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Abstract—Reputation systems are essential to establish trust
and to provide incentives for cooperation among users in de-
centralized networks. In these systems, the most widely used
algorithms for computing reputations are based on random
walks. However, in decentralized networks where nodes have
only a partial view of the system, random walk-based algorithms
can be easily exploited by uncooperative and malicious nodes.
Traditionally, a random walk only uses information about the
adjacency of nodes, and ignores their structural and temporal
properties. Nevertheless, the properties of nodes indicate their
reliability, and so, random walks using much richer information
about the nodes than simple adjacency may achieve higher
robustness against malicious exploitations. In this paper, we
introduce the properties of nodes that are indicative of their
reliability, and we propose a scheme to integrate these properties
into the traditional random walks. Particularly, we consider two
common malicious exploitations of random walks in decentralized
networks, uncooperative nodes and Sybil attacks, and we show
that integrating node properties into random walks results
in much more robust reputation systems. Our experimental
evaluation in synthetic graphs and graphs derived from real-
world networks covering a significant number of users, shows
the effectiveness of the resulting biased random walks.

I. INTRODUCTION

Reputation systems establish trust and provide incentives
for cooperation among users in many decentralized networks
such as P2P networks [1], [2], distributed social networks
[3], and markets on mobile devices [4]. These systems com-
bine the history of node interactions to one reputation score
for each node. For the computation of reputations, random
walks constitute the core of the most widely used algorithms
such as EigenTrust [5], PageRank [6], and TrustRank [7],
because of their simple decentralization, their ability to take
advantage of the sparsity of networks, and their computational
efficiency. However, random walk-based algorithms can be
easily exploited by uncooperative and malicious nodes using
various self-serving and self-promoting strategies. Particularly
in decentralized systems, nodes only have a partial view of the
system and hence, their protection against uncooperative and
malicious nodes is challenging. Traditionally, nodes visited
during a random walk treat all their neighbors equally, ignoring
any properties they may have. Nevertheless, properties of
nodes, such as their age, may be indicative of their reliability,
and thus, by integrating them into random walks, we can
design more robust reputation systems. In this paper, we
identify the properties of nodes that are indicative of their

reliability, and we bias random walks towards the most reliable
nodes.

Random walk-based reputation algorithms compute the rep-
utation of a node as the probability of visiting that node in a
random walk. In most implementations, random walks try to
achieve resilience against uncooperative and malicious nodes
based on a uniformly random selection of the next node to be
visited. As a result, such simple random walks are vulnerable
to many types of self-serving and self-promoting strategies
[8], [9]. In a self-serving strategy, nodes abuse the system
by first behaving properly for some time, and by then letting
their reputations decrease in order to achieve a short-term
gain [10]. We consider the most common form of self-serving
misbehavior, which is a lack of cooperativeness as exhibited
by free-riders, who passively abuse the system by consuming
its resources without contributing to it. In a self-promoting
strategy, nodes try to falsely increase their reputations using a
variety of techniques such as web spamming and link farming
[9], collusion [8], and Sybil attacks [11]. From the self-
promoting strategies, we consider only the Sybil attack since
most self-promoting strategies can be seen as special cases of
it. In a Sybil attack, a malicious node boosts its reputation
by controlling fake identities (its sybils), which report fake
interactions with each other and with the malicious node.

In this paper, we show that the properties of a node indicate
accurately its reliability, and that random walks exploiting
these properties are more resilient than simple random walks.
We model reputation systems in growing synthetic random
and scale-free graphs, and in real-world graphs derived from
the Bartercast reputation system [12] which is used in the
BitTorrent client Tribler [13], from the citation network of
Physical Review E journal, and from Facebook [14]. Each
node in a graph initiates its own random walks and computes
its own personalized reputations for the other nodes. Through
an extensive analysis on our graphs, we introduce the node
properties indicative of their behavior and we bias random
walks with those properties. We observe that those properties
depend on the characteristics and the construction of the graph.

