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Abstract This paper examines the susceptibility of a
dictation system to various types of mismatches be-
tween the training and testing conditions. With these
experiments we intend to find the best training con-
figuration for the system and also to evaluate the ef-
ficiency of the speaker adaptation algorithm we use.
The paper first presents the components of the dic-
tation system, and then describes a set of training
and recognition experiments where we vary the mi-
crophones and create gender-dependent and speaker-
dependent models. In each case we examine how
much the recognition performance can be improved
further by speaker adaptation. We conclude that the
best and most reliable scores can be obtained by using
gender-dependent phone models in combination with
speaker adaptation. Speaker adaptation results in great
improvements in almost every case. However, our re-
sults do not confirm the assumption that the use of one
microphone is better than the use of several.
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1 Introduction

There is common agreement in the speech recogni-
tion society that “there is no data like more data”. That
is, theoretically, the easiest and safest way of increas-
ing the robustness of a speech recognition system is
to collect training data from all possible test condi-
tions. In practice, however, the variability of speech
samples due to the differences among speakers, envi-
ronments, recording conditions and so on is so large
that it is impossible to cover every single combination.
Hence, on one hand the limited amount of training data
has to be designed and selected carefully. On the other
hand, such methods as data normalization and adap-
tation may bring significant improvements in the sys-
tem’s performance. In this paper we first describe the
building blocks of a Hungarian medical dictation sys-
tem, and then present a set of experiments we con-
ducted in order to find the best training configuration
of the system and in particular to see how much im-
provement can be obtained by speaker adaptation.

The experiments presented here were all performed
within the framework of a medical dictation project.
This project was initiated by two university depart-
ments with financial support from a national fund, and
its main goal was to create the first Hungarian con-
tinuous dictation system. In the first part of the pa-
per we explain the motivations behind the project, and
then we describe all the modules of our system—the
acoustic model, the language model, the user inter-
face and the adaptation algorithm—in detail. In the
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experimental part we try to find the optimal train-
ing configuration for the system. For this we examine
whether a significant increase in performance can be
obtained by insisting on employing one specific micro-
phone during both training and testing, instead of al-
lowing the usage of various microphones with suppos-
edly quite different transfer characteristics. We also
evaluate the system’s behavior after training separate,
gender-specific phone models for the male and female
speakers.

In the past few years our team has participated in
several Hungarian speech recognition projects, but in
these experiments we have so far focused only on
building speaker independent models. In the frame-
work of the medical dictation project we came to
realize that in the medical report dictation task our
speaker-independent models do not perform well
enough. Since this task allows the application of
speaker adaptation during recognition, our other main
goal with the experiments described here was to ex-
amine how much the performance of our system could
be improved by applying adaptation techniques to our
speaker independent models. For this purpose we ap-
plied speaker adaptation after the baseline tests in each
training situation to see whether it could bring further
improvements. Finally, we also performed a speaker-
dependent training experiment where we trained the
model on the voice of one speaker and then adapted
it to the voice of another. We think that such an ex-
periment can show most clearly how useful speaker
adaptation can be.

2 The Hungarian medical dictation project

At the present time there exists no general-purpose
large vocabulary continuous speech recognizer
(LVCSR) for the Hungarian language. Among the
university publications even papers that deal with
continuous speech recognition are hard to find, and
these present results for restricted vocabularies only
(Szarvas and Furui 2002). Although on the industrial
side Philips have adapted its SpeechMagic system to
two special domains in Hungarian, it is sold at a price
that is affordable for only the largest institutes (Medis-
oft 2004). The experts usually mention two reasons for
the lack of Hungarian LVCSR systems. First, there are
no sufficiently large, publicly available speech data-
bases that would allow the training of reliable phone

models. The second reason is the difficulties of lan-
guage modeling due to the highly agglutinative nature
of Hungarian.

