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Abstract

Rectifier neurons differ from standard ones only in that the sig-

moid activation function is replaced by the rectifier function,

max(0, x). Several recent studies suggest that rectifier units

may be more suitable building units for deep nets. For exam-

ple, we found that with deep rectifier networks one can attain a

similar speech recognition performance than that with sigmoid

nets, but without the need for the time-consuming pre-training

procedure. Here, we extend the previous results by modify-

ing the rectifier network so that it has a convolutional structure.

As convolutional networks are inherently deep, rectifier neurons

seem to be an ideal choice as their building units. Indeed, on the

TIMIT phone recognition task we report a 6% relative error re-

duction compared to our earlier results, giving an 18.6% error

rate on the core test set. Then, with the application of the re-

cently proposed ‘dropout’ training method we reduce the error

rate further to 17.8%, which, to our knowledge, is the best result

to date on this database.

Index Terms: Deep neural networks, sparse rectifier neural net-

works, phone recognition

1. Introduction

Recently there has been a renewed interest in neural networks

for speech recognition, thanks to the invention of deep neural

nets [1]. This technology brought significant improvements

over the standard shallow network structures applied earlier,

and deep nets are now being applied even for large vocabulary

tasks [2, 3, 4]. The main weakness of deep networks is that

they require a time-consuming pre-training for optimal perfor-

mance. Some methods have already been proposed to circum-

vent this. For example, Seide et al. constructed a layer-wise

backpropagation training strategy [4], while Plahl et al. pro-

posed a different pre-training method based on sparse encoding

symmetric machines [5]. Our team recommended yet another

solution based on rectifier neurons [6]. Compared to conven-

tional neural nets, rectifier neural networks differ only in the

type of activation function used. However, this slight modifi-

cation seems to enable them to learn deep structures more effi-

ciently than standard neural nets. Using deep rectifier networks,

we were able to achieve similar results on the TIMIT database

than those attained with the pre-trained nets of Mohamed et al.

[1], but without the need for any pre-training [6]. Here we go

one step further, and refine the structure of the rectifier network

so that is has convolutional layers in its lower part. The con-

cept of convolutional neural networks is quite popular in image
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processing [7], but so far only sporadic efforts have been made

to apply them to speech recognition. The most sophisticated of

these is the construct by Abdel-Hamid et al., who apply tricks

like limited weight sharing and max pooling [8]. The network

studied here is simpler in structure, and is more analogous to the

work of Veselý et al. [9], but it is built out of rectifier neurons

instead of sigmoid neurons. As a convolutional network must

inherently consist of many layers, and rectifier units proved to

be more suitable for such deep structures, we expect a superior

performance from building the convolutional model out of rec-

tifier units. Here, we test this assumption on the classic TIMIT

phone recognition task.

2. Convolutional Deep Rectifier Neural Nets

Rectifier neural nets differ from conventional neural nets in only

one fundamental respect: the type of the activation function

used. Instead of the usual sigmoid activation function, they ap-

ply the rectifier function max(0, x) for all hidden neurons. The

effect of this change on the behavior of the network was an-

alyzed by Glorot et al., and they also gave nice experimental

results for image recognition and NLP tasks [10]. Further mo-

tivation for the use of rectifier units was provided by Nair et al.,

who successfully applied them to improve restricted Boltzmann

machines [11]. We experimented with phone recognition on the

TIMIT database, and found that deep rectifier neural nets could

achieve the same recognition accuracy as the deep sigmoid nets

presented in [1], but their training was simpler and faster [6].

Existing neural network code can be easily modified so that

it can handle rectifier units. Besides the replacement of the sig-

moid activations by the rectifier function, the activation deriva-

tives also have to be modified. Also, we found that the applica-

tion of weight decay or weight normalization is recommended

in order to keep the weights within reasonable limits [6]. These

modifications are, however, very simple, and in all other re-

spects a rectifier net operates exactly the same way as a standard

perceptron-based network. In particular, it can be trained using

standard backpropagation training. The target function can be

the usual cross-entropy error, but the results may be improved

further by augmenting it with a penalty term that enforces spar-

sity. For this purpose we found the function
∑

log(1 + a2

j )
proposed by Sivaram [12] to work nicely, where the sum is over

all rectifier unit outputs aj .

