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Kernel-Based Feature Extraction with a Speech
Technology Application
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Abstract—Kernel-based nonlinear feature extraction and
classification algorithms are a popular new research direction in
machine learning. This paper examines their applicability to the
classification of phonemes in a phonological awareness drilling
software package. We first give a concise overview of the nonlinear
feature extraction methods such as kernel principal component
analysis (KPCA), kernel independent component analysis (KICA),
kernel linear discriminant analysis (KLDA), and kernel springy
discriminant analysis (KSDA). The overview deals with all the
methods in a unified framework, regardless of whether they are
unsupervised or supervised. The effect of the transformations on
a subsequent classification is tested in combination with learning
algorithms such as Gaussian mixture modeling (GMM), artificial
neural nets (ANN), projection pursuit learning (PPL), decision
tree-based classification (C4.5), and support vector machines
(SVMs). We found, in most cases, that the transformations have a
beneficial effect on the classification performance. Furthermore,
the nonlinear supervised algorithms yielded the best results.

Index Terms—Discriminant analysis, independent component
analysis, kernel-based feature extraction, kernel-based methods,
kernel feature spaces, principal component analysis.

I. INTRODUCTION

AUTOMATIC speech recognition is dealt with by quite tra-
ditional statistical modeling techniques such as Gaussian

mixture modeling or artificial neural nets. In the last couple of
years, however, the theory of machine learning has developed
a wide variety of novel learning and classification algorithms.
In particular, the so-called kernel-based methods have recently
become a flourishing new research direction. Kernel-based clas-
sification and regression techniques, including the well-known
support vector machines (SVM), found their way into speech
recognition relatively slowly. This is probably because their ap-
plication to such large-scale tasks as speech recognition required
addressing both theoretical and practical problems. Recently,
however, more and more authors are turning their attention to
the application of SVM in speech recognition (see, e.g., [10],
[17], [46], and [50]).

Besides using kernel-based classifiers, an alternative option
is to use kernel-based technologies only to transform the fea-
ture space and leave the job of classification to more traditional
methods [39]. The goal of this paper is to study the applicability
of some of these methods to phoneme classification, making
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use of kernel-based feature extraction methods applied prior to
learning in order to improve classification rates. In essence, this
paper deals with kernel principal component analysis (KPCA)
[47], kernel independent component analysis (KICA) [3], [35],
kernel linear discriminant analysis (KLDA) [5], [34], [40], and
kernel springy discriminant analysis (KSDA) [36] techniques.
Their effect on classification performance is then tested in com-
bination with classifiers such as Gaussian mixture modeling
(GMM), artificial neural networks (ANNs), projection pursuit
learning (PPL), decision tree-based classification (C4.5), and
support vector machines (SVMs). The algorithms are applied to
two recognition tasks. One of them is real-time phoneme recog-
nition that, when combined with a real-time visualization of
the results, forms the basis of the “SpeechMaster” phonological
awareness drilling software developed by our team. The other
test set was the well-known TIMIT phone classification task.

The structure of the paper is as follows. First, we provide a
concise overview of the nonlinear feature extraction methods.
The overview is written so that it deals with all the methods in
a unified framework, regardless of whether they are unsuper-
vised or supervised. Furthermore, the traditional linear counter-
parts of the methods can be obtained as special cases of our ap-
proach. Afterwards, we present the goals of the “SpeechMaster”
software along with the phoneme classification problem that
arises. Besides the special vowel-recognition task on which the
“SpeechMaster” software is built, we also present test results
on the TIMIT database. In both cases, we first briefly describe
the acoustic features that were applied in the experiments and
also list the learning methods used. Then, in the final part of
the paper, we present the results of the experiments and dis-
cuss them from several aspects, focusing on the advantages and
drawbacks of each nonlinear feature extraction method.

II. KERNEL-BASED FEATURE EXTRACTION

Classification algorithms require that the objects to be clas-
sified are represented as points in a multidimensional feature
space. However, before executing a learning algorithm, addi-
tional vector space transformations may be applied on the ini-
tial features. The reason for doing this is twofold. First, they
can improve classification performance, and second, they can
reduce the dimensionality of the data. In the literature, some-
times both the choice of the initial features and their transfor-
mation are dealt with under the name “feature extraction.” To
avoid any misunderstanding, in this section, it will cover only
the latter, that is, the transformation of the initial feature set into
another one, which is hoped will yield a more efficient or, at
least, faster classification.
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The approach of feature extraction could be either linear or
nonlinear, but there is a technique (which is most topical nowa-
days) that is, in some sense, breaking down the barrier between
the two types. The key idea behind the kernel technique was
originally presented in [1] and was again applied in connection
with the general purpose SVM [8], [11], [49], [52], [53], which
was later followed by other kernel-based methods [3], [5], [34],
[35], [40], [45], [47], [48]. In the following, we summarize four
nonlinear feature extraction methods that may be derived using
the kernel-based nonlinearizations of the linear algorithms PCA,
ICA, LDA, and SDA. We do not present the linear techniques
separately because the nonlinear descriptions will be formalized
in such a way that, with a proper parametrization, they lead back
to the traditional linear methods. All methods will be dealt with
in a unified, concise form. We also represent the effects of these
transformations on artificial data sets via figures. In addition, we
always give references to sources where a detailed description
on the feature extraction technique in question can be found.
Our main aim is to help the reader gain a unified view of the
methods and get some ideas about their usage. First, we provide
a set of definitions. Then, we discuss the kernel idea, followed
by an explanation of each method one after the other. The sec-
tion ends with some remarks about how the number of required
calculations can be reduced by decimating the sample set.

