models that return only a class label. Some of
these algorithms can be modified to return probabili-
ties, but some of them cannot. In the latter case, a pos-
sible solution is to train a set of classifiers on randomly
chosen subsets of the training data and approximate
the probability of a class based on the votes of these.
Although this seems plausible, we are unaware of
any such theoretical study in the machine learning
literature.

8. Conclusion

As regards the features, we must conclude that in gen-
eral filter-bank energies work just as well as MFCCs,
so the computation time would be better spent on LDA
or PCA than on DCT, because the former could give
more significant improvement in recognition accuracy.
The gravity center features helped only in the case of
the discrimination of gross phonetic categories, so we
now have to look for other techniques if we want to use
phonetic information.

Using the transformations we found that LDA was
the most convincing because it was beneficial for all
learners. PCA was useful only for some of the learning
algorithms; ICA improved the results only rarely and
proved adverse with some of the methods. We plan to
conduct more experiments with ICA, because it prob-
ably needs to be applied with more care.

With the learners, we found discriminative learning
superior to the generative type. ANN was the most con-
vincing disciminative technique and worked best on the
filter-bank energies without a transformation. The sec-
ond best technique was GMM, but this requires PCA
(or LDA) for a good performance. TiMBL behaved

reasonably well; C4.5 and OC1 could match the others
only in the recognition of gross phonetic categories.
None of the latter three techniques could really make
use of the feature tranformations.

Finally, we have to mention that only the ANN
reached the accuracy of the HMM. This means that we
have to look for more sophisticated segment modeling
for our segmental speech recognizer.
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Note

1. Our reason to employ such a limited database was that we insisted
on working with Hungarian, and there simply was no larger (seg-
mented) corpus of Hungarian available at the time of this writing.
However, one of our priorities for the future is to conduct addi-
tional testings on a larger database.
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