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Abstract. Here, we present a data augmentation method that improves
the robustness of convolutional neural network-based speech recognizers
to additive noise. The proposed technique has its roots in the input
dropout method because it discards a subset of the input features. How-
ever, instead of doing this in a completely random fashion, we introduce
two simple heuristics that select the less reliable components of the spec-
trum of the speech signal as candidates for dropout. The first heuristic
retains spectro-temporal maxima, while the second is based on a crude
estimation of spectral dominance. The selected components are always
retained, while the dropout step discards or retains the unselected ones
in a probabilistic manner. Due to the randomness involved in dropout,
the whole process may be interpreted as a data augmentation method
that perturbs the data by creating new data instances from the existing
ones on the fly. We evaluated the method on the Aurora-4 corpus just
using the clean training data set, and we got relative word error rate
reductions between 22% and 25%.
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1 Introduction

In the context of machine learning, data augmentation refers to methods that
seek to increase the quantity of training data. In the field of speech recognition,
some authors use a broad definition that also interprets the involvement of unsu-
pervised and other-language data as data augmentation [29]. Here, however, we
focus on the stricter, and more usual definition where the augmented training
data is obtained by artificial transformations and perturbations of the original
data set. The general purpose of data augmentation is to increase the amount
of training data, and thus alleviate the problems related to overfitting in a
c© Springer Nature Switzerland AG 2018
A. Karpov et al. (Eds.): SPECOM 2018, LNAI 11096, pp. 697–706, 2018.
https://doi.org/10.1007/978-3-319-99579-3_71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99579-3_71&domain=pdf


698 L. Tóth et al.

low-resource scenario [21,29]. However, if we know that our training data under-
represents the variance of real-life data from a certain aspect, then we can apply
a dedicated transformation that perturbs the data with respect to that given
parameter. Jaitly and Hinton applied vocal tract length perturbation (VTLP)
to decrease the sensitivity of the recognizer to speaker characteristics [20]. A
more general form of elastic spectral distortion was proposed by Kanda et al.
with a similar goal [21]. VTLP was applied by several other authors for large
vocabulary recognition tasks as well [8,29]. Ko et al. manipulated the speed of
speech signals, and in spite of the simplicity of this technique, they obtained
significant gains on large vocabulary tasks [22]. In another paper, the same team
simulated reverberant conditions in a far-field task using data augmentation [23].
Hartmann et al. applied noise addition in combination with speed and speaker-
based perturbations [13]. Some recent papers also used a combination of the
data augmentation methods discussed above [17,28].

In this study, we apply data augmentation in the framework of convolutional
neural networks (CNNs), and our goal is to handle additive noise. In such cases,
a reasonable strategy would be to augment the training data by adding noise to
it. Optimally, that would require some sort of prior knowledge about the type
of noise. Otherwise, the best one could do is to add various types of artificial
or real-life noises with various signal-to-noise ratios [17]. However, our modeling
assumption here is that we do not have samples of the actual noise. In accord
with this, we will train our models using only clean training data, and we consider
the training scenario that makes use of noisy samples as well to be a different
task.

Our data augmentation approach is motivated be the observation that
data augmentation and dropout are closely related techniques [5]. The dropout
method increases the robustness of a deep neural network by randomly discard-
ing neurons during training, thus forcing them to rely on each other to a lesser
extent. Dropout can be applied to the input of the network as well, which in
the general case corresponds to discarding input components in a total random
fashion [15]. While it is hard to recommend any better dropout strategy for a
general machine learning task, but in the case of speech recognition we do have
some prior knowledge about the role of the various spectro-temporal input fea-
tures. Hence, instead of randomly choosing the dropped features as usual, here
we propose to discard those input values that we assume to be more vulnerable
to noise. We introduce two perceptually motivated strategies to select the noise-
robust components of the mel-spectral input representation of our CNN. One of
these simply retains the spectro-temporal maxima, as spectral peaks are known
to be essential for speech intelligibility [14]. The other heuristic looks for spec-
trally dominant components, and we expect it to retain formant-like informa-
tion [11]. The proposed dropout scheme retains the input components suggested
by the heuristic, while it discards or keeps the remaining ones with a predefined
probability. Hence, instead of adding noise, we perturb the data by discarding
those spectral pixels that we assume to be noisy. The stochasticity of dropout
guarantees the variability of the artificially generated data. The augmentation
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process is performed online for the actual batch of training data, and requires
only negligible additional computation.