A. Introduction

Without loss of generality, we will assume that as a realization
of multivariate random variables, there are -dimensional real
attribute vectors in a compact set over describing objects
in a certain domain and that we have a finite sample matrix

containing random observations. Let us
also assume that we have classes and an indicator function

(1)

where gives the class label of the sample . Let fur-
ther denote the number of vectors associated with label in the
sample data.1

Now, we continue with the definition of the kernel-based fea-
ture extraction and then outline the kernel idea.

The goal of feature extraction is to find a mapping
, which leads to a new set of features that are optimal ac-

cording to a given criterion. In the case of kernel-based feature
extraction, the mapping is nonlinear and has the following form:

(2)

where is a constant, real matrix, the function
is continuous, symmetric and positive definite (which is

called a Mercer kernel), is the sample matrix, and is
a short-hand notation for the vector .
As can be seen in (2), linear combinations of the base functions

give the components of the new feature
vector . The criterion [and hence the calculation that leads
to matrix in (2)] is different for each method, and the result
depends on the data set .

1The two types of feature extraction methods (supervised or unsupervised)
can be distinguished by whether they utilize an indicator function or not during
the computation of the transformation parameters.

Fig. 1. ”Kernel-idea.” The dot product in the kernel feature spaceF is defined
implicitly.

Based on Mercer’s theorem [53], if is a Mercer kernel, then
a dot product space necessarily exists with a mapping

(see Fig. 1) such that

(3)

Usually, is called the kernel feature space, and is the feature
map. At this point, we have two immediate consequences. When

is the identity, the function (the simple dot
product over the space ) is symmetric, continuous, and pos-
itive definite; therefore, it constitutes a proper Mercer kernel.
Going the other way, when applying a general Mercer kernel,
we can assume a space over which we perform dot product
calculations. This space and dot product calculations over it are
defined only implicitly via the kernel function itself. The space

and map may not be explicitly known. We need only define
the kernel function, which then ensures an implicit evaluation.
The construction of Mercer kernels, when such a mapping
exists, is a nontrivial problem, but there are some possible can-
didates available (cf. [13], [18], [32]). From the functions avail-
able, the three most popular are the polynomial kernel , the
Gaussian RBF kernel , and the rational quadratic kernel :

(4)

Let us suppose that we have chosen a specific kernel function
along with a proper feature map and a kernel feature space .
Then, the nonlinear mapping of (2) can be written as

...

...

In the following, we will denote the latter matrix by . Notice
here that is constant, and its rows contain linear combinations
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of the image of the data vectors in . This means that the trans-
formation is linear in the kernel feature space, but because the
feature map itself is nonlinear, we obtain a nonlinear transfor-
mation of the sample points of the initial feature space .

All the algorithms that we are going to present in the fol-
lowing are linear mappings in the kernel feature space, the row
vectors of matrix being obtained by optimizing a different ob-
jective function , say. What is common in each case is that
we will look for directions with large values of . Intuitively, if
larger values of indicate better directions and the row vectors
of need to be independent in certain ways, choosing stationary
points that have the largest function values is a reasonable
strategy. Obtaining the above stationary points of a general ob-
jective function is a difficult global optimization problem, but if

is defined by a Rayleigh quotient formula

(5)

the solution is easy and fast when formulated as a generalized
eigenvalue problem . Actually, this approach
offers a unified view of the feature extraction methods discussed
in this paper.

B. Kernel Principal Component Analysis

Principal component analysis (PCA) [29] is a ubiquitous un-
supervised technique for data analysis and dimension reduction.
To explain how its nonlinear version works [47], 2 let us first
choose a kernel function for which

holds for a mapping . It is well-known that PCA
looks for those directions of in which the variance of the data
is large. We will do exactly the same but in the kernel feature
space . For this, we define the objective function as

(6)

where is the covariance matrix of the image of the sample
:

(7)

Now, we define the Kernel-PCA transformation based on the
stationary points of (6), which are given as the eigenvectors of
the symmetric positive semidefinite matrix . However, since
this matrix is of the form

(8)

we can suppose the following equation holds during the analysis
of the stationary points:

(9)

2The derivation presented here differs slightly from the one originally pro-
posed by Schölkopf, but the result of the derivation is equivalent to the original.

We can arrive at this assumption in many ways, e.g., we can
decompose an arbitrary vector into vectors ,
where gives that component of , which falls in

, whereas gives the compo-
nent perpendicular to it. Since and
for the stationary points the eigenvalue-eigenvector equality

is satisfied, we find that the condition defined in (9)
(i.e., ) does not restrict generality.

Based on the above assumption the variational parameters of
can be the vector instead of

(10)

It is easy to see that

(11)

where is a Gram matrix,
is the unit matrix, and .

After differentiating (11) with respect to , we find that the
stationary points are the solution vectors of the general eigen-
value problem

(12)

which is equivalent to the problem

(13)

Although the matrix is not symmetric, its eigenvalues
are real and non-negative, and those eigenvectors that have pos-
itive eigenvalues are orthogonal. In fact, the best approach is to
solve the following symmetric eigenproblem, where the positive
eigenvalues and the corresponding eigenvectors are the same as
those obtained from (13)

(14)

Now, let the positive dominant eigenvalues of
be denoted by and the corre-

sponding eigenvectors be . Then, the matrix of
the transformation we need (cf. (2)) can be calculated like

(15)

The effect of KPCA is demonstrated in Fig. 2. The data set
of Fig. 2(a) was transformed using linear PCA, that is, KPCA
was performed using the kernel . The result is
shown in Fig. 2(b). Evidently, the algorithm found the direction
with the largest variance and chose it as the -axis of the trans-
formed data. This effect is also justified by the shape of distribu-
tion curves shown below the images. In a second experiment the
data set of Fig. 2(d) was transformed but, in this case, using the
rational quadratic kernel, which leads to a nonlinear transforma-
tion. The result is shown in Fig. 2(e). Examining the distribution
of the points along the -axis, one can see that the variance of
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Fig. 2. Typical behavior of KPCA and KICA. (a) and (d) show some artificial data sets before the transformation. (b) and (e) show the resulting distribution after
linear and nonlinear KPCA, respectively. (c) and (f) depict the results of a linear and nonlinear KICA. The distribution of the data points along the x-axis is shown
below each figure.

the data has significantly increased owing to the nonlinearity of
the method employed.