In 2004 the Research Group on Artificial Intelli-
gence of the University of Szeged and the Labora-
tory of Speech Acoustics of the Budapest University of
Technology and Economics started a project with the
aim of collecting and/or creating the basic resources
needed for the construction of a continuous dicta-
tion system. The project lasted for three years (2004–
2006), and was financially supported by the national
fund IKTA-056/2003. As regards acoustic modeling,
the project included the collection and annotation of a
large speech corpus of phonetically rich sentences. For
language modeling, we restricted the target domain to
the dictation of certain types of medical reports. Al-
though this clearly led to a significant reduction com-
pared to the original, general dictation task, we chose
this application area with the intent of assessing the ca-
pabilities of our acoustic and language modeling tech-
nologies. Depending on the findings, later we hope to
extend the system to more general dictation domains.
This is why the language resources were chosen to be
domain-specific, while the acoustic database contains
quite general, domain-independent recordings.

Although both participating teams used the same
speech database to train their acoustic models, they
focused on two different dictation tasks and experi-
mented with their own acoustic and language model-
ing technologies. Our team in Szeged focused on the
task of the dictation of thyroid scintigraphy medical
reports, while the Budapest team dealt with gastroen-
terology reports. This paper describes the recognition
system and development efforts of the Szeged team
only.

3 Components of the medical dictation system

3.1 Acoustic modeling

Hungarian is a Finno-Ugric language, so it is one of
the few modern European languages that do not be-
long to the Indo-European language family. Owing
to this, there are several significant differences be-
tween the phonetics of Hungarian and English (Szende
1999). Their consonant sets are relatively similar, the
biggest mismatches being the dental fricatives of Eng-
lish and the palatal affricates of Hungarian, which
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are missing from the other language. However, there
are also several allophonic differences in those con-
sonants that are present in both languages (for exam-
ple, voiceless stop consonants are never aspirated in
Hungarian). There are much bigger differences in the
vowel systems. Even the similar monophthongs take
slightly different positions in the vowel triangle, while
some of them are missing from the other language (e.g.
��� from Hungarian, ��� and ��� from English). But
even more importantly, in Hungarian there are no diph-
thongs (apart from dialects and sloppy speech) and un-
stressed vowels do not get reduced (or only to a much
lesser extent than in English). Probably the most ex-
otic feature of the phonology of Hungarian is that most
consonants and vowels have a long and a short variant,
and their duration acts as a distinctive feature.

Apart from this little peculiarity, the conventional
acoustic modelling techniques such as the Hidden
Markov Model (HMM) (Huang et al. 2001) are read-
ily applicable to the recognition of Hungarian. In the
experiments reported here we used a quite standard
HMM decoder implementation. This system works
with the also conventional mel-frequency cepstral co-
efficient (MFCC) features (Huang et al. 2001). More
precisely, 13 coefficients are extracted from each
25 msec frame, along with their � and �� values,
at a frame rate of 100 frames per sec. The phone mod-
els applied have the usual 3-state left-to-right topol-
ogy. As the duration feature in the vocabulary of our
specific dictation task seemed to have no discrimina-
tive role, most of the long/short consonant labels were
fused, and this way we worked with just 44 phone
classes. One phone model was associated with each of
these classes, that is we applied monophone modeling
and no context-dependent models were tested in the
system. The decoder built on these HMM phone mod-
els performs a combination of Viterbi and multi-stack
decoding. To speed up the process it contains several
built-in pruning criteria. First, it applies beam prun-
ing, so just the hypotheses with a score no worse than

the best score minus a threshold are kept. Second, the
number of hypotheses extended at each time point is
restricted, which corresponds to multi-stack decoding
with a stack size constraint. The maximal evaluated
phone duration can also be restricted. Normally on a
typical PC the decoder runs faster than real-time on
our dictation task.

3.2 Language modeling

A special difficulty of creating language models for
Hungarian is the highly agglutinative nature of the
language. Thus in a large vocabulary modeling task
the application of a morphologic analyzer/generator
algorithm seems inevitable. First, simply listing and
storing all the possible word forms would be nearly
impossible (an average noun can have about 700 in-
flected forms). Second, if we simply handled all these
inflected forms as different words, then achieving a
certain coverage rate in Hungarian would require a
text about 5 times bigger than that in German and
20 times bigger than that in English (Németh and
Zainkó 2001). Consequently, the training of conven-
tional n-gram language models would require signifi-
cantly larger corpora in Hungarian than in English, or
even in German. A possible solution might be to train
the n-grams over morphemes instead of word forms,
but then again the handling of morphology would be
necessary.

