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Abstract

Convolutional neural networks have recently been shown to out-

perform fully connected deep neural networks on several speech

recognition tasks. Their superior performance is due to their

convolutional structure that processes several, slightly shifted

versions of the input window using the same weights, and then

pools the resulting neural activations. This pooling operation

makes the network less sensitive to translations. The convolu-

tional network results published up till now used sigmoid or rec-

tified linear neurons. However, quite recently a new type of acti-

vation function called the maxout activation has been proposed.

Its operation is closely related to convolutional networks, as it

applies a similar pooling step, but over different neurons evalu-

ated on the same input. Here, we combine the two technologies,

and experiment with deep convolutional neural networks built

from maxout neurons. Phone recognition tests on the TIMIT

database show that switching to maxout units from rectifier

units decreases the phone error rate for each network configura-

tion studied, and yields relative error rate reductions of between

2% and 6%.

Index Terms: Deep neural networks, convolutional neural net-

works, maxout networks, TIMIT

1. Introduction – Relation to Prior Work

Excellent speech recognition results have lately been reported

using deep Convolutional Neural Networks (CNNs) [1, 2, 3, 4,

5, 6]. Compared to standard fully-connected neural networks,

the main difference is that CNNs process the input in small lo-

calized patches, looking for the presence of relevant local fea-

tures. These local feature detector neurons are evaluated at sev-

eral slightly different positions, and the resulting activations are

pooled. This pooling step makes the network less sensitive to

small translations, and hence the choice of the pooling function

plays an important role. In general max-pooling is applied [1],

but more sophisticated pooling functions have also been sug-

gested, and some of these have already been tried out in speech

recognition as well [5, 3].

In speech recognition the two axes of a spectro-temporal

representation have different roles, and should be handled dif-

ferently. By applying convolution along the frequency axis,

we can have acoustic models that are more robust to speaker

and speaking style variations. In all the studies that experi-

mented with frequency-domain convolution, researchers found

that CNNs consistently outperform fully connected deep neural

networks (DNNs) on the same task [1, 2, 4, 6].
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The advantage of allowing small shifts along the time axis

is less obvious, as hidden Markov models inherently handle

time shifts. Indeed, the recent studies by Abdel-Hamid et al.

and Sainath et al. found that pooling along the time axis pro-

vides only negligible benefits [3, 5]. However, it is still advan-

tageous to process a long time-span of input in smaller local

chunks. Motivated by this fact, Veselý proposed a special con-

volutional structure that performs convolution along the time

axis, with downsampling playing the role of pooling [7, 8].

We have recently shown that the frequency-domain convolu-

tion technique of Abdel-Hamid and Sainath can be nicely com-

bined with the time-domain convolution method of Veselý et

al. With the combined method, we reported a record-breaking

phone recognition accuracy score on TIMIT [6].

All the studies cited above built the convolutional networks

out of sigmoid neurons [1, 4], or rectified linear units [5, 8, 6].

However, now a novel type of neural activation function called

the maxout activation has been proposed [9]. Instead of pro-

cessing the activation of each neuron separately, as is usual, this

function takes a group of neurons, and outputs the maximum of

their activations. Maxout networks have already been tried out

in speech recognition, and achieved good results [10, 11, 12].

Since then, several refinements to the maxout function have also

been suggested [13, 14].

The max-pooling procedure of convolutional networks and

the maximization applied in maxout networks are very similar.

They differ only in their input, as convolutional nets pool the

outputs of the same neuron evaluated over different input vec-

tors, while maxout networks pool the outputs of different neu-

rons evaluated on the same input. However, the maximization

step itself is technically the same. Thus, it is a natural idea to

combine the two techniques, and construct convolutional net-

works out of maxout neurons. Yet, to our knowledge, this pos-

sibility has not been explored this far. In this article we build

such deep convolutional maxout networks, and evaluate their

performance on the TIMIT database. As a basis of comparison,

our earlier paper will serve as the baseline, where we used the

same network structure, but with rectified linear units [6].