C. Kernel Independent Component Analysis

Independent component analysis [12], [15], [26]–[28] (ICA)
is a general-purpose statistical method that originally arose from
the study of blind source separation (BSS). Another applica-
tion of ICA is unsupervised feature extraction, where the aim
is to linearly transform the input data into uncorrelated com-
ponents, along which the distribution of the sample set is the
least Gaussian. The reason for this is that along these direc-
tions, the data is supposedly easier to classify. This is in con-
cordance with the most common speech modeling technique,
that is, fitting mixtures of Gaussians on each class. Obviously,
this assumes that the class distributions can be well approxi-
mated by Gaussian mixtures. ICA extends this by assuming that
the distribution when all classes are fused, on the contrary, is
not Gaussian; therefore, using non-Gaussianity as a heuristic for
unsupervised feature extraction will prefer those directions that
separate the classes.

For optimal selection of the independent directions, several
objective functions were defined using approximately equiva-
lent approaches. The goal of the ICA algorithm itself is to find
the optimum of these objective functions. There are many itera-

tive methods for performing ICA. Some of these require prepro-
cessing, i.e., centering and whitening, whereas others do not. In
general, experience shows that all these algorithms should con-
verge faster on centered and whitened data, even with those that
do not really require it.

Let us first examine how the centering and whitening prepro-
cessing steps can be performed in the kernel feature space. To
this end, let the inner product be implicitly defined by the kernel
function in with associated transformation .

Centering in . We shift the data with its
mean to obtain data

...

(16)

with a mean of .
Whitening in . The goal of this step is to transform the cen-

tered samples via an orthogonal transforma-
tion into vectors ,
where the covariance matrix is the unit
matrix. Since standard PCA [29]—just like its kernel-based
counterpart—transforms the covariance matrix into a diagonal
form, where the diagonal elements are the eigenvalues of the
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data covariance matrix , it only remains to
transform each diagonal element to 1. Based on this observation,
the required whitening transformation is obtained by slightly
modifying the formulas presented in the section on KPCA.
Now, if we assume that the eigenpairs of are

and , the transformation

matrix will take the form . If
is less than , a dimensionality reduction is employed.

After the nonlinear preprocessing, we can apply one of the
many linear ICA algorithms. We present here the FastICA algo-
rithm of Hyvärinen, for which centralization and whitening is a
prerequisite.

For the sake of simplicity, here, we will denote the prepro-
cessed data samples by . In this new linear space, we
are going to search for directions along which the distribution
of the data is the least Gaussian. To measure this criterion, we
introduce the following objective function:

(17)

where is a variable with zero mean and unit variance,
is an appropriate nonquadratic function, again denotes the

expectation value, and is a standardized Gaussian variable.
The following three choices of are conventionally used:

(18)

It should be mentioned here that in (17), the expectation value
of is a constant, its value only depending on the selected
function (e.g., ). The variable has a leptokurtic
distribution (a distribution with a high peak) if

, it is a mesokurtic variable if , whereas it
has platykurtic distribution (i.e., it is a flat-topped curve) when

. For leptokurtic independent components, the
optimal contrast function is one that grows slower than quadrat-
ically, whereas the optimal for platykurtic components grows
faster (cf. [28]). In Hyvärinen’s FastICA algorithm for selecting
a new direction , the following objective function is used:

(19)

which may be obtained by replacing in (17) with , the dot
product of the direction , and sample . FastICA is an approx-
imate Newton iteration procedure for the local optimization of
the function .

Before discussing the optimization problem, let us first ex-
amine the properties of the preprocessed data .

a) For every normalized vector the mean of
is set to zero, and its variance is

set to one. Actually, we need this since (17) requires that
should have a zero mean and variance of one; hence,

with the substitution , the projected data
must also have this property.

b) For any matrix , the covariance matrix of the trans-
formed preprocessed points will remain
a unit matrix if and only if is orthogonal since

(20)

After preprocessing, FastICA looks for a new orthogonal base
for the preprocessed data, where the values of the non-Gaus-

sianity measure for the base vectors are large. Note that since
the data remains whitened after an orthogonal transformation,
ICA can be considered an extension of PCA.

Now, we briefly outline how the FastICA algorithm works
(cf. [15], [27]). The input for this algorithm is the preprocessed
sample and the nonlinear function ,
whereas the output is the transformation matrix . The first-
and second-order derivatives of are denoted by and .

procedure FastICA ;
% initialization
let be a random matrix;

;
;

% approximate Newton iteration
While has not converged;
for to
let be the th raw vector of ;

;
end;

;
;

;
do
End procedure

In the pseudo-code, means a symmetric

decorrelation, where can be readily obtained
from its eigenvalue decomposition. If , then

is equal to . Finally, the expected
values required by the algorithm are calculated as the empirical
means of the preprocessed input samples in .

