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Abstract. In speech recognition, spectro-temporal feature extraction and the
training of the acoustical model are usually performed separately. To improve
recognition performance, we present a combined model which allows the train-
ing of the feature extraction filters along with a neural net classifier. Besides ex-
pecting that this joint training will result in a better recognition performance, we
also expect that such a neural net can generate coefficients for spectro-temporal
filters and also enhance preexisting ones, such as those obtained with the two-
dimensional Discrete Cosine Transform (2D DCT) and Gabor filters. We tested
these assumptions on the TIMIT phone recognition task. The results show that
while the initialization based on the 2D DCT or Gabor coefficients is better in
some cases than with simple random initialization, the joint model in practice al-
ways outperforms the standard two-step method. Furthermore, the results can be
significantly improved by using a convolutional version of the network.
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1 Introduction

Neurophysiological and biological studies (e.g. [1]) suggest that filters responsive to
spectro-temporal modulations can be used for feature extraction in automatic speech
recognition. Standard techniques for the extraction of modulation features like these
include the application of the 2D DCT [2–4] or a set of Gabor filters [5–7] on the
spectro-temporal representation of the speech signal. These features then form the input
for some statistical modelling technique such as a hidden Markov model (HMM) or an
artificial neural net (ANN). The feature extraction and the statistical modelling steps
are usually separate, which is convenient, but suboptimal. Here, we propose to combine
these steps in a specially designed neural net, and use this net not just to optimize
new feature extraction filter sets, but also to improve the standard 2D DCT and Gabor
filters. We will compare the 2D DCT, Gabor and the ANN-based optimized filter sets
by evaluating their performance on the TIMIT speech database.

In Section 2, we describe the standard spectro-temporal feature extraction methods.
Then in Section 3 we present the concept behind the joint handling of both the feature
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extraction filters and the neural net classifier. A further refinement – the application of
convolutional neural nets – is also elucidated. After, in sections 4 and 5 we present the
experiments and discuss the results. Lastly, in Section 6, we draw some brief conclu-
sions about our study, and make a suggestion about future work.

2 Spectro-Temporal Filters

Localized spectro-temporal analysis is a neurophysiologically motivated feature extrac-
tion method for speech recognition [6] that has received much attention over the past
few years. In this approach we extract spectro-temporally localized patches from the
spectrogram of the speech signal, and create features for ASR purposes by process-
ing them using standard filtering methods. Formally, a spectro-temporal feature can be
described by the formula

o =

N∑

f=0

M∑

t=0

P (f, t)F (f, t), (1)

where N and M are the height and width of patch P and filter F , which have to be
the same size. There are many different methods for getting the proper coefficients for
the filter F (f, t). Below, we describe two well-known methods, then in Section 3 we
present a new method.

2.1 2D DCT

A common approach is to process the patches using a 2D DCT, which works with the
following filter coefficients:

Fpq(f, t) = cos
π · (f + 0.5) · p

N
cos

π · (t+ 0.5) · q
M

,
0 ≤ q ≤ N − 1

0 ≤ p ≤ M − 1
(2)

where N and M are the respective height and width of the filters for f and t, while p
and q specify the modulation frequencies of the filter along the frequency and time axis.
Using all possible values of p and q would result in as many features as the number
of inputs. However, it is common practice [2] to retain just the output of the filters
corresponding to the lowest-order coefficients. This is motivated by research suggesting
that “the auditory system may extract [...] relational information through computation
of the low-frequency modulation spectrum in the auditory cortex” [8]. For example,
by keeping only 9 coefficients we achieved a performance competitive with the widely
used MFCC features [3]. It should be mentioned, however, that though this approach
works well in practice, the filters defined by the 2D DCT coefficients are not necessarily
the optimal choice.

2.2 Gabor Filters

Another family of filters that has been used for feature extraction in speech recog-
nition is Gabor filters [7]. Their application is motivated by their similarity with the
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spatio-temporal receptive fields of the auditory cortex. These filters are defined [9] as a
product of a two-dimensional Gaussian (3)

W (f, t) =
1

2πσfσt
e
− 1

2

(
(f−f0)2

σ2
f

+
(t−t0)2

σ2
t

)
, (3)

and an oriented sinusoid (4)

Sp,q(f, t) = ej(
π·f·p

N +π·t·q
M ), (4)

where we iterate f and t over the frequency and time intervals of the patch, and σf and
σt specify the respective bandwiths of the filters. Again,N andM specify the transform
size, while p and q specify the slanting of the sinusoid as well as its periodicity. These
parameters allow many different filters, and unlike in the case of 2D DCT (where there
is an assumption about which filters should be kept), the selection of the right Gabor
filters for ASR is a question yet to be answered [9, 10].