In this paper, we use the same backpropagation training

procedure as that described in [6], and refine only the architec-

ture of the network. Fig. 1 shows the schematics of the network

we are going to apply here. Let us first consider the network

composed of the blocks of neurons denoted by shaded boxes. If

the network consisted of only these components, then we would

have a standard non-convolutional deep network with four neu-

ral layers and an input layer consisting of seven consecutive
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Figure 1: Schematic diagram of the convolutional network applied here. The blocks of neurons denoted by blank boxes use the same

weights as the shaded layer does in the same row. For clarity, full connections between layers are denoted by a single line only.

feature vectors. What makes the network convolutional is the

additional blocks of units denoted by blank boxes. These are

left blank so as to emphasize the fact that they do not have their

own weights, but they use the same weights as the correspond-

ing shaded layer does in the same row. Practically speaking,

this means that the convolutional layer gets evaluated on sev-

eral blocks of input. This way the input context of the network

can be extended considerably without significantly increasing

the number of weights. For example, in Fig. 1 the convolutional

layer processes three blocks of local input, altogether covering

a span of 17 feature vectors. A further important property is

that these blocks may be positioned several frames away, so

the convolutional part of the network inherently performs sub-

sampling as well. Here we will refer to the local block of input

vectors as the ‘local context’, while the full span of the input to

the network will be called the ‘convolutional context’.

The layer simply called the ‘hidden layer’ in the figure oper-

ates on several blocks of output from the preceding layer. This

enables the network to fuse the pieces of information coming

from the local context windows. The price for this is that for

this layer the number of inputs is much larger than that for the

rest of the layers; and then the number of weights required is

also bigger. If we want to keep the number of weights similar to

those of the other layers, then we have to reduce the input size.

Because of this reduced size, the input to this layer is called the

‘bottleneck layer’ in the figure. For example, if the subsequent

layer uses five blocks of output from the bottleneck layer, then

the bottleneck layer should be a fifth of the size of the other

layers. With this restriction the convolutional net does not re-

quire more parameters than a conventional net, but it is able to

process a much bigger span of input vectors.

The convolutional network is trained using semi-batch

backpropagation, exactly the same way as its non-convolutional

counterpart. The only step that might need explanation is how

the error is propagated through the bottleneck. When propa-

gating the error backwards from the hidden layer, we get error

values for both the shaded and the blank blocks of neurons in

the bottleneck layer. However, the blank blocks do not have

independent weights, but are just replicas of the units denoted

by the shaded box. Hence, the errors attributed to these replica

units should all be propagated to the units of the shaded box,

which we solve here by taking the average of the errors. Note

that other strategies are possible as well, for example Abdel-

Hamid et al. use max pooling layers to combine the results of

convolutional layers [8]. Of course, this requires modifications

to the error backpropagation scheme as well.

Finally, it should be mentioned that the convolutional struc-

ture shown in Fig. 1 is a relatively ‘shallow’ one. We will exper-

iment with networks that have more layers, and hope that with

the use of rectifier units we will be able to efficiently train these

deeper structures as well. In these experiments we will simply

refer to the layers up to the bottleneck layer as the ‘lower part’,

and the layers above it as the ‘upper part’ of the network.

3. Experimental Settings

The results reported are phone recognition error rates on the

well-known TIMIT database. The training set consisted of the

standard 3696 ‘si’ and ‘sx’ sentences, while testing was per-

formed on the core test set (192 sentences). A random 10% of

the training set was held out for validation purposes, and for

tuning the meta-parameters. We will refer to this block of the

data as the ‘development set’. All the experiments used a phone

bigram language model estimated from the training data. To get

frame-level labels for the training data, a conventional HMM

was trained (using HTK), and then a forced alignment was per-

formed with it. We worked with context-dependent (CD) phone

models, which were obtained with the decision tree-based state

clustering tool of HTK, and resulted in 858 tied states. These

were derived from the 61 phone labels, and they were mapped

to the usual set of 39 labels only for evaluation; that is, after

decoding. During decoding no effort was made to fine-tune the

language model weight and the phone insertion penalty param-

eters; they were just set to 1.0 and 0.0, respectively.