We should remark that in the discussion above, we nonlin-
earized only centering and whitening and not the consecutive
iterative FastICA algorithm. It would also be possible, as in ,
that the dot product could be nonlinearized with the kernel
method, but this would go outside our unified discussion based
on the Rayleigh quotient. Practically speaking, the Kernel Fas-
tICA method Kernel-Centering Kernel-Whitening iter-
ative process of the original FastICA. The transformation ma-
trix (cf. (2)) of KICA is , where represents centering
and whitening, whereas corresponds to the orthogonal matrix
produced by FastICA. Despite the fact that the second, optimiza-
tion phase for finding is not based on the Rayleigh quotient
approach, we feel that KICA, as a unique extension of KPCA,
can be the part of this review. More details on the family of the
KICA methods can be found in [3] and [34].
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To demonstrate the behavior of KICA, we return to the ar-
tificial data set in Fig. 2. We once again transformed the data
sets (a) and (a) but now with KICA. Fig. 2(c) shows the result
when using a linear kernel, whereas Fig. 2(f) shows the effect of
a rational quadratic kernel. When compared with KPCA, it can
be readily seen that although KPCA looks for directions with a
large variance, KICA prefers those directions with the least pos-
sible Gaussian distribution.

D. Kernel Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a traditional supervised
feature extraction method [16] that has proved to be one of the
most successful preprocessing techniques for classification. It
has long been used in speech recognition as well [4], [22], [51].
The goal of LDA is to find a new (not necessarily orthogonal)
basis for the data that provides the optimal separation between
classes. To present the steps of KLDA, we virtually follow the
discussion of its linear counterpart, but in this case, everything
is meant to happen implicitly in the kernel feature space .

Let us again suppose that a kernel function has been chosen
along with a feature map and a kernel feature space . In order
to define the transformation matrix of KLDA, we first define
the objective function , which depends not only on
the sample data but also on the indicator function owing to
the supervised nature of this method. Let us define

(21)

where is the between-class scatter matrix, whereas is the
within-class scatter matrix. Here, the between-class scatter ma-
trix shows the scatter of the class mean vectors around the
overall mean vector :

(22)

The within-class scatter matrix represents the weighted av-
erage scatter of the covariance matrices of the sample vectors
with the class label :

(23)

is large when its nominator is large and its denominator
is small or, equivalently, when in the kernel feature space ,
the within-class averages of the sample projected onto are far
from each other, and the variance of the classes is small. The
larger the value of , the farther the classes will be spaced,
and the smaller their spreads will be.

We may also suppose without loss of generality here that
holds during the search for the stationary

points of (21). With this assumption, after some algebraic re-
arrangement, we obtain the formula

(24)

where is the kernel matrix, , and

if
otherwise.

(25)

This means that (21) can be expressed as dot products
of and that the stationary points of this
equation can be computed using the real eigenvectors of

. Since, in general, is a positive
semidefinite matrix, it can be forced to be invertible if we add
a small positive constant to its diagonal, that is, we work with

instead of . This matrix is guaranteed to
be positive definite and, hence, should always be invertible.
This small act of cheating can have only a negligible effect
on the stationary points of (21). If we further assume that the
real eigenvectors with the largest real eigenvalues of

are , then the transformation
matrix (cf. (2)) will be .

The behavior of KLDA is illustrated in Fig. 3 in the two exam-
ples of (a) and (d). In both cases, the application of the exponen-
tial kernel resulted in a nonlinear transformation that minimized
the variance of the classes while giving the best spatial class sep-
aration at the same time. The results are shown in Fig. 3(b) and
(e), respectively. Noting the distribution of the classes along the

-axis, one can see that their separability has increased.

E. Kernel Springy Discriminant Analysis

As was shown in Section II-D, the KLDA criterion leads to a
nonsymmetric matrix, the eigenvectors of which are not neces-
sarily orthogonal. Furthermore, we had to apply the shifting of
the eigenspectrum to avoid numerical complications during in-
version. These issues give rise to the need for an objective func-
tion , which results in a supervised transformation and yields
similar results to KLDA but is orthogonal and avoids the numer-
ical problems mentioned.

Now, let the dot product be implicitly defined (see Fig. 1) by
the kernel function in the kernel feature space with associ-
ated transformation :

(26)

The name kernel springy discriminant analysis stems from the
utilization of a spring and antispring model, which involves
searching for directions with optimal potential energy using
attractive and repulsive forces. In our case, sample pairs in
each class are connected by springs, whereas those of different
classes are connected by antisprings. New features can be
easily extracted by taking the projection of a new point in those
directions having a small spread in each class, while different
classes are spaced out as much as possible. Let , which is
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Fig. 3. Effect of the supervised algorithms KLDA and KSDA. (a) and (d) depict artificial data sets. (b) and (e) show the resulting data sets after applying KLDA
on (a) and (d), respectively. (c) and (f) represent the KSDA-transformed versions of (a) and (d). The distributions of the classes along the x-axis is also shown
below the figures. In every case, the transformation applied was nonlinear.

the potential of the spring model along the direction in , be
defined by

(27)

where

if
otherwise

(28)

Naturally, the elements of matrix can be initialized with
values different from as well. Each element of the matrix
can be considered as a kind of spring quotient, and each can be
set to a different value for any pair of data points.