Though quite good morphological tools now exist
for Hungarian, in the first experiments with our dic-
tation system we preferred to avoid the complications
with morphology. The restricted vocabulary is one of
the reasons why we chose the medical dictation task.
As we mentioned earlier, our analysis revealed that the
thyroid gland medical reports we examined contained
only about 2500 different word forms. Although these
many words could be easily managed even by a simple
list (‘linear lexicon’), we organized them into a lexical
tree (Fig. 1) where the common prefixes of the lexical

Fig. 1 Prefix tree for some
Hungarian words. At the
points labelled by asterisks
the grammar model can
generate the exact n-gram
probability of the given
word
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Fig. 2 Prefix tree for some Hungarian words with their POS code. At the branches of the tree the grammar model can generate the
probability of the word according to the word n-gram and according to the class n-gram

entries are shared. Apart from storage reduction ad-
vantages, this representation also speeds up decoding
as it eliminates redundant acoustic evaluations (Huang
et al. 2001). The prefix tree representation is proba-
bly even more useful for agglutinative languages than
for English because of the many inflected forms of the
same stem.

The limited size of the vocabulary and the highly
restricted (i.e. low-perplexity) nature of the sentences
used in the reports allowed us to create very efficient
n-grams. Moreover, we did not really have to worry
about out-of-vocabulary words, since we had all the
reports from the previous six years, so the risk of fac-
ing unknown words during usage seemed minimal.
The system currently applies 3-grams by default, but
it is able to ‘back off’ to smaller n-grams (in the worse
case to a small ε constant) when necessary. During
the evaluation of the n-grams the system applies a lan-
guage model lookahead technique (Huang et al. 2001).
This means that the language model returns its scores
as soon as possible, not just at word endings. For this
purpose the lexical trees get factored, so that when sev-
eral words share a common prefix, a combination of
their probabilities is associated with that prefix. The
probability of a word prefix given by the grammar
model will be this combined value, which will change
at every node of the prefix tree. These techniques allow
a more efficient pruning of the search space (Bánhalmi
et al. 2005).

Besides word n-grams we also experimented with
constructing class n-grams. To do this the words
were grouped into classes according to their parts-
of-speech category. The words were categorized us-
ing the POS tagger software developed at our univer-
sity (Kuba et al. 2004). This software associates one
or more MSD (morpho-syntactic description) code

(Erjavec and Monachini 1997) with the words, and
we constructed the class n-grams over these codes
(Fig. 2). Although we utilized only the first letter
of the MSD code—which is practically the POS
code—the MSD code would allow the construction
of more sophisticated word classes as well. With the
help of the class n-grams, the language model can
be made more robust in those cases when the word
n-gram encounters an unknown word, so it practi-
cally performs a kind of language model smoothing.
In previous experiments we found that the applica-
tion of the language model lookahead technique and
class n-grams brought about a 30% decrease in the
word error rate when it was applied in combination
with our HMM-based fast decoder (Bánhalmi et al.
2005).

A high performance improvement can be achieved
using assimilation rules when concatenating word
models (Kocsor et al. 2006). This feature has also
been incorporated into our grammar model. Because
of the many possible utterances of a word, the gram-
mar model is able to search among the shared com-
mon suffixes as well, so the model is not neces-
sary a prefix tree, but it may become a directed
graph.

3.3 User interface

The GUI was really designed with a view to serv-
ing many users on the same computer. But also the
GUI was intended to combine simplicity with good
functionality. Just a microphone and a text editor (Mi-
crosoft Word, or any word processor package) are
needed for dictating medical reports.