In the case of uncooperative nodes, we evaluate biased
random walks in growing graphs based on the observation
that the ranking of nodes according to their reputations is more
important than the actual values of reputations. In the case of
sybil attacks, we evaluate the escape probability of a random
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walk to the sybil area with the number of the attack edges,
since it has been already shown that the effectiveness of a
sybil attack depends on this number [15]. Due to the size of
our graphs, it is prohibitive to evaluate our biased random
walks after the entry of each new node or edge and so, we
use properly chosen time windows. Our experiments reveal
that biased random walks are very robust in comparison with
simple random walks, especially in real-world graphs.

II. PROBLEM STATEMENT

Random walk-based algorithms have been widely used
for decentralized reputation systems since they have a low
computational cost and resilience against noisy input [16].
However, they are vulnerable to malicious behaviors. Most
implementations of random walks ignore the structural proper-
ties of nodes such as their centrality, clustering, and age, while
these properties are indicative of their reliability. Our goal is
to identify these properties of nodes and integrate them into
random walks for building reputation systems that are more
robust against exploitations. According to our approach, each
node initiates its own random walks and we do not assume
the existence of pre-trusted nodes. Therefore, our approach is
suitable for decentralized networks.

A. Motivation

There are many exploitations of random walks in decen-
tralized reputation systems. In this paper, we study the two
most common exploitations: the uncooperative nodes and the
Sybil attacks. Nevertheless, our method can be generalized to
improve the robustness against other exploitations as well.

In reputation systems such as online markets or collabora-
tion networks (e.g., eBay, eLance and Wikipedia), where nodes
have to behave constantly according to the protocol, many
users can be exploited by traitors or uncooperative nodes.
Even simple uncooperative nodes can degrade significantly
the system’s performance. For instance, Sopcast, a P2P live
streaming network, has on average around 87% uncooperative
nodes degrading its performance [17]. Reputations predicting
the behavior of nodes give incentives to the nodes to be-
have continuously according to the protocol. Computations
of reputation predicting the behavior of nodes have been
proposed in the context of Wikipedia authors [18], in P2P
file-sharing systems [19] and P2P live streaming [17]. When
using simple random walk, the predictive ability of the system
is very low and some attempts to integrate properties of nodes
have already improved it for the link prediction problem [20],
[21]. In distributed systems and especially in unstructured P2P
networks, biased random walks have been used for searching
content [22], [23] but not in the context of reputation systems.

Reputation systems based on random walks are also sensi-
tive to Sybil attacks [24]. Specially in the context of Pagerank,
this observation is very common [25], [9]. Many users perform
Sybil strategies, such as link farming [9] where fake links point
to both the Sybils and the malicious node. In networks where
the creation of links among nodes is easy, such as WWW and
Facebook, random walk performs very poorly against Sybil

attacks. Therefore, biased random walk with node properties
indicating trust between two nodes decreases radically the
effect of Sybil attack. A first study of the effect of biased
random walks on algorithms against Sybil attacks explored
the use of node similarity and strength of interactions [11].
Unlike [11], our study for sybil attacks evaluates the escape
probability of random walks into the sybil area, and we use
random walks with restarts biased with structural and temporal
parameters.

B. Definitions and Network Model

We model a reputation network as a weighted directed graph
G = (V,E) whose vertices V correspond to the nodes, and
whose edges E correspond to the interactions among nodes. A
weighted edge eij 2 E connects two vertices i, j 2 V in the
direction i ! j with weight wij . Depending on the context,
weights may represent the amount of data transferred across
edges (in a P2P network), or the number of citations among
authors (in a citation network). Computing the reputation of
nodes with a random walk-based algorithm implies that the
past interactions between nodes are interpreted as trustiness,
in a similar way that links between web pages are interpreted
as votes in a search engine like Google. The transition matrix
P of a random walk in G is defined by pij = wij/

P
k2Ni

wik,
where Ni denotes the set of neighbors of node i.

