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Research Group on Artificial Intelligence,
Hungarian Academy of Sciences and University of Szeged,
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Abstract
Many believe that comparisons of machine and human speech
recognition could help determine both the room for and the di-
rection of improvement for speech recognizers. Yet, such ex-
periments are made quite rarely or over such complex domains
where instructive conclusions are hard to draw. In this paper
we attempt to measure human performance on the tasks of the
acoustic and language models of ASR systems separately. To
simulate the task of acoustic decoding, subjects were instructed
to phonetically transcribe short nonsense sentences. Here, be-
sides the well-known superior segment classification, we also
observed a good performance in word segmentation. To imi-
tate higher-level processing, the subjects had to correct deliber-
ately corrupted texts. Here we found that humans can achieve a
word accuracy of about 80% even when almost one third of the
phonemes are incorrect, and that with word boundary position
information the word error rate roughly halves.
Index Terms: speech recognition, human speech perception,
benchmark, performance, nonsense sentences, error correction

1. Introduction
In today’s automatic speech recognition (ASR) systems the
acoustic and language models are algorithmically separate and
it is quite normal to train them independently. Yet, they are rela-
tively rarely evaluated on their own - probably because from an
application point of view the performance of the building blocks
is of little interest. Still, we think that for the further develop-
ment of ASR the behavior of the components should be ana-
lyzed and refined separately and that a comparison of their per-
formance with that of humans would be particularly instructive.
For some reason, however, such comparisons are quite rare, and
in most cases fail to establish equal conditions for humans and
machines, and/or do not analyze the sub-tasks in isolation [1].
In this paper we attempt to benchmark the capabilities of human
subjects in solving tasks very similar to those that the acous-
tic and language model components of ASR systems encounter.
For this purpose we designed two types of experiments. In the
first one the subjects had to transcribe nonsensical continuous
speech. In the second one they had to read and correct texts
that were artificially spoiled with errors generated following the
acoustic error pattern learned from the first experiment. Hence,
the first experiment sought to evaluate the phonetic recognition
performance of humans when no linguistic support is present,
while the second one tried to measure the level of error cor-
rection they are capable of, relying on context and on linguistic
competence. Of course, the various processing levels in humans
cannot be artificially ’turned on and off’ as in machines, but in

spite of this difficulty we still think that the findings are quite
interesting and thought-provoking.

2. Recognition of nonsense speech

The first experiment tried to mimic the task that the acoustic
module of ASR systems faces: decoding the phonetic content
of a continuous speech stream with no help from higher-level
linguistic knowledge sources. In this section we describe the
stimuli, the experiments, and then discuss the results.

2.1. Creating the stimuli

Lexicon, sentence-level syntax and semantics are handled by
the language (and higher) module(s) of ASR systems, so to imi-
tate their exclusion we had to create nonsensical test utterances.
On the other hand, as the acoustic module describes the acoustic
realization of the phonemes of the target language, it was also
clear that the test utterances should contain only phones present
in the subject’s language (in this case, Hungarian). Between the
lexical and phonetic levels the position of phonotactics is debat-
able, but we decided to count it as a part of the acoustic module
for three reasons. First, context-dependent phone modelling in
some sense does make use of phonotactic information. Sec-
ond, in phonetic decoding ASR experiments it is usual to apply
phone n-grams, which is simply a phonotactic model. Last, but
not least, a fully practical issue was that a totally arbitrary series
of phonetic symbols is not necessarily possible to read out loud,
and this might have hindered the creation of the test data set.

To construct nonsensical words that obey the phonotactics
of Hungarian, we applied a three-step procedure. First, we de-
cided to use syllables as building blocks, and created a syllable
inventory based on a large text corpus (taken from the Hun-
garian Electronic Library). Slightly unusually, ’syllable’ here
means units that go from one vowel to the next, because this
way we could guarantee that only phonotactically permitted
consonant clusters appeared in our words. As the second com-
ponent of word construction, we created statistics of the vowel
sequences occurring in the words of our training corpus. Our
intention here was to model vowel harmony, which is a spe-
cial feature of Hungarian and cannot be modelled at the syllable
level. This way the construction of a nonsense word consisted
of three steps: the generation of a vowel ‘backbone’, the fill-in
of the gaps between the vowels by syllables, and finally a man-
ual removal of meaningful words, should they accidentally have
arisen (in fact, we tried to keep just the kind of non-words that
differed in at least two phonemes from any existing word). We
should mention here that the spaces between the words were
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treated as special ‘vowels’ during modelling. This is very im-
portant because the word-leading and word-ending phone clus-
ters obey special phonotactic rules, and this way the model was
able to handle them (at least, within the range of syllables).