Of course, lot of papers apply some sort of spectral subtraction or spectral
peak selection to increase noise robustness (e.g. [10,19,25]). The key difference is
that these solutions typically apply the same (usually signal processing-based)
method during both training and testing, while in our case the spectrum is
manipulated only in the training phase. That is, any performance gain on the
test data will not be a direct result of the input processing method, but will rather
be due to the network that distilled some extra knowledge from the additional
samples created during data augmentation.

2 Perceptually Inspired Data Augmentation

The input of our CNN is a standard mel-spectral time-frequency representa-
tion [1,30], which we call the FBANK features. We used 42 filterbanks spanning
the full frequency range, a 25 msec frame length, and a 10 msec frame shift. The
adjacent bands were grouped to form wider channels, which are processed by
separate sets of convolutional neurons in the CNN. We formed 9 such channels
each covering 9 mel-bands, with an overlap of 5 bands. As the network processes
9 neighboring frames as one block of input data, this means that the convolu-
tional filters operate on 9 × 9 spectro-temporal patches. More implementation
details about our CNN can be found in our earlier articles [24,32].

To increase the robustness of the network to additive noise, one standard
augmentation approach is to perturb the training set by adding noise to it.
Here, without prior knowledge about the noise, the best we could do would
be to perform the noise injection using random noise. Instead of this, our pro-
posed augmentation strategy relies on the very simple assumption that spectral
peaks are less vulnerable to additive noise. Furthermore, we exploit the find-
ing that data augmentation and dropout are two closely related techniques [5].
Combining these two observations, we propose an augmentation strategy that
resembles input dropout in the sense that it randomly deletes a subset of the
input features. However, the selection of the dropped pixels is not completely
random, but is governed by a perceptually motivated heuristic. This heuristic
labels each component of the actual block of input (i.e. 9 × 9 spectro-temporal
features) as ‘vulnerable’ or ‘not vulnerable’. While this decision is not proba-
bilistic, preserving the randomness of dropout is crucial for the variability of the
generated data. Here, we introduce randomness by either deleting or retaining
all vulnerable pixels with probability p.

2.1 Strategy A

We shall assume that our training data consists of clean recordings, and we
seek strategies to select those spectral components that are presumably the least
affected by noise. By retaining these parts and randomly dropping the rest during
training, we force the network to focus on the more reliable components.
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Our first strategy exploits the simple fact that spectral peaks are less sensi-
tive to additive noise than spectral valleys. It is also well known that the spectral
peaks carry the bulk of information required for speech intelligibility [14]. Hence,
our first strategy simply retains those input values that have the highest ampli-
tude. We experimented with preserving just 10% or 20% of the components from
each 9×9 spectro-temporal block. In our detailed evaluation, we decided to work
with 10% for two reasons. First, it gave us slightly better results; and second,
this way the number of features retained was about the same as that for our
second strategy (see below).

2.2 Strategy B

Spectral masking plays a crucial role in human speech perception [27]. Masking
tells us that some spectral components may be discarded, and this is heavily
exploited by low-bitrate speech coding algorithms (e.g. [31,33]). Moreover, there
is psychoacoustic evidence that speech features are distributed over spectral
bands as wide as one octave [3]. In vowel perception, formant integration over
3.5-4 Bark wide bands has been observed [7]. Although the size of our spectro-
temporal windows was tuned experimentally, their height of 9 mel-filters roughly
coincides with the values mentioned above (the distance between the centers of
our mel-filters is about 0.5 Bark). Based on this, our second strategy imitated
this spectral dominance effect by just keeping the highest-amplitude component
in each column of the 9× 9 spectro-temporal windows. With this approach, the
9 windows that were used to cover the whole frequency range retained exactly
9 spectral components at each time instance. As a comparison, the low-bitrate
speech coder of Wan et al. retains 8 spectral lines per frame [33]. This coder
applies the In-Synchrony-Bands-Spectrum (SBS) auditory model of Ghitza to
select the spectral components to be preserved [11]. Although we could have

Fig. 1. An illustration of the result of data augmentation strategies A and B for a
formant and for a burst.
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applied a more sophisticated auditory model here, we first wanted to prove that
the concept is viable, and leave the use of auditory models for future refinement.

Figure 1 shows two examples of what is retained from a local spectro-temporal
block after being processed by the two different strategies. As the first exam-
ple, we chose a position where the mel-spectrogram shows a clearly observable
formant movement. In this case, the spectral dominance-based method (Strat-
egy B) nicely follows the track of the formant, while Strategy A results in a
thicker, but not continuous line. In the second example the window is fitted on a
burst. In this case the output of strategy A is much closer to what our intuition
suggests as optimal. Later, in Sect. 4, we will see experimentally which strategy
proves to be better in practice.