We will use random walks with restarts [26], which means
that each node visited by a random walk decides to direct
the random walk back towards its initiator with the tele-
portation probability ↵. Then, the transition matrix becomes
P 0

= (1�↵)P +↵1, where 1 is the matrix with all its entries
equal to 0 except for the elements of the column corresponding
to the initiator, which are equal to 1. A random walk with
restarts is personalized and represents better the inherent trust
in a network, since each node trusts itself more than the other
nodes and its trust towards the other nodes decreases with the
increase of their distance. The vector ⇡i with the reputations
computed by node i is the solution of the eigenvector equation
⇡i = ⇡iP 0.

In an unbiased random walk (simple RW), the weights wij

represent simply the adjacency of the nodes in G, that is wij =

1 if eij 2 E and wij = 0 otherwise. In a biased random
walk (bRW), the weight wij is equal to some actual weight
of the corresponding edge. In that case, we have to assign a
weight wij to each edge eij in G in order to have a bRW
visit more often the most reliable nodes. For each edge eij ,
we consider a vector  ij with the values of properties of node
j as perceived by node i, and we combine its elements to one
weight wij = f( ij) for some function f . The function f
can be defined by using the normalized product of the node
properties or it can be learned in a supervised way. We refer
to the former walk as naive RW (nRW) and to the latter walk
as supervised random walk (sRW).

For training our sRW, we use a slightly modified version
of the method described in [21] adapted to our problem.
We assume that the function f has an exponential form
f = exp(ui ij), where ui is the vector learned by node i
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with the coefficients of  ij . We formalize the problem of
determining the vector ui as a nonlinear optimization problem:

min

ui

kuik2 +
X

d2Di,l2Li

1

1 + exp(�(⇡i(l)� ⇡i(d)))

s.t. ⇡i(j) =
X

k2V

⇡i(k)P
0
kj (8j 2 V ),

where Di and Li are the sets of the top-30 best-behaved nodes
and the top-30 worst-behaved nodes from the perspective
of a node i, respectively. This objective function is highly
multimodal, so an optimizer can easily get trapped in a local
minimum. In order to avoid this, we let every node perform the
following iterative process: we make only a small number of
steps (up to 5) with the optimizer, then we compute the values
of wij using the current value of ui and solve the equation
⇡i = ⇡iP 0 with power-iteration; using these ui and ⇡i values
as starting points we get back to the optimization problem
again. We proceed such iterations until the solution vector ui

converges.
Our computation of reputations can be easily implemented

in decentralized reputation systems where each node stores lo-
cally its own view of the reputation network, such as Bartercast
[12], the system proposed by Piatek et al. [1], and MobID [3].
In these systems, when a node interacts with another node,
they both store the weight of their interaction and the identity
of the corresponding node. Nodes exchange information about
their interactions using a gossip-like protocol. Based on its
own interactions and the interactions gossiped about other
nodes, each node builds locally its own partial view of the
reputation network. Each node i performs the computation of
⇡i and the properties of other nodes on its own partial view.

For our analysis, we assume full-gossip in which nodes
forward all their interactions, and eventually, their partial
views converge to the global reputation network G. In a real
system, the partial views of nodes may not convergence to G
due to their resource limitations or high churn. Nevertheless,
the reputations, as computed by random walks with restarts,
are only slightly affected. In random walks with restarts, an
interaction between two nodes occurring in the neighbourhood
of the initiator of a random walk, contributes more on the
computed reputations and gossip protocols propagate fast
information in the neighbourhood of a node.

III. DATASETS

In order to evaluate bRWs, we consider synthetic and real-
world graphs which are defined below. When a graph is not
connected, we proceed in our analysis using its largest weakly
connected component.

Both our synthetic and real-world graphs grow over time.
During the construction of the synthetic graphs, in each time
step, with probability pc a new node enters the system, or
with probability 1 � pc already existing nodes interact and
create new edges. The value of probability pc depends on
the dynamics of the system. Particularly, in highly dynamic
systems the appearance of new nodes is dominant. For our
synthetic graphs, we assume moderate system dynamics and

Table I: The diameter, the average path length (L) and the
clustering coefficient (cc) of the largest weakly connected
component of our graphs.