2. Convolutional Neural Networks

The operation of the convolutional neurons of a CNN differs

from standard neural units in three key ways, which can be

summed up by the words ‘locality’, ‘weight sharing’ and ‘pool-

ing’ [1]. Firstly, while conventional neural nets are usually fully

connected, CNNs process their input in small local patches. Be-

cause of this requirement of locality, they are trained on a time-

frequency representation instead of the classic MFCC features.

In our case, the input to the network consists of the energy lev-

els of 40 mel filter bank channels. These 40 mel-channels are

divided into 7 wider frequency bands that each cover 7 mel-
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Figure 1: (a) Convolutional neurons pool the results of processing different input blocks using the same weights (weight sharing is

indicated by dashed lines). (b) Maxout networks pool the results of processing the same input data using different weight vectors.

(c) The proposed convolutional maxout network performs both types of pooling jointly, in one go.

channels. The input is processed in 17-frame blocks along the

time axis, so each convolutional neuron operates on a 7x17

spectro-temporal window.

Secondly, the convolutional units get evaluated on several,

slightly shifted versions of their input window. These blocks

are processed using the same weights, which feature is referred

to as ‘weight sharing’ (see Fig. 1a). In speech recognition

experiments the shifting is usually applied only along the fre-

quency axis. In our implementation, the amount of shifting will

be measured in mel channels. For example, a pooling size r will

mean that the convolutional units process r versions of their in-

put window shifted by 0, 1, .., r − 1 mel banks.

Thirdly, the neural activations got at the various positions

are turned into one value in the ‘pooling’ step. Several strate-

gies exist for this, the classic one being max-pooling [1], but

other, more sophisticated pooling formulas have also been pro-

posed. For example, Abdel-Hamid et al. investigated weighted

softmax pooling [3], while Sainath et al. studied p-norm pool-

ing and stochastic pooling [5]. However, they did not achieve

significantly better results with these methods than those with

simple max-pooling. Here we will apply max-pooling, because

of its similarity with the maxout activation function.

Having discussed the operation of convolutional neurons,

let us describe the structure of the whole network. First, each

spectral band is processed by a set of convolutional neurons.

There are two strategies for combining the information got from

the neurons assigned to different spectral regions. Abdel-Hamid

et al. argue that the spectral phenomena occurring in different

spectral regions are different, and so they apply weight sharing

in a limited way, only within the spectral bands [1]. However,

Sainath et al. showed that full weight sharing may also give sim-

ilarly good results [5]. Here we apply limited weight sharing,

so our models assign different sets of neurons to the seven spec-

tral regions. Their output is concatenated and processed further

by three additional, fully connected layers. We should mention

here that it is also possible to stack several convolutional layers

on each other. For example, Sainath et al. achieved the best

performance with a model of 2 convolutional layers plus 4 fully

connected layers [5].

2.1. Convolution along the time axis

The early studies on CNN-based speech recognition applied

convolution just along the frequency axis [1, 4]. The advan-

tage of extending the convolution to the time axis as well is

less obvious, as hidden Markov models inherently handle time

shifts. Recently, both Abdel-Hamid et al. and Sainath et al. ex-

perimented with convolution along time, and the improvements

indeed proved negligible [3, 5].

Independently of these teams, Veselý et al. developed a

different network architecture that performs convolution along

time [7, 8]. This architecture was motivated by the success of

hierarchical ANN models, where a neural network is trained on

a block of acoustic feature vectors, and then a second network is

trained on a block of posterior output vectors got from the first

network [15, 16]. Veselý showed that even better results can be

obtained if the two networks are trained as one unit, by propa-

gating the error down from the upper to the lower network. In

this hierarchical model the lower sub-network processes only a

subset of the input of the whole, joint structure, so the require-

ment of locality is fulfilled. Several, shifted versions of the lo-

cal input window get processed using the same sub-network,

so weight sharing is also present. Lastly, the output of these

local sub-networks is downsampled before being combined by

the higher-level layers. Hence, this model can indeed be called

convolutional if we regard downsampling as a special kind of

pooling function. As we got good results with this sort of archi-

tecture earlier [8], we will use it here as well. However, our goal

here is to exploit the similarity between max-pooling and max-

out units. Since Veselý’s model has no actual pooling proce-

dure, in this study we will prefer to interpret this technology as

a refined hierarchical model rather than a convolutional model.