For preprocessing we used the mel filter bank outputs di-
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rectly, following Mohamed et al. [1]. We had the opportunity

to work with exactly the same features as they did in [1], as

they kindly gave us the corresponding HTK config file. This

preprocesing method extracted the output of 40 mel-scaled fil-

ters and the overall energy, along with their ∆ and ∆∆ values,

altogether yielding 123 features per frame.

The weights of the neural net were initialized based on the

formula proposed by Glorot et al. [13]. The net was trained us-

ing semi-batch backpropagation, with the batch size being 100.

The initial learn rate was set to 0.001 and held fixed while the

error on the development set kept decreasing. Afterwards it was

halved after each iteration, and the training was stopped when

the improvement in the error was smaller than 0.1% in two sub-

sequent iterations. This way, the training took only 13-15 itera-

tions on average. All the neurons of the networks were rectifier

neurons, apart from the softmax output layer.

The training target function to be optimized was the stan-

dard frame-level cross-entropy cost. In the sparsifying exper-

iments it was augmented with the the sparsity penalty term

λ
∑

log(1 + a2

j ), following Sivaram [12], where the sum goes

over all rectifier activations aj , and λ was set to 0.001. Earlier

we found that it is harmful to apply the sparsity penalty in the

early phase of training [6]. Hence, in the experiments the spar-

sity penalty was switched on only after 9 training iterations.

4. Results and Discussion

4.1. Choosing the size of the input and the bottleneck layer

In the first set of experiments we looked for the optimal size

of the input of the network. For this purpose we used a rela-

tively ‘shallow’ network with one convolutional layer of 2000

neurons in the lower part, and two hidden layers of 2000-2000

neurons in the upper part. The bottleneck was configured to

combine five blocks of outputs from the convolutional layer;

hence the size of the bottleneck layer was set to 2000/5 = 400
units. The intention of the experiments was to determine the

best value for the size of the local context and the step size (i.e.

the downsampling rate) of this local input window for obtain-

ing the convolutional context. For the local context, three sizes

were used: 9, 13 and 17 frames. As regards the downsampling

rate, the values 3, 4 and 5 were tried out. These altogether gave

nine combinations, for which the phone recognition error rates

on the development set are shown in Table 1. For instance, a lo-

cal input size of 9 and convolutional input of 0,±3,±6 means

that input blocks of 9 frames of data are used, and five such

blocks are processed, positioned at 0, ±3 and ±6 frames away

from the central frame. As can be seen from the results, con-

text size of 9 and sub-sampling rate of 5 yielded the best results.

Some other settings gave very similar scores, and we chose this

combination partly because it had the lowest frame-level error

rate as well (not shown here).

Next, we wondered whether the narrower bottleneck layer

causes any performance degradation. To test this, the experi-

ment with the best parameter values was repeated, but with an

increased bottleneck layer size of 1000 neurons (which meant

that the input size of the subsequent hidden layer was 5000). As

shown in the last row of Table 1, we did not find any increase in

the recognition accuracy, so in all subsequent experiments the

bottleneck size was set to 400.

4.2. Adding more hidden layers and enforcing sparsity

Having fixed the size of the input and the bottleneck layer, we

considered two other ways to improve the model and hence the

Sizes of Context Error on

hidden layers local conv. dev. set

2000-400-2·2000 9 frames 0,±3,±6 16.82%

2000-400-2·2000 9 frames 0,±4,±8 16.41%

2000-400-2·2000 9 frames 0,±5,±10 16.35%

2000-400-2·2000 13 frames 0,±3,±6 16.86%

2000-400-2·2000 13 frames 0,±4,±8 16.66%

2000-400-2·2000 13 frames 0,±5,±10 17.22%

2000-400-2·2000 17 frames 0,±3,±6 16.36%

2000-400-2·2000 17 frames 0,±4,±8 16.86%

2000-400-2·2000 17 frames 0,±5,±10 17.03%

2000-1000-2·2000 9 frames 0,±5,±10 16.53%

Table 1: Phone error rates on the development set for various

sizes of local and convolutional context. The minimum is type-

set in bold.

recognition results. One was to refine the model by introducing

more hidden layers. For this purpose, the lower part of the net-

work was modified so as to contain two or three hidden layers

instead of just one. The other was to extend the error function

with the sparsity term described in Section 3. The recognition

results obtained with these refinements are shown in Table 2.