Every user has one or more profiles containing
all the special information characterizing his or her
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Fig. 3 Functions of the graphical user interface: (a) Enable or
disable auto hiding of the main toolbar. (b) Start or stop the
recognition procedure. The user can suspend the dictation at any
time, and can continue later. (c) Volume display bar. The volume
of the microphone input can be checked here. (d) Choosing a
specific user. The user can be selected from the list of existing
users. (e) Choosing the actual language. A language assigned
to the current user can be chosen from a listbox. (f) Choosing
the actual grammar. An available grammar can be chosen with

just one click. (g) Selecting the internal text editor. The output
of the dictation will be typed into this internal smart text editor.
(h) Selecting the Microsoft Word plugin for output. (i) Select-
ing the window of the active application. With this function the
user can dictate into any MS-Windows based application like
MS Excel or MS Outlook. (j) the main menu for managing the
user profiles. All the above-mentioned functions are accessible
here

voice for a given language and vocabulary. The lan-
guage models and the acoustic core modules can be
installed separately. These models will be adapted
to the characteristics of the users. The user inter-
face also has a toolbar at the top of the desktop. Us-
ing the toolbar all the main functionalities related to
the initial parameter settings can be accessed, like
choosing a specific user, choosing the actual task and
selecting the output window (Fig. 3). Other function-
alities can only be accessed from the actual output
text editor. The most important of these features is
that the user can ask the speech recognition system
for other possible variants of the recognized sentences
if the recognized word or sentence is somehow incor-
rect.

4 The adaptation algorithm

The need for speaker adaptation methods in speech
recognition applications arises in those tasks where
we wish to achieve a speaker-dependent recognition
performance, but there is no opportunity to perform a
separate user-specific training phase. In such cases the
development of a speaker-dependent model for each
speaker is practically impossible, because the required
large amount of speaker-specific training data is un-
available or difficult to acquire.

The two main approaches for improving the perfor-
mance of a speaker-independent model are the trans-
formation of the incoming feature vectors (by methods
like VTLN or CMN) and the adaptation of the para-
meters of the statistical acoustic models. In classical
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Fig. 4 Gaussian mixture
model with three mixtures
in two dimensions

HMM-based systems various speaker adaptation tech-
niques have been used with success. These techniques
are based on the fine-tuning of the parameters of the
speaker-independent system to the given speaker in or-
der to maximize the likelihood of the adaptation data
of the new speaker.

In general, adaptation can be applied with three
strategies: batch adaptation, self-adaptation and on-
line adaptation. In the case of batch adaptation the
adaptation is performed after all the adaptation data
has been collected, so this is an off-line method. Self-
adaptation is performed on the testing data at run-
time. As this method is unsupervised, the recognition
errors and the faulty transcripts pose a special prob-
lem. Various conditions were proposed earlier for fil-
tering the words to be retained for the adaptation step
(Matsui and Furui 1996; Homma and Sagayama 1997;
Wessel 2002). The on-line (or incremental) adapta-
tion technique changes the parameters of the statistical
model only after a block of adaptation data has been
processed, and this block of data is then thrown away,
so this method is a trade-off between the first two tech-
niques.

Computationally, two main approaches have been
proposed in the literature for the adaptation of HMM
parameters. The first is the maximum likelihood (ML)-
based framework containing the maximum likelihood
linear regression (MLLR) approach (Leggetter and
Woodland 1995), the maximum likelihood stochastic
matching (SM) approach (Sankar and Lee 1996) and

the constrained transformation approach (Digalakis et
al. 1995; Diakoloukas and Digalakis 1999). The other
main group of techniques are based on the maxi-
mum a posteriori (MAP) formulation (Gauvain and
Lee 1994), where the forward and backward probabil-
ities are not fully computed and not all the HMM pa-
rameters are re-estimated, but the path with the max-
imal probability is determined, and just the parame-
ters belonging to this path are re-estimated. As the
speech decoding step in most LVCSR systems work
in the same way (i.e. using Viteri search), this tech-
nique may work more reliably than MLLR-like tech-
niques.