As before, we again suppose that the directions can be con-
structed as the linear combinations of the images of the data
points in . That is

(29)

where . To find the directions with
large potentials, let the objective function be defined by

(30)

It is easy to prove that is equal to the following Rayleigh
quotient formula:

(31)

where

(32)

Moreover, it is also straightforward to prove that (31) takes the
following form:

(33)

where is again the kernel matrix, and is a diagonal matrix
with the sum of each row of in the diagonal. After taking the
derivative of (33), it is readily seen that the stationary points
of can be obtained via an eigenanalysis of the following
symmetric eigenproblem:

(34)

If we assume that the dominant eigenvectors are ,
then the transformation matrix in (2) is defined by

.
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The effect of KSDA can again be visualized by transforming
the data sets of Fig. 3(a) and (d). While KLDA aims at
minimizing the within-class variance and maximizing the
between-class distance, KSDA does something similar but
based on within-class attractive and between-class repulsive
forces. The results presented in Fig. 3(c) and (f) have a clearly
separable class structure like those obtained using KLDA.

F. Reducing the Computational Cost

As we have already seen, all four methods lead to a (general-
ized) eigenproblem that involves finding the stationary points
of the objective function that is defined in the form of
a Rayleigh quotient. During optimalization, the vector con-
sists of the linear combinations of the images of the data points

in the kernel feature space. Without doubt, if the amount
of data points is large, then the -sized matrices that
are needed for constructing —hence for solving the eigen-
problem—can be so big that they pose serious computational
and memory management problems.

Fortunately, in most practical problems, good directions
can be found even if we use only data points instead
of when constructing the linear combinations. Let us denote
the indices of these samples by . It is
easy to check that by just using these data items, the formulas we
obtain for the function can be expressed by the following:

KPCA KICA (35)

KLDA (36)

KSDA (37)

where is a vector of dimension , is the matrix constructed
from the columns of the kernel matrix , and is
the minor matrix determined by the rows and columns of with
indices . Based on these formulas, the eigenproblems
to be solved are now reduced to a matrix of size . In practice,
this matrix usually has no more than a couple of dozen or a
couple of hundred rows and columns.

Of course, a key issue here is the strategy for choosing the
indices. Numerous selection strategies are possible from the

random selection to the exhaustive search approach. In this
paper, we restrict our investigations to two different selection
techniques. The first one is the simplest case when we chose
samples randomly, where, in the second, we employed the
kernel variant of the sequential forward floating selection
(SFFS [43]) method with the LDA optimization criterion [37].

One more issue occurs that we need to discuss here. It is well
known that for the linear feature extraction methods PCA, ICA,
LDA, and SDA, the size of the problem is that of the original fea-
ture space. However, it depends on the number of the samples in
the kernel counterparts. Despite these differences, if the kernel
function is defined by the simple dot product and
the feature map is realized by the identity , then the
kernel formulation of the methods (dual representation) are un-
doubtedly equivalent to the corresponding linear cases (primal

representation). Obviously, as in practice, the feature space is of
lower dimension, and it is worth using the linear methods when
the simple dot product kernel is chosen. Now, we show that the
nonlinear formulae obtained by this kernel function are readily
traced back to the linear ones. Let us notice that in this case, the
kernel matrix is equal to ; thus

PCA ICA

(38)

LDA

(39)

SDA

(40)

where the vector , and matrices ,
, and are of the lower di-

mension.

III. EXPERIMENT 1: CLASSIFICATION OF

STEADY-STATE VOWELS

A. Application: Phonological Awareness Teaching System

The “SpeechMaster” software developed by our team seeks to
apply speech recognition technology to speech therapy and the
teaching of reading. The role of speech recognition is to provide
a visual phonetic feedback. In the first case, it is intended to sup-
plement the missing auditive feedback of the hearing impaired,
whereas in the case of the latter, it is to reinforce the correct as-
sociation between the phoneme-grapheme pairs. With the aid of
a computer, children can practice without the need for the con-
tinuous presence of the teacher. This is very important because
the therapy of the hearing impaired requires a long and tedious
fixation phase. Furthermore, experience shows that most chil-
dren prefer computer exercises to conventional drills.

Both applications require a real-time response from the
system in the form of an easily comprehensible visual feed-
back. With the simplest display setting, feedback is given by
means of flickering letters, their identity and brightness being
adjusted to the speech recognizer’s output. Fig. 4 shows the
user interface of “SpeechMaster” in the teaching reading and
the speech therapy applications, respectively. As one can see, in
the first case, the flickering letter is positioned over a traditional
picture for associating the word and word sound, whereas in
the latter case, it is combined with a web camera image, which
helps the impaired student learn the proper articulator positions.

B. Evaluation Domain

For training and testing purposes, we recorded samples from
160 children aged between 6 and 8. The ratio of girls and boys
was 50%–50%.The speech signals were recorded and stored at
a sampling rate of 22 050 Hz in 16-bit quality. Each speaker
uttered all the Hungarian vowels, one after the other, separated



2258 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 8, AUGUST 2004

Fig. 4. Screenshots of the “SpeechMaster” phonological awareness teaching system. (a) Teaching reading part. (b) Speech therapy part.

TABLE I
RECOGNITION ERRORS ON EACH FEATURE SET AS A FUNCTION OF THE TRANSFORMATION AND CLASSIFICATION APPLIED

by a short pause. Since we decided not to discriminate their long
and short versions, we only worked with nine vowels altogether.
The recordings were divided into a train and a test set in a ratio
of 50%–50%.