In contrast with non-convolutional nets where we saw a consis-

tent improvement both with increasing network depth and with

the enforcement of sparsity [6], here the scores are not fully

convincing. Checking the scores on the development set, the

introduction of additional hidden layers does not seem to im-

prove the results, and the sparsity penalty does not have a sig-

nificant effect either, apart from the case of three convolutional

layers1. After analyzing the results got with the sparsity penalty,

we found that while the frame-level error rate (which we min-

imize during training) decreased in every case, the phone error

rate (which we measure during evaluation) frequently stagnated

or even increased. This clearly shows that we definitely need a

modification of our training algorithm that would optimize the

error at the sequence level rather than at the frame level, like the

methods described by Kingsbury [14] and Mohamed et al. [15].

4.3. Training the lower and upper parts separately

The convolutional structure we used here is closely related to

the ‘hierarchical’ or ‘2-stage’ scheme often applied with con-

ventional neural nets [16, 17, 18]. In this approach a neural net

is trained on a block of consecutive feature vectors, then a sec-

ond network is trained on the output of the first net (again using

several consecutive vectors as input). Compared to our convolu-

tional scheme, we see two main differences. First, these hierar-

chical models usually do not sub-sample the output of the lower

net, though there are exceptions [19]. Second, the two nets are

trained separately, while in our network the error is propagated

down from the upper to the lower part, through the bottleneck

layer. On one hand, one would expect the joint training to be

more optimal than the separate one. On the other, backpropa-

gation has certain difficulties when training deep structures like

our seven-layer construct here [13]. For example, Seide et al.

found that a layer-wise training of a deep network gives a much

better performance than training the whole structure in one go

[4]. Although that result is for sigmoid nets and rectifier units

1Although in the table we gave the results on the core test set as well,
and these show more convincing trends, we are of course not allowed to
select any meta-parameter based on the test results.
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Network size devel. set core test set

2000-400-2·2000 16.35% 20.02%

+sparsity 16.32% 20.13%

2·2000-400-2·2000 16.63% 19.98%

+sparsity 16.62% 18.71%

3·2000-400-2·2000 16.40% 19.32%

+sparsity 16.05% 18.64%

Table 2: Phone error rates on the development set and on the

core test set for various number of hidden layers, trained with-

out and with sparsity penalty.

seem to behave favorably in this respect, we thought that the op-

tion of two-step training should be investigated experimentally.

In these experiments we used the network structure that per-

formed best in the previous experiments; that is, the lower part

contained three hidden layers of 2000 units, the upper part had

two hidden layers of 2000 units, and the bottleneck layer con-

sisted of 400 units. The steps of two-step training were as fol-

lows (for similar training methods see [9] as well):

• Step 1: The lower part of the network is trained by at-

taching the output layer directly to the bottleneck layer

(the input to this network consists of only one local block

of data, so no convolution is involved).

• Step 2: The output layer is thrown away and the full con-

volutional network is constructed (with randomly initial-

ized upper layers). Only the upper part is trained for one

iteration, then the whole network is trained.

The results obtained with the two-step training method are

shown in the first row of Table 3. Compared with the best result

in Table 2, this method provides a significant improvement on

the development set and a similar result on the core test set,

though here the sparsity penalty term has not yet been activated.

This suggests that there is still room for improvements in the

one-step training of our convolutional deep network.

Next, we sought to imitate the separate training of the lower

and upper networks, in a similar way to what happens in the

hierarchical systems mentioned above. For this purpose, the

second training step was modified so that it updated only the

weights of the upper part. The results are shown in the second

row of Table 3, and a comparison with the scores of the first row

justified our expectation that the separate training of the lower

and upper parts ought to perform worse. Notice, however, that

the result is still slightly better than that obtained when training

the full network in one go (see the row before last in Table 3, ig-

noring the results with the sparsity term for a fair comparison).