2.3 CNN Training with Online Data Augmentation

The generation of the augmented samples is integrated into the training process
in an online manner. After reading in the next batch of training data, we first
decide whether to perform data augmentation on all the data vectors within
the given batch or leave it unaltered. This is similar to a modified version of
dropout which applies the same dropout mask within a given mini-batch [12].
The decision is made in a random manner, and the probability that the actual
batch should be transformed will be denoted by p. Next, we decide on the num-
ber of the convolutional channels to be modified. For this, we generate another
random number in the range of 1 to N (where N = 9 equals the total number of
channels). Lastly, if p selected the actual batch for modification, then we perform
the spectral manipulation (Strategy A or Strategy B) on N randomly chosen
spectro-temporal input windows. The optimal values for the parameters p and
N will be found experimentally later on.

Data augmentation by definition means that the augmented training set con-
tains more data instances than the original one. In our implementation, gener-
ating more instances corresponds simply to let the algorithm perform more iter-
ations through the data. Thanks to the stochastic nature of the augmentation
procedure, the risk of overfitting the training set is much smaller than for the
original data set. In spite of the assumed advantage of allowing more iterations,
here in the experiments we did not increase the number of training steps, which
can be interpreted as augmenting the data set, and then downsampling it to
the original size. While this resulted in a slight performance loss, this way the
time cost of the training remained the same as before, so we can claim that our
proposed technique has no or only negligible processing time overhead.

3 Experimental Set-Up

We evaluated the proposed method on the Aurora-4 database [16]. The test set of
Aurora-4 consists of 4620 utterances, with a subset recorded using a Sennheiser
close-talking microphone, and a subset recorded using a set of secondary micro-
phones. Both of these subsets contain a clean subset and one consisting of the
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noise-corrupted versions of the same utterances. The final subsets are called test
set A (clean recordings with the Sennheiser microphone), set B (noise-corrupted
version of set A), set C (clean recordings with secondary microphones), and set
D (noise-corrupted version of set C). The database contains two training sets,
namely the clean set and the multi-condition set, both consisting of 7138 utter-
ances. The multi-condition set contains samples from the secondary microphones
and the various types of noisy conditions, while the clean training set consists
of only the clean training data from the Sennheiser microphone. Here we will
train our CNN using the clean training set, as our whole concept is based on
the assumption that we have neither noisy training data, nor samples from the
noise, and the goal of our data augmentation methods is to train the network
which spectral components of the clean data are reliable.

We used the Kaldi toolkit and its Aurora-4 recipe to train a HMM/GMM
model. We performed forced alignment with this model, and utilized the acquired
frame-level state labels as training targets to replace Kaldi’s DNN with our in-
house CNN implementation. The decoding step was again performed with Kaldi,
using the standard tri-gram language model and the 5k word vocabulary. Our
CNN was trained with backpropagation using the frame-level cross-entropy error
function. A random 10% of the training set was held out as the development set
used for the early stopping of training, and for tuning the meta-parameters.

4 Results and Discussion

First, we evaluated the two data augmentation strategies by varying the meta-
parameter values p and N . Table 1 shows the frame-level error rates obtained
on the train and development sets for various values of p and N using strategy
A (the baseline score is given in the p = 0 column). We see that the error rate
on the train set grows steadily when we increase p and N . However, on the
development set the increase of the error rate is much smaller, and its value
is quite stable in the p = 0.7 − 0.8, N = 7 − 9 range. The same analysis for
augmentation strategy B (see Table 2) shows similar trends, although in this
case the error rate increases with a slower rate, showing a wider plateau.

Normally, we select those meta-parameter values for testing which yield the
best performance on the development set. However, in this case we know that the
development set does not represent the testing conditions faithfully, as it contains

Table 1. The frame error rates (%) on the train, development and multi-conditional
development sets using augmentation strategy A.



Perceptually Inspired Data Augmentation for Noise Robust Acoustic Models 703

Table 2. The frame error rates (%) on the train, development and multi-conditional
development sets using augmentation strategy B.

only clean recordings, while test set will be noisy. Moreover, we are willing to
sacrifice some accuracy under clean conditions, if it improves the results under
noisy conditions.