C. Acoustic Features

There are numerous methods for obtaining representative fea-
ture vectors from speech data [24], but their common property
is that they are all extracted from 20–30 ms chunks or “frames”
of the signal in 5–10-ms time steps. The simplest possible fea-
ture set consists of the so-called bark-scaled filterbank log-en-
ergies (FBLEs). This means that the signal is decomposed with
a special filterbank, and the energies in these filters are used
to parameterize speech on a frame-by-frame basis. In our tests,
the filters were approximated via Fourier analysis with a tri-
angular weighting, as described in [24]. Altogether, 24 filters
were necessary to cover the frequency range from 0 to 11 025
Hz. Although the resulting log-energy values are usually sent
through a cosine transform to obtain the well-known mel-fre-
quency cepstral coefficients, we abandoned it for two reasons:
1) The transforms we were going to apply have a similar decor-

relating effect, and 2) we observed earlier that the learners we
work with—apart from GMM—are not sensitive to feature cor-
relation; consequently, the cosine transform would bring no sig-
nificant improvement [33]. Furthermore, as the data consisted
of steady-state vowels, we found in a pilot test that adding the
usual delta and delta-delta features could only marginally im-
prove the results. Therefore, only the 24 filter bank log-energies
formed this feature set, which were always extracted from the
center frame of the vowels. Although it would be possible to
stack several neighboring frames to form a larger feature set, be-
cause of the special steady-state nature of the vowel data used,
we saw no point in doing so.

The filterbank log-energies seem to be a proper feature set
for a general speech recognition task as their spectro-temporal
modulation is supposed to carry all the speech information [41],
but in the special task of classifying vowels pronounced in iso-
lation, it is only the gross spectral shape that carries the phonetic
information. More precisely, it is known from phonetics that the
spectral peaks (called formants) code the identity of vowels [41].
To estimate the formants, we implemented a simple algorithm
that calculates the gravity centers and the variance of the mass in
certain frequency bands [2]. The frequency bands are chosen so
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that they cover the possible place of the first, second, and third
formants. This resulted in six new features altogether.

A more sophisticated option for the analysis of the spectral
shape would be to apply some kind of auditory model [21]. Un-
fortunately, most of these models are too slow for a real-time
application. For this reason, we experimented with the in-syn-
chrony-bands-spectrum of Ghitza [19] because it is computa-
tionally simple and attempts to model the dominance relations
of the spectral components. The model analyzes the signal using
a filterbank that is approximated by weighting the output of an
FFT—quite similar to the FBLE analysis. In this case, however,
the output is not the total energy of the filter but the frequency of
the component that has the maximal energy; therefore, it domi-
nates the given frequency band. Obviously, the output resulting
from this analysis contains no information about the energies in
the filters but only about their relative dominance. Hence, we
supposed that this feature set complements the FBLE features
in a certain sense.

D. Learners

Describing the mathematical background of the learning al-
gorithms applied is beyond the scope of this paper. Besides,
we believe that they are familiar to those who are acquainted
with pattern recognition. Therefore, in the following, we specify
only the parameters and the training algorithms used with each
learner, respectively.

1) Gaussian Mixture Modeling: The most widely used
method for modeling the class-conditional (continuous) dis-
tribution of the features is to approximate it by means of a
weighted sum of Gaussians [14]. Traditionally, the parameters
are optimized according to the maximum likelihood (ML) crite-
rion, using the expectation-maximization (EM) algorithm. It is
well known, however, especially in the speech community, that
maximum likelihood training is not optimal from a discrimina-
tion point of view as it disregards the competing classes. Several
alternatives have been proposed, such as maximum mutual
information (MMI) [42], [54] or minimum classification error
(MCE) criteria [30], [31]. Although these alternative training
methods can significantly boost the classification performance,
the increased computational requirements—especially when
embedded in a hidden Markov model (HMM)—seems to be a
deterrent to their widespread usage. Here, we will utilize the
EM algorithm with the following setup. As EM is an iterative
technique, it requires a proper initialization of the parameters.
To find a good starting parameter set, we applied -means
clustering [16]. Since -means clustering again only guaran-
teed finding a local optimum, we ran it 15 times with random
parameters and used the one with the highest log-likelihood
to initialize the EM algorithm. After experimenting, the best
value for the number of mixtures was found to be 3. In all
cases, the covariance matrices were forced to be diagonal.

2) Artificial Neural Networks: Since it was realized that
under proper conditions, ANNs can model the class posteriors
[7], neural nets are becoming evermore popular in the speech
recognition community. In the ANN experiments, we used the
most common feed-forward multilayer perceptron network
with the backpropagation learning rule. The number of neurons

in the hidden layer was set at 18 in each experiment (this value
was chosen empirically, based on preliminary experiments).
Training was stopped based on the cross-validation of 15% of
the training data.

3) Projection Pursuit Learning: Projection pursuit learning
is a relatively little-known modeling technique. It can be viewed
as a neural net where the rigid sigmoid function is replaced by an
interpolating polynomial. With this modification, the represen-
tation power of the model is increased, so fewer units are nec-
essary. Moreover, there is no need for additional hidden layers;
one layer plus a second layer with linear combinations will suf-
fice. During learning, the model looks for directions in which
the projection of the data points can be well approximated by its
polynomials; thus, the mean square error will have the smallest
value (hence the name “projection pursuit”). Our implementa-
tion follows the paper of [25]. In each experiment, a model with
eight projections and a fifth-order polynomial was applied.

4) Support Vector Machines: The SVM is a classifier algo-
rithm that is based on the same kernel idea that we presented ear-
lier. It first maps the data points into a high-dimensional feature
space by applying some kernel function. Then, assuming that
the data points have become easily separable in the kernel-space,
it performs linear classifications to separate the classes. A linear
hyperplane is chosen with a maximal margin. For further details
on SVMs, see [53]. In all the experiments with SVMs, the radial
basis kernel function was applied.

E. Experimental Setup

In the experiments, five feature sets were constructed from the
initial acoustic features, as described in Section III-B. Set1 con-
tained the 24 FBLE features. In Set2, we combined Set1 with
the gravity center features; therefore, Set2 contained 30 mea-
surements. Set3 was composed of the 24 SBS features, whereas
in Set4, we combined the FBLE and SBS sets. Last, in Set5, we
added all the FBLE, SBS, and gravity center features, thus ob-
taining a set of 54 values.