All the adaptation algorithms that are usually ap-
plied to HMMs are essentially based on the same idea,
that is they adjust the parameters of the speaker inde-
pendent HMMs so that the new values are more suit-
able for describing the speech of the actual speaker.
Thus the tuned model is closer to a specific, speaker
dependent model.

The HMM phone models consists of states with
emission probabilities described by Gaussian mix-
tures, and transition probabilities between the states
(Fig. 4). It was found that varying the transition pa-
rameters and the Gaussian mixture weight parameters
have little effect on the performance of the recogni-
tion, and the most important parameters are the mean
values of the Gaussian mixtures (Bourlard et al. 1996;
Rozzi 1991). Hence, the adaptation process usually
addresses only these latter parameters.



Int J Speech Technol (2006) 9: 121–131 127

In order to re-estimate the Gaussian components of
the HMMs our system applies the maximum a pos-
teriori (MAP) adaptation method. The data used dur-
ing the adaptation step is extracted on-line, embedded
into the recognition process. This way the adaptation
step is not separated algorithmically from the recogni-
tion step, but instead it operates just like the continu-
ous recognizer. More precisely, the adaptation is per-
formed as follows. The Viterbi algorithm performed
during recognition produces a series of the most prob-
able HMM phone models, the most probable state se-
quence within these models, and also the sequence of
the Gaussian components belonging to the states. Hav-
ing obtained the state and Gauss component index as-
sociated with each input feature vector, the mean of the
given Gaussian component is updated using the MAP
formulation (Thelen 1996):

μnew = N

N + α
mobs,ML + α

N + α
μ0, (1)

where

mobs,ML = 1

N

N∑

i=1

xi. (2)

Here the parameter N represents the number of exam-
ples for the given mixture component (xi ), while the
parameter α controls the speed of varying the mean of
the mixture. These formulae practically perform a lin-
ear regression from the speaker-independent model to
the speaker-dependent model.

In practice we apply a recursive version of the
above formulae, which allows a continuous, incremen-
tal adaptation:

μd,N+1 = xN+1 + (N + α) · μd,N

N + 1 + α
. (3)

Our adaptation method can be used both for su-
pervised adaptation and for unsupervised adaptation.
When using it for unsupervised adaptation, the tran-
script of the spoken sentence is unknown. To get the
transcript, the speech recognizer stores a derivation
tree for the hypotheses. When a common ancestor be-
comes available, then its transcript and the correspond-
ing speech signal can be used as the input for super-
vised adaptation.

5 Experiments

Our aim with the experiments was to find out how
much the recognition performance depends on the
gender of the train/test speakers, on the person who
tests the system, and on the microphone being used.
Obviously, we also wanted to see how much of the
error caused by gender, speaker or microphone de-
pendency could be reduced by speaker adaptation. To
understand these relationships better, we varied the
contents of the training database. For speaker and
gender-independent training we used the MRBA cor-
pus (Vicsi et al. 2004), which contains recordings
from 100 speakers, both men and women. Then, in
order to test the gender-dependency of the system,
we created separate models for the male and female
voices using the same corpus. To be able to perform
speaker-dependent training as well, we recorded a
longer speech item from one specific male and female
speaker. Finally, a very special property of the MRBA
corpus is that its full content was recorded with two
microphones in parallel. One of these, which we will
refer to as the ‘primary’ microphone was always the
same during the recordings, while for the ‘secondary’
recordings a different microphone was used for each
speaker. This fact allowed us to examine how much the
recognizer’s performance depends on the microphone
used.