3. Maxout Neural Networks

The output of a classic perceptron-type neuron is defined as

o = φ(z), z = w · x+ b .

That is, first the linear activation z of the neuron is calculated

from the input vector x , the weight vector w and the bias term

b, and then z gets transformed by the nonlinear activation func-

tion φ. In conventional networks the sigmoid function is used

as φ, but recently novel types of functions such as the rectifier

function max(z, 0) have been proposed for this purpose [17].

In speech recognition, rectified linear (ReLU) units were found

to be efficient building blocks for deep neural network based

acoustic models [18, 19, 20, 21].

Goodfellow et al. suggested generalizing the rectifier func-

tion so that the maximum is taken over the linear activation of

several neurons [9]. That is, the proposed maxout function di-

vides the N neurons of a given layer into L groups of size K

(N = K · L), and the output of the lth group is calculated as

ol =
K−1
max
k=0

zlK+k, l = 0, ..., L− 1 .

Several studies have already investigated the applicability

of the maxout activation in speech recognition. All these studies

found that maxout networks perform better or at least no worse
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Network type and frame error phone error

training method on dev. set dev. set core test

ReLU 36.4% 18.6% 20.6%

maxout 35.3% 17.4% 20.1%

2-norm, DPT 37.5% 17.5% 20.3%

maxout, DPT 35.0% 17.1% 19.4%

maxout, mixed DPT 34.2% 17.0% 19.5%

Table 1: Phone error rates of fully connected ReLU, maxout

and 2-norm networks consisting of 4 hidden layers.

than ReLU networks, and the biggest gains were reported under

low-resource conditions [10, 11, 12]. However, they also ob-

served that the maxout function is inclined to overfit the data, as

the gradient is propagated back only to the neuron that gave the

largest activation. One possible remedy is to apply stochastic

pooling, which chooses its output (and hence the backpropaga-

tion path) randomly, with a probability proportional to the value

of the corresponding activation [14]. Another solution is to re-

fine the pooling function itself. Zhang et al. found that p-norm

pooling gives better results than those for max-pooling [13].

One possible explanation is that p-norm acts as a smoothed ver-

sion of max-pooling, where all the pooled units contribute to the

result, and also get updated proportionally to their contribution.

Notice that the pooling performed by the maxout function is

technically the same as the pooling step applied in convolutional

networks. The difference is that in convolutional networks the

pooling is performed over neurons that process different input

vectors using the same weights, while in maxout networks it is

applied over different neurons that process the same input (com-

pare Figs. 1a and 1b). However, the pooling operator does not

need to know how the actual values to be pooled were obtained.

Hence, it is a natural idea to implement a convolutional layer of

maxout units, where the two pooling operations are performed

in one go, as illustrated in Fig. 1c. In this study we investigate

this technology.

4. Experimental Settings

The results we report are phone recognition error rates on the

well-known TIMIT database. The training set consisted of the

standard 3696 ‘si’ and ‘sx’ sentences, while testing was per-

formed on the core test set (192 sentences). A random 10% of

the training set was held out as the ‘development set’, which

was used for validation purposes, and for tuning the meta-

parameters. In all our experiments we used a phone bigram

language model estimated from the training data. To get frame-

level labels for training, forced alignment was performed with a

conventional context-dependent HMM of 858 tied states. These

were derived from the 61 phone labels, and they were mapped

to the usual set of 39 labels in the evaluation phase. To remain

consistent with earlier studies on TIMIT (e.g. [22]), the lan-

guage model weight and the phone insertion penalty parameters

were not tuned, but were just set to 1.0 and 0.0, respectively.

For preprocessing we used the output of 40 mel-scaled fil-

ters and the overall energy, along with their ∆ and ∆∆ values,

altogether yielding 41 · 3 = 123 features per frame. The same

input representation was employed in many previous studies on

TIMIT [22, 20, 6, 1]. As input, the fully connected network

configurations were trained on 17 consecutive frames of these

123 spectral features. In the case of convolutional networks, the

40 spectral channels were divided into 7 wider frequency bands,

which contained 7 mel channels and overlapped by 2 channels

group size layer size dev. error test error

2 2714 17.0% 19.5%

3 3204 16.9% 19.3%

4 3584 17.0% 19.3%

5 3890 17.2% 19.6%

Table 2: The effect of the group size on the performance of the

maxout network.