A final thing we had to decide on was the duration of the
stimuli. Human speech perception studies usually apply very
short - monosyllabic - test signals [2, 3], but we think that this
kind of conditioning is unfair and not the same as that for those
ASR systems that have to recognize continuous speech. First,
utterances of continuous speech behave differently (e.g. show
higher coarticulation). Second, monosyllabic stimuli simply do
not permit the study of segmentation related phenomena (of
phones or syllables or words). But, of course, using longer
stimuli may give rise to errors not only due to phonetic confu-
sions but also due to recall difficulties. The results of research
on working memory and on listening span in particular suggest
that people can easily repeat nonsense words of about 6-8 syl-
lables [4]. Based on this, the sentences we created consisted of
6-10 syllables (3-4 non-words of 1-4 syllables).

2.2. Experiments

The test material contained 20 nonsense sentences, recorded
on the voice of a male speaker who was instructed to read
them with some arbitrary, but natural-sounding intonation. The
recording also contained an introductory text to explain the task
and to allow the subjects to get accustomed to the voice of the
speaker and to choose a convenient loudness level. The 25 sub-
jects were university students with no known hearing impair-
ment, and as they were not familiar with any phonetic alphabet,
they were instructed to use the Hungarian one. This caused no
problem because the Hungarian orthography is almost exactly
phonemic. Each sentence was repeated twice, and the subjects
were told to write down their guess after each sample.

The test results were evaluated as follows. From the two
responses of a subject to a given sentence the first one was kept,
unless the subject committed some error that was obviously
not transcriptional; for example he/she exchanged, repeated or
omitted whole words (the subjects usually indicated when they
failed to recall what they heard by making dots). In those cases
their second reply was used, or the whole sentence was dropped
when the second reply was also unusable. After this unifica-
tion step the replies were evaluated in exactly the way as is
usually done in ASR – that is, by matching the stimulus and
the response string using dynamic programming, and then cal-
culating a ‘phoneme accuracy‘ score based on the number of
substitution, insertion and deletion errors.

2.3. Results and Discussion

We found that the duration of the sentences rarely caused a
problem, so from the two replies to a sentence we could use
the first one in 92.20% of the cases, and we had to rely on the
second one in only 6.80% of the cases. Both of the responses
were unusable in only 1.00% of the cases.

The recognition accuracy obtained for the replies chosen
this way was 83.55%. A repeated evaluation over the second
responses gave a score of 87.55%. This reassured us that most
of the errors are not due to memory recall, as after the second
listening the subjects made only minor corrections. By way of
reference, on a similar (Hungarian) recognition task our ASR
system was able to attain an accuracy of 52.48% [5], and on the
most studied English TIMIT corpus the best scores are around
75% [6]. These are of course not completely fair comparisons as
they were measured on different data sets, but they still show the

gross tendency that human performance is about 2-4 times bet-
ter than today’s machines. Notice, however, that the scores we
got are much worse than those reported for syllabic words [3].

Besides evaluating the recognition accuracy a phone confu-
sion matrix was also created that allows an in-depth analysis of
the confusion patterns [2, 3]. Unfortunately, here we cannot dis-
cuss all the details because of lack of space. But stated in brief,
we found that the most frequent source of errors was the confu-
sion of short and long phoneme pairs and the misclassification
of voicing for fricatives. This finding justified our expectations
on which features were the less robust.

Although by using nonsense stimuli we tried to exclude lex-
ical influence, it cannot be turned off completely. For exam-
ple, in ambiguous cases subjects are known to be biased toward
choosing lexically consistent hypotheses [7]. Examining the re-
sponses, we found 61 different meaningful words in 125 occur-
rences. Some of these directly corresponded to the non-words
of the stimulus (eg. vassog → vasfog ‘iron tooth’, pakró →
apró ‘tiny’), but they were mostly created via incorrect segmen-
tation. Many of these cases can be explained by the motivation
to uncover a frequent real word (kérida → kéri ‘asks’ 17×,
metki → ki ‘out’ 8×, szerés → és ‘and’ 6×) or to decompose a
very unlikely consonant cluster (ejtréled → ej ‘ah’ 12×).