5.1 Parameters of the Corpora

The MRBA Corpus contains speech samples from
100 speakers, namely 26 women and 74 men. The age
of the speakers is between 13 and 72 but, as Fig. 5
shows, the speakers are mostly from the most active
computer-using generations. The speech signals were
recorded and stored at a sampling rate of 16000 Hz
in 16-bit quality (the same sampling rate and quality
the dictation system operates at). Each speaker uttered
12 long sentences (16 words per sentence on average)
and 12 phonetically rich words. The database contains
a total of about 10,800 words (85,300 phonemes) in
about 100 minutes of recorded speech material. As
mentioned above, each utterance was recorded via two
microphones (primary and secondary) simultaneously.
The primary microphone was fixed, while the sec-
ondary was varied for each speaker (a variety of cheap
computer microphones were tested). in the tables be-
low the sentences recorded by the primary microphone
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Fig. 5 The age distribution
of the speakers in the
MRBA corpus

Table 1 Properties of the
databases Train Adapt Test

#speakers 100 2 × 1 5 × 1 5 × 1

#sentences 1,200 2 × 240 5 × 86 1,380

#words 1,200 2 × 240 – –

total #words 10,800 2 × 2,200 5 × 613 5 × 7,000

total #phonemes 85,300 15,500 + 15,600 n/a n/a

total length (min) 100 21 + 23 5 × 6 5 × 15

are denoted by an ‘-r’ tag, while those recorded by the
secondary microphone set are denoted by an ‘-s’ tag.

For the speaker-specific training experiments
two persons (a male and a female) uttered 240/240
sentences and 240/240 words, which in total gave
2200/2200 words (15500/15600 phonemes) in 21/23
min. The speech signals were recorded and stored us-
ing the same technique mentioned above but with just
the primary microphone.

As adaptation and testing data we recorded sam-
ples from 5 speakers—2 men and 3 women (in the
following they will be referred to as M1, M2, W1,
W2 and W3). The speech signals were recorded and
stored using the same technique mentioned above.
Each speaker spoke the same 86 sentences in 17 para-
graphs (613 words) for adaptation and 20-20 differ-
ent medical reports for test. The length of the speech
signal recorded for adaptation purposes was about
6 minutes, and that for testing was about 15 minutes
per speaker. Speakers denoted by M1 and W1 were

the same as those who produced the speech material
for speaker specific training, so this way we had the
opportunity to measure the discrepancy between inter-
speaker and cross-speaker training and testing.

Table 1 below gives a summary of the parameters
of the train (general and speaker-specific), adaptation
and test databases.

6 Results and discussion

In the first experiment we utilized all the training data
of the secondary microphone part of the MRBA cor-
pus to create just one set of phone models. The testing
results for the five test persons (two males, three fe-
males) are shown in Table 2 below. The scores are all
reasonable, except for one of the females, whose score
is significantly worse than the rest. Also, the results for
the males are somewhat better, which might be due to
the 3:1 ratio of males to females in the training data-
base.
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As the next step we repeated the above experiment,
but this time using the data recorded with the pri-
mary microphone for both training and testing. One
would naively expect that using one specific micro-
phone for recording all the data should improve the
scores as it would remove the variance caused by the
differences in the microphone transfer characteristics.
Surprisingly, we found that all the results were worse
(see Table 3). Currently we cannot satisfactorily ex-
plain this behavior, but our hypothesis is that by apply-
ing many different microphones in the ‘s’ training set
the phonetic models had a better generalization ability
and hence became more robust than when using just
the specific ‘r’ microphone during both training and
testing.

We also attempted to improve both the microphone-
specific and microphone-independent models by
speaker adaptation. Table 4 summarizes the results that
we obtained. Comparing the corresponding lines with
those of Tables 2 and 3, we see that it brought a slight
degradation for the male speakers, and a small and a

Table 2 Results when using the mixed microphones (set ‘s’)
during training

Test database

Men Women

M1-s M2-s W1-s W2-s W3-s

95,52% 97.64% 79.26% 91.30% 94.23%

huge improvement for the female speakers W3 and
W1, respectively, and for W2 a huge improvement in
one case, but a similarly huge decrease in the other.
So altogether it seems that the adaptation process can
have a beneficial effect, but it should be used with cau-
tion.