With regard to the transformations, in every case, we kept
only the first eight components. We performed this severe di-
mension reduction in order to show that when combined with
the transformations, the classifiers can yield the same scores in
spite of the reduced feature set. To study the effects of nonlin-
earity, the linear version of each transformation was also used
on each feature set. To obtain a sparse data representation for the
kernel methods, we reduced the number of data points to 200 by
applying the SFFS selection technique discussed earlier. Prelim-
inary experiments showed that using more data would have no
significant effect on the results.

In the classification experiments, every transformation was
combined with every classifier on every feature set. This
resulted in the large table of Table I. In the header of the table,
PCA, ICA, LDA, and SDA stand for the linear transformations
(i.e., the kernel was used), whereas KPCA, KICA, KLDA,
and KSDA stand for the nonlinear transformations (with an
exponential kernel), respectively. The numbers shown are the
recognition errors on the test data. The number in parenthesis
denotes the number of features preserved after transformation.
The best scores of each set are given in bold.



2260 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 8, AUGUST 2004

F. Results and Discussion

Upon inspecting the results, the first thing one notices is that
the SBS feature set (Set3) did about twice as badly as the other
sets, no matter what transformation or classifier was tried. When
combined with the FBLE features (Set1), both the gravity center
and the SBS features brought some improvement, but this im-
provement is quite small and varies from method to method.

When focusing on the performance of the classifiers, ANN,
PPL, and SVM yielded very similar results. They, however, con-
sistently outperformed GMM, which is the method most com-
monly used in speech technology today. First, this can be at-
tributed to the fact that the functions that a GMM (with diagonal
covariances) is able to represent are more restricted in shape
than those of ANN or PPL. Second, it is a consequence of mod-
eling the classes separately, rather than in the case of the other
three classifiers, that optimize a discriminative error function.

With regard to the transformations, an important observation
is that after the transformations, the classification scores did not
get worse compared with the classifications when no transfor-
mation was applied. This is so in spite of the dimension reduc-
tion, which shows that the features are highly redundant. Re-
moving this redundancy by means of a transformation can make
the classification more robust and, of course, faster.

Comparing the linear and the kernel-based algorithms, there
is a slight preference toward the supervised transformations
rather than the unsupervised ones. Similarly, the nonlinear
transforms yielded somewhat better scores than the linear
ones. The best transformation-classifier combination, however,
varies from set to set. This warns us that no such broad claim
can really be made about one transformation being superior to
the others. This is always dependent on the feature set and the
classifier. This is, of course, in accordance with the “no free
lunch” theorem, which claims that for different learning tasks,
different inductive bias can be beneficial [14].

Finally, we should make some general remarks. First of all,
we must emphasize that both the transformations and the clas-
sifiers have quite a few adjustable parameters, and to examine
all parameter combinations is practically impossible. Changing
some of these parameters can sometimes have a significant ef-
fect on the classification scores. Keeping this (and the no-free-
lunch theorem) in mind, our goal in this paper was to show that
the nonlinear supervised transformations have the tendency to
perform better (with any given classifier) than the linear and/or
unsupervised methods. The results here seem to justify our hy-
pothesis.

IV. EXPERIMENT 2: TIMIT PHONE CLASSIFICATION

A. Evaluation Domain

In the vowel experiments, the database, the number of
features, and the number of classes were all smaller than in a
common speech recognition task. To assess the applicability
of the algorithms to larger scale problems, we also ran phone
classification tests on the TIMIT database. The train and test
sentences were chosen as usual, that is, 3696 “sx” and “si”
sentences formed the train set (142 909 phone instances), and
the complete test set (1344 “si” and “sx” sentences) were used

for testing (51681 phone instances). The phone labels were
fused into 39 classes, according to [38].

B. Acoustic Features

For the frame-based description of the signals, we again used
the bark-scaled filterbank log-energies. Twenty two filters were
applied to cover the 0–8000-Hz frequency range of the TIMIT
recordings.

Because the phonetic segments of the corpus are composed
of a varying number of frames, an additional step was required
to make them tractable for the transformations and learners, as
these need all segments to be represented by the same number
of features. For this, we applied the very simple strategy of di-
viding each segment into three thirds and averaging the filter-
bank energies over these subsegments (from a signal processing
view this means a nonuniform smoothing and resampling). This
method was popularized mainly in the SUMMIT system [20]
but was also successfully applied by others as well [10]. To
allow the learner to model the observation context at least to
a certain level, additional average filterbank energies were cal-
culated at the beginning and end of the segments. For this aim,
50–50 ms intervals were considered on both sides.

Besides the resulting energy-based features per
segment, the length of the phone was also utilized. Furthermore,
similar to the usual frame-based description strategies, we found
that derivative-like features can be very useful—but, in our case,
extracted only at the segment boundaries. These were calcu-
lated by RASTA filtering the energy trajectories and then simply
taking the frame-based differences at the boundaries. The role
of RASTA filtering is to smooth the trajectories by removing
those modulation frequency components that are perceptually
not important [23]. In preliminary experiments, we have found
that it is unnecessary to calculate these delta-features in every
bark-wide frequency channel. Rather, we have concluded that
it is enough to extract them from fewer but wider frequency
bands (this idea was in fact motivated by physiological results
on the tuning curves of cochlear nucleus onset cells). Accord-
ingly, only four six-bark wide channels were used to calculate
the delta features, altogether resulting in eight of them (4–4 at
each of the boundaries).