The following step was to exploit the gain offered by the

sparsity penalty term. However, as was explained in Section

3, earlier we found that for good results the sparsity penalty

should be turned on only in the final phase of training, when the

weights are relatively stable. Hence, its application in the case

of two-step training is not obvious at all. Here three strategies

were tried: applying it only during the first training step, ap-

plying it only during the second training step, and applying it

during both steps. As the results in Table 3 show, none of these

strategies really managed to improve on the previous best re-

sult on the development set. The lowest error rate attained was

15.36%, and the same model gave 18.55% on the core test set.

After being disappointed with the sparsity penalty results,

we tried out a quite new technique called ‘dropout’ [20]. Here,

on each presentation of each training case, each hidden neuron

2-step training strategy devel. set core test set

lower, then both 15.41% 18.66%

lower, then upper 16.04% 19.12%

lower+sp, then both 15.36% 18.55%

lower, then both+sp 15.95% 18.46%

lower+sp, then both+sp 16.02% 18.36%

lower+dr, then both+dr 14.66% 17.76%

Table 3: Phone error rates on the development set and on the

core test set using various two-step training strategies (‘sp’

stands for sparsity and ‘dr’ for dropout).

is randomly omitted from the network. This trick helps prevent

the co-adaptation of units, while its implementation is also very

simple. However, the price is that many more training iterations

are required for convergence: in our case, we modified our code

so that one training iteration consisted of ten sweeps through the

data instead of just one. Also, instead of the value of 0.5 pro-

posed originally, we decreased the chance of ‘dropout’ to 0.2,

because this gave better results in some pilot tests. With these

settings we obtained a 14.66% error rate on the development

set and 17.76% on the core test set (using 2-step training), and

these scores are significantly better than any of our previous re-

sults. This shows that this technique has a huge potential, and

we intend to investigate it more systematically in the future.

Now let us compare our results with other reported scores

on TIMIT. As regards our earlier study, there we reported 19.8%

using a non-convolutional deep rectifier neural net trained on

the same features and triphone units [6]. The improvement due

to the convolutional structure is 1.2%, which is about 6% rel-

ative. As regards other authors, they mostly use monophone

labels only, so the results are not fully comparable. For ex-

ample, Abdel-Hamid achieved 20.07% with their convolutional

network using monophone labels [8]. In a recent paper Hinton

et al. reported 19.7%, and they claimed it to be a new record

[20]. The paper by Plahl et al. is one of the few examples were

triphone labels are applied; they reported an error rate of 19.1%

using a discriminatively trained, boosted feature set [5]. Thus,

to the best of our knowledge, the 17.76% reported here is the

lowest error rate achieved so far on the TIMIT core test set.

5. Conclusions and Future Work

In this paper, we extended our earlier results with deep rectifier

neural nets to a convolutional network structure. This struc-

ture allows the network to process a longer observation context

without requiring significantly more parameters. The network

was constructed from rectifier units, as these were supposed to

aid the efficient training of the deep architecture presented by

the convolutional network. On the one hand, we achieved a 6%

relative error reduction compared to the non-convolutional ver-

sion of the same net, so the convolutional structure definitely

proved efficient. On the other hand, although we obtained good

results by simply training the full network in one go, the two-

step training strategy operated more convincingly, even so that

in this case we could not really make the sparsity penalty work.

Thus, finding the optimal way of its usage requires more investi-

gation. Further, though Glorot et al. found that pre-training does

not help rectifier nets [10], this may vary from task to task, so

we intend to test it in the speech recognition case. And, finally,

we see a great potential in the more sophisticated convolutional

structure of Abdel-Hamid [8] and in the dropout method [20].
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[6] L. Tóth, “Phone recognition with deep sparse rectifier neural net-
works,” in Proc. ICASSP. 2013, accepted, in print.

[7] Y. Lecun and Y. Bengio, “Convolutional networks for images,
speech and time series,” in The Handbook of Brain Theory and

Neural Networks, Michael A. Arbib, Ed. 1995, pp. 255–258, MIT
Press.

[8] O. Abdel-Hamid, M. Abdel-rahman, H. Jiang, and G. Penn,
“Applying convolutional neural network concepts to hybrid NN-
HMM model for speech recognition,” in Proc. ICASSP, 2012, pp.
4277 – 4280.
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