As candidates for p and N , in the tables we marked those scores in bold where
the error surface on the development set has a plateau, and the error rate increase
over the baseline is below 0.5%. However, we found no convincing strategy to
select just one p and N value from among these values. Hence, we evaluated our
models on the development set of the multi-conditional training scenario, which
contains noisy samples as well. The resulting frame error rates are shown on the
right hand side of Tables 1 and 2. Similar to the development set, the error rates
obtained are convincingly stable with respect to p and N , and in this case they
also beat the baseline. Favoring larger p and N values, for the final tests we chose
p = 0.7, N = 9 for Strategy A, and p = 0.9, N = 9 for Strategy B. With these
parameter values the word error rate on the test set for Strategy A was 25.6%,
which corresponds to a relative error rate reduction of 24% over the baseline
of 33.7%. Strategy B performed slightly worse, attaining a word error rate of
26.0%. Having chosen the meta-parameter values, we peeked into the test data
(for Strategy A) and, similar to the case of the multi-conditional development
set, we found that the results are quite stable with respect to the actual choice
of p and N . For the p = 0.7− 0.9, N = 7− 9 range, all scores fell between 25.3%
and 26.2%, which correspond to relative error rate reductions of 22–25%.

Next, we performed a more detailed analysis to see whether the improve-
ment is different for the four subsets of the test data. Table 3 shows the relative
improvement of the error rate for the subsets A, B, C and D. According to the

Table 3. The word error rate and its relative improvement for the four test subsets,
for strategies A and B.

Data set Baseline Data augmentation

Strategy A Improvement Strategy B improvement

Set A 3.6% 3.5% 2.6% 3.9% −6.2%

Set B 23.5% 16.1% 31.2% 16.5% 29.5%

Set C 35.7% 30.9% 13.5% 30.1% 15.7%

Set D 48.6% 37.9% 22.1% 38.5% 20.9%

Overall 33.7% 25.6% 24.0% 26.0% 22.9%
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Table 4. Word error rates got using the baseline system, with data augmentation and
with input dropout.

Method WER

Baseline (no augmentation) 33.7%

Data augmentation (Strategy A, p = 0.7, N = 9) 25.6%

Input dropout (p = 0.1) 31.4%

Input dropout (p = 0.2) 31.4%

results, strategy B outperformed strategy A for set C, where the recordings differ
only in the channel characteristics, but no additive noise is involved. Strategy A
proved better in all other cases, including the clean test set A. While the reason
for the different behavior would require a deeper analysis, these results suggest
that the proper combination of the two methods may result in a further gain.

As the basic idea of our augmentation technique came from the input dropout
method, we performed an experiment to compare the two approaches. In the
original dropout paper Hinton et al. applied input dropout with a dropout prob-
ability of p = 0.2, and reported a moderate gain in the phone error rate on
TIMIT [15]. However, later authors found it to be ineffective [9,26]. Here, we
evaluated it with p = 0.1 and 0.2, and the results are shown in Table 4. Clearly,
while there is a significant reduction of 6.8% in the error rate, it is much smaller
than the 22–25% got with our method. These results highlight the advantage of
choosing the discarded pixels via a heuristic, rather than in a totally random
fashion.

Lastly, in Table 5 we compare our scores with some recent results given in
the literature. As can be seen, our method is competitive with most of the
recently published solutions. Although there are better results now (e.g. [6]),
these studies applied a more refined input representation, and so a totally fair
comparison cannot be made.

Table 5. Comparison of our best result with some recent results given in the literature
for Aurora-4, using the clean training set.

Method WER

CNN with FBANK features [18] 28.9%

DNN with exemplar-based enhancement [4] 26.8%

GMM with auditory spectral enhancement [2] 25.5%

CNN with PNS features and Gabor filter kernels [6] 22.9%

CNN with data augmentation (this paper) 25.6%

5 Conclusions

We presented a data augmentation algorithm that is based on the concept of
input dropout. However, instead of dropping spectral components randomly, we
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proposed two perceptually inspired strategies to select the least noise-robust
parts of the spectrogram, and perturb the data by randomly dropping these
components. Incorporating this strategy into the training process of our CNN, we
got relative WER reductions of 22–25% using the clean training set of Aurora-4.
In the future, we plan to refine our method by applying a more sophisticated
strategy and auditory model in the selection of the reliable spectral parts.

Acknowledgments. This research was partially supported by the EU-funded Hun-
garian grant EFOP-3.6.1-16-2016-00008, and by the National Research, Development
and Innovation Office of Hungary (FK 124584). László Tóth was supported by the
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