(following our earlier study [6]). Each convolutional neuron

operated on 17 frames of data coming from one spectral band.

For each band, the corresponding 7 mel-channel energy values

were extended with the frame-level energy and the derivatives

of all these features [1]. This in total gave an input vector of

17 · 8 · 3 = 408 features per spectral band.

All network configurations were trained using semi-batch

backpropagation, the batch size being 100. The training target

function to be optimized was the standard frame-level cross-

entropy cost. The initial learn rate was set to 0.001 and held

fixed while the error on the development set kept decreasing.

Afterwards it was halved after each iteration, and the training

was halted when the improvement in the error was smaller than

0.1% in two subsequent iterations.

5. Results and Discussion

5.1. Deep maxout networks

First we sought the best way of training fully connected deep

maxout networks, without any convolution being involved. For

comparison, a similar ReLU network served as the baseline.

This network contained 4 hidden layers with 2000 ReLU neu-

rons per layer [20]. In the first experiment, the ReLU units were

replaced by maxout units, using a group size of 2. As maxout

units give one output per group and not per neuron, we had to

increase the number of neurons per layer to 2714, in order to

keep the number of free parameters (weights) the same.

The results we got are listed in Table 1. The first two rows

show that maxout networks can indeed significantly outperform

ReLU units when using the same simple backpropagation train-

ing method. We should add, however, that in the case of the

maxout net we had to apply a large momentum (of 0.9) for

the good results, while the ReLU network showed no improve-

ment with the use of momentum. The relative error reduction

achieved by switching from ReLU to maxout units was 6.5% on

the development set and 2.4% on the core test set.

We also performed some experiments with the 2-norm

pooling method proposed by Zhang et al. [13]. Unfortunately,

we did not get better results with the 2-norm function than with

maxout. Our impression was that the normalization layer they

apply plays a critical role, and it was not part of our implemen-

tation. Also, we achieved reasonable results with the 2-norm

function only when applying discriminative pre-training (DPT)

[23]. This method builds the network layer by layer, running

the backpropagation training for a couple of epochs after the

addition of each layer. The third row of Table 1 shows the best

result we could obtain with 2-norm networks using DPT. Sur-

prisingly, while the frame error rate attained is much worse than

that of maxout, the phone error rates are practically the same.

Next, we wondered whether DPT would also improve the

maxout scores. As can be seen in the fourth row, it gave only a

slight decrease in the error rate on the development set, though

the improvement on the test set is notably larger. Compared to
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Figure 2: The effect of pooling size on the phone error rate.

the ReLU network, the relative error reduction with this model

is 8% on the development set and 5.8% on the test set.

Lastly, we tried to combine the good convergence property

of maxout with the smoother behavior of 2-norm. For this pur-

pose, during pre-training, we applied 2-norm pooling instead

of max-pooling for random training instances, with a probabil-

ity of q. We hoped that this stochastic addition of the ‘flavor’

of the smoother 2-norm function to the maxout target function

would help the training process avoid local minima. The best

results were obtained when setting q to 0.2. As the last row of

Table 1 shows, this mixed pre-training method achieved a much

better frame error rate than either maxout or 2-norm pretrain-

ing. Though the drop of frame error rate is not reflected in the

phone-level errors, we opted for using this pre-training method

in all the subsequent experiments.

Next, we experimented with varying the group size. We

were careful to keep the number of parameters the same, so

more neurons were allowed for larger group sizes. As Table

2 shows, we observed no significant changes in the error rate

on the development set, so we decided to use a group size of

2. Other researchers also found this group size to be the best

[10, 14, 12], with the exception of Zhang, who reported 10 to

be the best group size for 2-norm networks [13].