In the next experiment we separated the male and
gender test data and trained a separate, gender-specific
phone set on them. This is quite a common practice in
phonetic modelling (Huang et al. 2001). The recogni-
tion results (see Table 5) then became much more bal-
anced, and the scores of the problematic W1 speaker
became more like the others. However, as a price, the
results of the consistently good speakers (M1, M2,
W3) fell. We think that this can be attributed to the
fact that because of the separate training of the genders
the training data for the models was practically halved.
With a much larger training corpus the improvement
due to the gender-specific training would probably be

Table 3 Results when using the specific ‘r’ microphone during
training

Test database

Men Women

M1-r M2-r W1-r W2-r W3-r

93.99% 97.00% 75.49% 72.49% 91.17%

Table 4 Results after
speaker adaptation for both
the ‘s’ and ‘r’ sets

Train mic Test database

Men Women

M1-s M2-s W1-s W2-s W3-s

s 94.72% 98.36% 89.13% 87.39% 94.80%

M1-r M2-r W1-r W2-r W3-r

r 92.71% 96.42% 95.61% 87.84% 93.02%

Table 5 Results with
gender-dependent acoustic
models

Test database

Men Women

M1 M2 W1 W2 W3

no adaptation
s. mic 94.35% 95.42% 84.88% 83.52% 85.13%

r. mic 92.16% 92.21% 82.76% 80.89% 91.94%

after adaptation
s. mic 92.30% 93.00% 89.41% 85.09% 91.73%

r. mic 90.29% 94.78% 94.51% 89.07% 93.58%
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Table 6 Results of
speaker-dependent training Test database

Men Women

M1 M2 W1 W2 W3

no adaptation 89.34% 77.50% 83.72% 53.89% 51.04%

after adaptation 96.71% 93.70% 87.14% 81.77% 87.83%

much bigger than the drawback caused by the relative
decrease in the amount of training data per model.

Finally we examined what kind of results could
be obtained by training speaker-dependent models.
For this we trained a model on the training data of
speakers M1 and W1. Besides their own correspond-
ing test data, we also tested the model of M1 on the
data of M2, and the model of W1 on the test data
of speakers W2 and W3. Then we repeated the test-
ing after speaker adaptation. The results of this are
shown in Table 6. We can clearly see that without
adaptation the test results are not good already for the
test data of the training speakers, and even worse for
the other people. After adaptation all the scores im-
proved quite significantly—in particular for those per-
sons whose material was not used during training. Al-
though, on average, the results after adaptation are still
a bit worse than those scores obtained with speaker-
independent training, we think that this is because of
the much smaller size of the speaker-dependent train-
ing data set. The fact that there was a large increase
even for the training speakers M1 and W1 indicates
that adding more training material would be just as im-
portant as speaker adaptation itself. Nevertheless the
marked increase in the scores for the other speakers
clearly demonstrates the efficiency of the adaptation
algorithm in the case where there is a speaker discrep-
ancy between the train and test recordings.

7 Conclusions

This paper examined the susceptibility of a dictation
system to various kinds of mismatches between the
training and testing conditions. In our experiments
we sought to find the best training configuration for
the system and also to evaluate the efficiency of the
speaker adaptation algorithm we use. Our studies did
not justify any advantage of using one specific micro-
phone during both training and testing. It seems that

training using several microphones made the system
more robust for the specific microphone as well. The
gender-specific training decreased the variance of the
results over the test persons, but the average of the
scores became slightly worse. We think that this is be-
cause the training database is very small, and hence
halving it by separating the data items according to
gender can bring about such a degradation. With a
much larger training set this fall in the average per-
formance would presumably be much smaller, and the
advantages of the gender-dependent models would be-
come more apparent. The point that our training data
is just barely enough is also indicated by the speaker
dependent modelling experiment where the speaker
adaptation algorithm brought a significant improve-
ment even for the speaker whose voice was used to
train the model. This improvement was apparently not
due to the adaptation, but rather to the increase in the
amount of training data. For the test persons differ-
ent from the train persons the adaptation brought a
good performance improvement, and the adaptation
algorithm improved the scores in almost all the other
training configurations as well. So our two main con-
clusions from the experiments is that the best setup to
apply is gender-specific phone modelling in combina-
tion with speaker adaptation, and that we should also
increase our training data set if we want to see more
consistent and reliable behavior.
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