A further important aspect is that Hungarian is an agglituna-
tive language which operates with a rich set of suffixes. As these
suffixes are syllables or just consonants, a statistical model of
phone sequences will inevitably describe not only phonologic,
but also morphologic constraints. These suffixes are observable
in our nonsense words and obviously influenced the subjects in
word segmentation. For example, the nonsense sentence Taku
töhegét ötyöl is readily analyzed by a Hungarian as consisting of
a subject taku (having no specific suffix, so it could be a proper
noun), an object töhegét (a noun in accusative case) and a pred-
icative ötyöl (a verb in third person). In these cases morphol-
ogy supposedly supports the transcription, but in other cases it
might be misleading as well. For example, the word-ending
[“tS] (coded by letter cs in Hungarian) in albács lálolta was de-
composed by four subjects as a [t] and an [S] separated by a
word boundary (that is, they wrote albát slálolta). A probable
explanation for this is that the word-candidate albát is morpho-
logically more appealing than albács, even at the price that this
way the subsequent word begins with a phonologically improb-
able [Sl] pair. A further interesting example of morphologic
influence was that the subjects often compensated the assimi-
lation across word boundaries. For example, the [S] in degrás
gyamar is pronounced as [Z], due to regressive voicing assimi-
lation. However, 11 subjects still decoded it as [S] – apparently
they identified the word boundary, and then preferred the mor-
phologically much more probable [a:S] word ending to [a:Z].
These examples show that lexical and morphologic bias was in-
deed present in the responses, but while the effect of the former
was clearly detrimental to phonemic accuracy, on balance, the
pros and cons for the latter are far from clear here.

Next, we examined whether the subjects were able to seg-
ment the utterances into words. A word boundary was judged
to be correct if it separated the last and first vowels of the neigh-
boring words; that is, the misalignment of closing or open-
ing consonants was not judged to be an error. 32.65% of the
word boundaries were visually identifiable on the spectrogram
as small pauses, these were not taken into account during the
evaluation. The remaining boundaries were correctly detected
in 73.83% of the cases by the subjects, although these bound-
aries were not marked by an acoustically obvious pause. All
this accords well with results which indicate that the phonetic or
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phonological structure of speech contains cues about the likely
location of word boundaries (for a nice survey of psycholin-
guistic research on word segmentation, see the dissertation by
Smith [8]). For example, it is known that even infants are able to
perform word segmentation at a very early stage of language ac-
quisition by exploiting statistical regularities and prosody cues
[9]. In the case of Hungarian, two recent studies have found that
word segmentation could indeed be significantly supported both
by prosodic cues and phoneme sequence constraints [10, 11].
Still, the current ASR technology ignores these acoustical/pre-
lexical pieces of information and performs sentence parsing
based solely on lexical fitting.

3. Context-based error correction
The goal of the second experiment was to find the phonemic
error rate at which humans are still able to correct a text using
higher linguistic levels. Exploiting the fact that Hungarian writ-
ing is almost exactly phonemic, we carried out this investigation
in the form of a reading task of error-spoiled texts. This task can
be viewed as an imitation of an ASR system’s acoustic module
passing a 1-best decoding task to the higher-level (lexical, syn-
tactic, semantic, etc.) modules.

3.1. Stimulus

As test material, 27 contiguous sentences (201 words) were se-
lected from an unpublished novel. The text was phonemically
transcribed (using the Hungarian alphabet) and partitioned into
5 blocks of approximately the same size by breaking it up at
sentence endings. The text was then deliberately corrupted by
introducing substitution, deletion and insertion errors according
to the probability distribution (confusion matrix) obtained in the
first experiment. The error rate was increased block-by-block
by decreasing the elements in the diagonal of the confusion ma-
trix and distributing this probability mass proportionally among
the other elements. Thus the phonemic accuracy of the blocks
fell from 84% to 64% in 5% steps. 25 test sheets were generated
this way, each sheet being different.

3.2. Experiments

25 new subjects were asked to figure out the text and write their
guess below the sentences. It was pointed out to them that the
test sentences form a sound context that is worth figuring out
and exploiting. No time limit was specified and jumping about
in the text was also permitted. The word boundaries were not
marked in any way, but when a subject said he had finished, he
received a new version of the text that contained spaces as well,
and was asked to revise his guesses based on this new infor-
mation. The replies were evaluated by counting the correctly
found words. As insertion errors were very rare, the error rate
calculated this way was practically the same as the ‘word error
rate’ score usually applied for the evaluation of ASR systems.

3.3. Results and discussion

Figure 1 shows the word accuracy scores obtained as a function
of phonemic accuracy, with and without word boundary posi-
tion information. The falling tendency of the scores is just what
we expected, but there are small anomalies too. For example,
the readibility of the three middle blocks proved quite similar
due to context, in spite of their different phonemic error rate. In
fact, many subjects reported that the difficulty of the task did
not grow steadily in the text, as the instructions had said. Many

Figure 1: Word accuracy as a function of phoneme accuracy
and stimulus type.

of them also told us that at first sight they found the task rather
frustrating. Then, when they managed to figure out the outline
of the story, the task became much easier. Hence, motivation
turned out to be an important factor in achieving a good score,
as the less motivated subjects were inclined to give up quickly.