5.2. Convolutional deep maxout networks

In the next experiment, the lowest layer of our deep maxout net-

work was replaced by convolutional units. For this purpose, the

input was divided into 7 frequency bands, as was explained in

Section 4. To keep the number of parameters the same as it was

in the fully connected case, 756 convolutional maxout neurons

(with group size of 2) were assigned to the processing of each

band. The remaining 3 layers of the convolutional network con-

sisted of fully connected maxout neurons. For more details on

the convolutional structure see [6].

The experiments sought to answer two questions. First, just

as in the fully connected case, we wondered how much gain we

could obtain from switching from ReLU units to maxout units.

Second, as was explained earlier, our model executes the pool-

ing of the maxout groups and the convolutional outputs jointly,

in one step. Thus, we were interested to see how this joint pool-

ing performed when varying the convolutional pooling size r.

Fig. 2 shows the phone error rates obtained with various

pooling size values. The scores of a ReLU network of the same

structure and size are given as reference [6]. As can be seen, the

maxout network outperformed the ReLU network for all r val-

ues. They both attained the lowest error rate on the development

set at r = 5, but the scores are quite similar for all r values, for

both network types and data sets. Hence, the joint pooling ac-

tually worked just as well as the standard convolutional pooling

performed in the ReLU network.

Network type devel. set core test set

Hierarchical, ReLU 14.2% 17.6%

Hierarchical, maxout 14.0% 17.0%

Hierarchical, ReLU, dropout 13.9% 16.7%

Hierarchical, maxout, dropout 13.3% 16.5%

Table 3: Phone error rates obtained with the hierarchical model,

without and with dropout.

Compared to its ReLU counterpart, the maxout convolu-

tional network with r = 5 attained a 4.3% relative error rate

reduction on the development set and 2.5% on the test set. Com-

pared to the best performing fully connected maxout network of

Table 1, the convolutional structure brought a relative error re-

duction of about 8% for both the development and the test sets,

again justifying the superiority of convolutional networks over

standard fully connected nets.

5.3. Constructing a hierarchical model

In the last group of tests, the convolutional maxout network de-

scribed above was turned into a Veselý-style hierarchical model

[7, 8]. For this, a smaller version of the network was con-

structed, which processes 9 frames of data instead of 17 frames,

and its uppermost hidden layer is turned into a ‘bottleneck’ that

contains only 400 units. This network was extended by adding

two more hidden layers, which concatenate five output vectors

got from the bottleneck layer at five different positions, which

are five frames apart. This hierarchical construct lets us ex-

pand the time span of the model considerably (in this case to

29 frames) with only a small increase in the number of weights.

For more details on this technology, see our earlier article [8].

The results obtained with the hierarchical convolutional

model are shown in Table 3. The difference between the ReLU

and the maxout results was quite small, only 1.4% relative error

rate reduction was achieved on the development set, while an

error decrease of 3.4% was obtained on the core test set.

We also tried to train the two networks with the application

of the dropout method [24]. Dropout was shown to work nicely

with ReLU networks [18, 8, 5], and some researchers have al-

ready applied it in the training of maxout networks [12, 14]. We

found that the same dropout rate of 0.25 gave the best results for

both networks. As shown in Table 3, dropout yielded a some-

what smaller improvement in the case of the maxout network,

but this improvement is more balanced between the develop-

ment and the test sets. To our knowledge, the 16.5% we attained

is currently the lowest phone recognition error rate on TIMIT.

6. Conclusions and Future Work

Here, we investigated the possibility of building convolutional

networks from maxout neurons. What makes this approach in-

teresting is that the pooling operation of convolutional neurons

and maxout neurons are closely related. In our solution, the

two pooling procedures are executed jointly, in one step. The

results of the phone recognition tests on TIMIT revealed that

the proposed method works well. In summary, maxout units

decreased the error rate for each network configuration exam-

ined, and yielded relative error rate reductions of 2% to 6%,

compared to ReLU networks with the same size and structure.

In the future, we intend to examine more sophisticated pool-

ing functions such as stochastic pooling [14] and p-norm pool-

ing [13]. Also, we plan to extend the tests to larger databases to

see how the proposed method works on larger tasks.
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