3 Joint Optimization of Neural Net Classifiers and
Spectro-Temporal Filters

The spectro-temporal features extracted by the filters form the input of a machine learn-
ing algorithm, which is usually a hidden Markov model (HMM), though the artficial
neural net (ANN) algorithm is also a feasible alternative. The feature extraction and
the classification steps are conventionally performed in two distinct steps. Our proposal
here is to treat the feature extraction filters as the lowest layer of a neural net, and let
the training algorithm tune the filter coefficients as well. To explain how our approach
works, let us examine the operation of a simple perceptron model. In general, its output
can be obtained using the formula.

o = a

(
L∑

i=1

xi · wi + b

)
, (5)

where x is the input of the neuron, L is the length of the input, w is the weight vector,
and b is a bias corresponding to that neuron. For the activation function a we usually
apply the sigmoid function, but it is also possible to create a linear neuron by setting a to
the identity function. In that case, setting b = 0 and L = N ·M , and representing filter
F and patch P in (1) in vector form (which is actually just a notational change), we see
that (1) is just a special case of (5). This means that the spectro-temporal filters can be
integrated into an ANN classifier system as special neurons, with the filter coefficients
corresponding to the weights of the given neuron.

3.1 Structure of the ANN for Combined Feature Extraction and Posterior
Estimation

Fig. 1 shows the proposed structure of the ANN that can perform spectro-temporal fea-
ture extraction and classification (phone posterior estimation) in one step. When com-
pared to a conventional neural net, the main difference is the introduction of what we
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Fig. 1. Structure of the ANN for joint feature extraction and classification. The boxes in light grey
correspond to additional units used by the convolutional version of the network.

call the feature extraction layer. Here, the dark grey areas in Fig. 1 mean that the spectro-
temporal patches of the speech signal are concatenated to form the input data for the
input layer. Then the linear neurons in the feature extraction layer perform the spectro-
temporal filtering of (1). The output of this layer is channelled into the hidden layer,
and from this point on the system behaves just like a conventional neural net. Hence, if
the weights of the feature extraction layer were initialized with 2D DCT or Gabor filter
coefficients, and only the weights of the hidden and output layers were tuned during
training, then the model would be equivalent to a more traditional system, and incor-
porating the feature extraction step into the system would be just an implementational
detail.

3.2 Fine-Tuning the Spectro-Temporal Filters

The structure in Fig. 1 allows the algorithm to evaluate the spectro-temporal features
and the ANN in one step. However, our main goal here was to extend the scope of the
backpropagation algorithm to the feature extraction layer as well. This way, we could
also train the weights associated with the spectro-temporal filters, and hence fine-tune
the initial coefficients. Of course, we had the option to initialize these coefficents ran-
domly (just as we do with all the other weights of the network), but it was also possible
to initialize them with the 2D DCT or Gabor coefficients. Usually, as the backpropa-
gation algorithm guarantees only a locally optimal solution, initializing the model with
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weights that already provide a good solution may help the backpropagation algorithm
find a better local optimum than the one found using random initial values.

3.3 Convolutional Neural Nets

It is well known that integrating a longer temporal context into the acoustic features can
significantly improve recognition performance. In HMM-based recognition the Δ and
ΔΔ features are used for this purpose, while in ANN/HMM hybrids a common tech-
nique is to use several neighbouring acoustic vectors [11]. Although spectro-temporal
features process longer time intervals than tradional techniques (such as MFCC), we
observed that adding the delta features to the feature set improves the results [4]. Un-
fortunately, incorporating the delta features into the joint model would be technically
challenging. However, training the network on several neighbouring feature vectors in-
stead of just one is possible by modifying the proposed structure and creating a convo-
lutional neural net [12, 13]. This modification is shown in Fig. 1 by the boxes drawn
in light grey. As can be seen, in convolutional networks the feature extraction layer
performs its operation on several input patches instead of just one. We should add that
the same weights are applied on each input block, so the number of weights will not
change in this layer. Obviously, the number of feature vectors processed by the hidden
layer increases, but in other respects the hidden and output layers work just as before.
Note also that the patches used do not necessarily have to be immediate neighbours, but
here we chose this simplest scenario.

4 Experimental Setup

All the experiments reported here were conducted on the TIMIT speech corpus. In the
train-test partitioning, we followed the widely accepted standard of having 3696 train
sentences and a core test set of 192 sentences. The phonetic labels of the database were
“fused” into 39 categories, as is standard practice [14]. To create a phone recognizer
from the frame-level phone posterior estimates of the neural net, we utilized a modified
version of the Hidden Markov Model toolkit (HTK) [15] with a simple bigram language
model.