A comparison of the first two columns in Figure 1 shows
that with the knowledge of word boundary positions the error
rate roughly halves. The main reason for this is obviously the
reduction of entropy, and our aim with this experiment was to
see how this reduction supports comprehensibility. Unfortu-
nately, there is a further factor here that is difficult to separate or
exclude. While there is still an on-going debate on exactly what
information we use when we are reading, there is lots of evi-
dence that we are able to exploit reading units (visual patterns)
bigger than letters – in particular when they are highly familiar
(e.g. frequent function words) [12]. The large error rate (and the
lack of spaces in the first test) of our test material disturbs or per-
haps sabotages this ‘holistic’ processing, which might explain
the frustration reported by the subjects. Although analytical (i.e.
letter-by-letter) reading is of course still possible, it seems that
the gap between the two tasks was to some extent caused by the
disturbed reading process, and not totally attributable to the dif-
ferent entropy levels. What supports this conjecture is the fact
that the most persistent subjects managed to attain a 88-90%
average word accuracy even without knowing the word bound-
aries (these scores went up to 93-94% with the help of spaces).

Although Hungarian writing is quite close to being phone-
mic, there is a possible argument against presenting the test in
a written form rather than a spoken one. The test material was
spoiled with typical acoustic errors based on the confusion ma-
trix obtained in the first experiment. One might hypothesize
that the auditory processing path is prepared for correcting these
typical errors, while the same may not work during visual pro-
cessing. That is, while the phones [k] and [g] are acoustically
similar, the corresponding letters are not visually similar, and
thus correcting a [k] to a [g] might seem more reasonable in a
sound than in a written form. Although we instructed the sub-
jects to try to read out the text aloud, and there is evidence that
we often focus on the sound of words even in silent reading [13],
we conducted a further experiment to examine this possibility.
We simply took the text of the tests and fed them into a speech
synthesizer (there seemed to be no difference in the synthesized
signal when the text contained the spaces and when it did not, so
we did not separate these cases). Ten new subjects were asked to
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transcribe these sound files, allowing as much time and as many
rewindings as needed. The third columns of Figure 1 show that
the scores obtained in this way were significantly worse than
those obtained with the written version. Although to some ex-
tent this can surely be attributed to the quality of the speech
synthesizer, the results definitely do not support the assumption
that the acoustic way of processing had a strong advantage due
to some prior knowledge of the error patterns.

While the subjects were able to figure out more than 60%
of the words even at a phonemic error rate of 36%, on the
other hand it is interesting to note that they did not produce
a definitive 100% even at the smallest error rate (correspond-
ing to the error rate measured in the nonsense speech listening
experiment). A possible reason for this might be that our error-
generating algorithm did not model the dependence of the errors
on context and position. That is, our software corrupted each
phoneme independently of both its neighbors and its position in
the word. In reality it is known (at least, for English) that the
word onsets are more robust to assimilation and deletion than
other parts of words [14], and that syllable onsets and codas
also behave quite differently in this respect [15]. Humans are
thought to exploit this behavior during speech comprehension
[14], so it would be interesting to see what our scores would be
if the error model took into account these factors as well.

As a final remark, we should mention the similarity of our
experiment to Shannon’s classic letter-guessing game where he
attempted to assess the entropy of English [16]. However, there
are at least two significant differences. First, in his experiment
the subjects had to guess the next (missing) letter, while for our
subjects the positions of errors were not indicated. Hence, in our
case the task was error correction rather than prediction, which
are clearly different. Second, Shannon dealt with printed En-
glish, while we were interested in spoken language; that is why
we used phonemic transcripts. While in a discussion he men-
tions the possibility of repeating his experiment with phonemes
instead of letters [17], we could not find any evidence that he
finally did so. It is not hard to predict that the findings – for ex-
ample, that “you can delete all the vowels in a passage and have
no difficulty in reconstructing it” [17] – would be quite different
if one had to listen to the same text via a speech synthesizer.

4. Conclusions
In this paper we attempted to measure human performance on
the tasks of the acoustic and language models of ASR systems
separately. In the phonetic transcription of short nonsense sen-
tences our subjects achieved phone accuracies around 83-87%.
Though the superior performance of humans over machines in
phonetic classification was already known, earlier studies usu-
ally worked with syllabic input that does no allow the investiga-
tion of segmentation phenomena. In this respect we found that
humans are able to hypothesize word boundaries correctly in
74% of the cases even when they are not acoustically indicated
by a pause. This suggests that the suprasegmental cues currently
ignored in ASR may play an important role in human speech
perception and could significantly support ASR systems as well.
This conjecture is reinforced by the results of the context-based
text correction task where we found that the knowledge of the
word boundary positions approximately halves the word error
rates. In this experiment we also found that although humans
can achieve a word accuracy of about 80% even at a phone error
rate around 30%, they could not produce a score of 100% even
at a phone error rate of only 16%. This finding and research on
human lexical access [14] could indicate that our error model

was overly simplified and that the distribution of errors among
words and among phoneme positions within words is an impor-
tant factor that should be studied in greater depth.
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