Finally, we have observed that smoothing over the segment
thirds can sometimes remove important information, especially
when working with long phone instances. To alleviate this, we
extended our feature set with the variances of the energies calcu-
lated over the segments. These were again calculated only from
the four wide bands described above. Altogether, 123 segmental
features were extracted from every phone instance. To justify
the correctness of our representation, we ran some preliminary
classification tests, and the results were very close to those of
others using a similar feature extraction technique [10], [20].

C. Learners

The TIMIT data set is much bigger than our vowel database.
Consequently, we had no capacity to test every combination of
the classifiers and learners, as we did in the case of the vowel
data. Thus, we decided to restrict ourselves to two classifiers
only. ANN was chosen because of its consistently good perfor-
mance and relatively small training time. The other classifier
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was selected based on the following rationale. The main aim of
transforming the features space is to rearrange the data points
so that they become more easily modelable by the subsequent
learner. In accordance with this, the transforms must bring the
most improvement when applied prior to a learner with a rela-
tively small representation power. Therefore, as the second clas-
sifier, we chose C4.5. This is a well-known classifier in machine
learning, and when trained on numerical data, it has a very re-
stricted representation technique.

1) Artificial Neural Networks: In all the experiments, the
ANN had 38 inputs and 300 neurons in the hidden layer.
Training was stopped based on cross-validation over 15% of
the training data.

2) C4.5: C4.5 is a very well-known and widely used clas-
sifier in the machine learning community [44]. For those who
prefer a statistical view, very similar learning schemes can be
found under the name Classification and Regression Trees [9].
This method builds a tree-based representation from the data
and was originally invented with nominal features in mind. The
algorithm was, however, extended for the case of numerical
features. In this case, the algorithm decomposes the feature
space into rectangular blocks by means of axis-wise hyper-
planes. The hypercubes are iteratively decomposed into smaller
and smaller ones, according to an entropy-based tree-building
rule. This hashing of the feature space can be stopped by
many possible criterions. Finally, class labels are attached to
each hyperbox, but posterior probability estimations are also
easily attainable based on frequency counts. Obviously, the
limited representation power of the model is caused both by the
axis-wise restriction on the hyperplanes and the step-like look
of the resulting probability estimations. In the experiments,
we used the original implementation of Quinlan. During tree
building, the minimum number of data points per leave was set
to 24. The default parameters were used in every other respect.

D. Experimental Setup

Both the ANN and C4.5 classifiers were combined with each
transformation. In the case of the kernel algorithms, we always
used the Gaussian RBF kernel [see (4)]. The number of features
extracted by the transformations was always set to 38, that is,
the number of classes minus one. This value was chosen be-
cause LDA cannot return any more components (without tricks
like splitting each class into subclasses), and to keep the results
comparable, we used the same number of features for the other
transformations as well. With regard to sparse data representa-
tion, because of the large size of the database, we could not apply
the SFFS technique (as its memory requirement is a quadratic
function of the database size). Therefore, we decided to select
the data points randomly, starting from 100 points, and itera-
tively adding further sets of 100 points. This was done in order
to see how the number of points affected performance.

We were also interested in whether the choice of the con-
trast function of ICA influences its class separation abilities.
To this end, to learn more about this, we performed tests with
all three contrast functions listed in (18). Both linear ICA and
Kernel-ICA (with an RBF kernel) were tried with all three con-
trast functions. The results showed that there were only small
differences, but on the TIMIT data, the contrast function

Fig. 5. Classification error as a function of the number of points kept in the
sparse representation.

TABLE II
RECOGNITION ERRORS ON TIMIT

seemed to behave the best. In the rest of the test, we always
worked with this contrast function.

E. Results and Discussion

The results of iteratively increasing the number of data points
are plotted in Fig. 5. On every set, Kernel-LDA was applied,
with a subsequent ANN and C4.5 learning. The diagram shows
how the classification error changes when the number of data
is increased with a step size of 100. Clearly, the improvement
is more dramatic for the C4.5 than for the ANN. In both cases,
there was no significant improvement beyond a sample size of
600. In the following experiments, we always used this set of
600 points in the kernel-based tests.

The classification errors (of the (A) linear and (B) nonlinear
methods) are summarized in Table II. Independent of the
learner applied, we can say that the supervised algorithms
performed better than the unsupervised ones and that the
kernel-based methods outperformed their linear counterparts.
The differences are more significant in the case of the C4.5
learner than in the case of ANN. This is obviously because
of the flexibility of ANN representation, compared with the
axis-wise rigid separation hyperplanes of C4.5.

V. CONCLUSIONS AND FUTURE WORK

The main purpose of this paper was to compare several clas-
sification and transformation methods applied to phoneme clas-
sification. The goal of applying a transformation can be dimen-
sion reduction, improvement of the classification scores, or in-
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creasing the robustness of the learning by removing the noisy
and redundant features.

We found that nonlinear transformations in general lead to
better classification than the nonlinear ones and, thus, are a
promising new direction for research. We also found that the
supervised transformations are usually better than the unsuper-
vised ones. We think that it would be worth looking for other su-
pervised techniques that could be constructed in a similar way to
the SDA or LDA technique. These transformations greatly im-
proved our phonological awareness teaching system by offering
a robust and reliable real-time phoneme classification. They also
result in increased performance on the TIMIT data.

Finally, we should mention that finding the optimal param-
eters both for the transformations and the classifiers is quite
a difficult problem. In particular, the parameters of the trans-
formation and the subsequent learner are optimized separately
at present. A combined optimization should probably produce
better results, and there are already promising results in this di-
rection in the literature [6]. Hence, we plan to investigate pa-
rameter tuning and combined optimization.
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