4.1 Time-Frequency Processing

We chose the log mel-scaled spectrogram as the initial time-frequency representation
of the signal. We computed the spectrograms using 400 samples (25 ms) per frame at
160 sample (10ms) hops, and applied a 1024-point FFT on the frames. They were then
transformed to a log mel-scale with 26 channels, and each sentence was normalized so
as to give zero mean and unit variance. After, a copy of the lower four channels were
mirrored in order to avoid artificially down-weighting low frequency bins near the lower
edge of the spectrogram.
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Table 1. Phone recognition correctness/accuracy scores (the average of 20 independently trained
neural nets)

Initial filter weights
filter weights unaltered trained
Random 73.95% / 67.04% 76.58% / 69.73%
2D DCT 75.29% / 68.81% 76.64% / 69.79%
Gabor 75.25% / 67.59% 76.56% / 69.71%

4.2 Initialization of Filter Coefficients

In an earlier paper, we performed an extensive search to get the optimal size of the
time-frequency patches [3]. Based on these findings, the patches – and consequently
the filters used here – had a size of 9x9, which corresponded to 9 mels in height and 90
ms in width (9 frames). The filters were applied with a step size of 4 mels (4 channels)
in frequency. We tried out three different initialization schemes for the filter coefficients
(i.e. the feature extraction layer of the network). In the first case, they were initialized
with random numbers, as they usually are with neural nets. In the second case, they were
initialized using the 2D DCT filter coefficients we utilized in our studies [3, 4]. And in
the third case, the coefficients were initialized based on the Gabor filter coefficients that
we found in earlier studies and had given us good results.

4.3 Neural Net Classifier

In the experiments, the classifier we applied was a multilayer neural net modified for
this purpose. It consisted of a hidden feature extraction layer with a linear activation
function, a hidden layer (with 1000 neurons) with the sigmoid activation function, and
an output layer containing softmax units. The number of output neurons was set to the
number of classes (39), while the number of neurons in the input and feature extraction
layers varied, depending on how many neighbouring patches were actually used. The
neural net was trained with random initial weights in the hidden and output layers, using
standard backpropagation on 90% of the training data in semi-batch mode, while cross-
validation on the remaining, randomly selected 10% of the training set was used as the
stopping criterion.

5 Results and Discussion

The phone recognition results we got on the TIMIT corpus using a non-convolutional
network are listed in Table 1. The rows of the table correspond to the various filter ini-
tialization schemes. The first column shows what we got when the filter coefficients
were not trained, while in the second column they were also modified by backpropaga-
tion. The first thing we notice is that the joint training method always gives better scores
than those obtained with fixed filter coefficients (with significance p < 10−11). Second,
the initialization techniques gave practically the same results, so starting from the 2D
DCT or Gabor filters did not help the optimization process compared to the case with
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Table 2. Phone recognition correctness/accuracy scores obtained with the convolutional network
(taking the average score of 20 networks)

Initial filter weights
filter weights unaltered trained
Random 77.65% / 72.02% 78.24% / 72.61%
2D DCT 77.52% / 71.17% 78.14% / 72.52%
Gabor 78.32% / 71.74% 78.46% / 72.83%

random initialization. However, we also see that when there is no fine-tuning of filters
involved, the 2D DCT and Gabor filter sets clearly outperform the randomly initialized
ones (p < 10−5). This sounds reasonable and, in fact, one might expect much worse re-
sults from random filters. Interestingly, there are studies which show that in many cases
a large set of random base functions can give a representation that is just as good as a
carefully selected function set. Recently, a similar study was published for the case of
dictionary learning for speech feature extraction [16]. The ‘extreme learning machine’
of Huang et al. also exploits this suprising fact: this learning model is practically a two-
layer network, where both layers are initialized randomly, and the lowest layer is not
trained at all [17].

Table 2 shows the phone recognition scores on the TIMIT speech corpus using the
convolutive version of the network with 4 neighbouring patches. We see that the differ-
ence between the performance of the fine-tuned and the untrained filter sets is smaller
than that for Table 1. As regard the initialization methods of the trained filters, Gabor fil-
ters gave slightly better results in this case (p < 10−2). However, the convolutional net-
work seems to work just as well with random filters as with 2D DCT coefficients. This
is an interesting observation that needs to be examined further. But it is already quite
clear that a convolutional structure brings about a large improvement to the network.
The superior performance of a convolutional network is in accordance with findings in
similar studies [12, 13].

6 Conclusions

Here, we presented a method for the joint training of spectro-temporal filters and acous-
tic models using a special neural network structure. The proposed algorithm was tested
in a phone recognition task for the TIMIT speech database. Our results confirmed that
joint optimization does indeed result in a better recognition performance than that got
by the standard, separate feature extraction and acoustic modelling approach. We also
found that further significant improvements could be attained with a convolutional neu-
ral network structure. However, starting the training using a filter coefficient set like the
2D DCT set or Gabor set did not always result in better recognition accuracy scores
compared to those using simple random initialization. In the future, we would like to
study the behaviour of the new network in more detail, so as to learn more about its
properties and limitations.
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