Graph # Nodes # Edges Diameter L cc

Bartercast 10, 364 44, 796 13 2.64 0.00074
Citation 31, 238 110, 638 15 7.66 0.20

Facebook 63, 392 1, 545, 309 15 4.32 0.15

so, we choose pc equal to 0.5. Moreover, we allow the
occurrence of multiple edges between a pair of nodes and
we consider the number of occurrences of an edge as the
weight of that edge. In real-world graphs, the addition of new
nodes and edges is based on the timestamps available on the
corresponding datasets and it is expressed in terms of actual
time. In the synthetic graphs, no notion of actual time exists.
For the construction of the synthetic graphs, time is divided
into time steps during which new edges and nodes are added.

A random graph, denoted by R(n, pr), is composed of n
nodes, and each potential edge connecting two nodes occurs
independently with probability pr. We start from a single node,
and in each time step, with probability pc we add a node with
each of its potential directed edges existing with probability p
for some value of p, and with probability 1� pc we add pnt

directed edges adjacent to existing nodes chosen uniformly
at random. It has been shown that pr ⇠ p/2pc [27]. In our
experiments, we use a graph R(5000, 0.02).

Scale-free graphs, denoted by S(m), are characterized by
their degree distribution following a power law. We create a
growing directed scale-free graph based on the BA model [28].
We start with a small seeding connected triangular graph, and
in each time step, with probability pc we add a node with
m directed edges. The end point of each of these edges is
adjacent to an already existing node i with probability ⇧(i) =
di/

P
j dj , where di is the degree of node i. With probability

1�pc we add m directed edges, each of which is adjacent to an
existing node i with probability ⇧(i). One can show that S is
scale-free with power-law exponent equal to � = 1+2/(2�pc)
[27]. For our evaluation, we use a graph S(3) of 5000 nodes.

The Bartercast graph, denoted by B, is derived from
the distributed reputation mechanism called Bartercast [12]
of a BitTorrent-based client, Tribler [13]. The Tribler system
was crawled from September 1, 2010 to January 31, 2011,
collecting information from 29,716 nodes. As a deployed
system, the Bartercast graph has a high population turnover,
and so, the derived graph consists of a dense core with very
few long living and active nodes and a periphery with many
loosely connected nodes of low activity (small average path
length and small clustering coefficient, see Table I).

The author-to-author Citation graph, denoted by C, is
derived from the citation network of 32,584 papers published
in Physical Review E from January 1993 to November 2011.
Its vertices represent the authors of papers and edges represent
the citation relationship between two authors (or coauthors).
The weight of an edge indicates multiple citations from one
author to another. In Table I, we can see that graph C exhibits
small-world behavior because of its small average path length
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Figure 1: The ecdf of the coefficient of variation of the ranking stability of nodes over time for different time windows W 1.

and its large clustering coefficient. Its degree distribution has
a power-law tail with exponent � = 2.55. This dataset is
available to us upon request to American Physical Society.

The Facebook graph, denoted by F , derives from the
Facebook network in New Orleans with 63,732 users and
it contains information about the interactions of users from
September 26, 2006 to January 22, 2009 [14]. Its vertices
represent Facebook’s users and its edges represent friendships
between two users. The weights of edges represent the num-
ber of interactions between two users and each edge has a
timestamp indicating the time of this interaction. Graph F is
a small-world graph like graph C (see Table I).

IV. CHOOSING THE TIME WINDOW

Computing the properties of nodes such as centrality, clus-
tering coefficient, and similarity, and the reputations of nodes
in large graphs is very computationally intensive. Particularly
in large growing graphs, updating those properties after every
entry of a new edge or a new node is unrealistic. Fortunately, in
most graphs neither the properties nor the reputations change
very much with a small growth of the graph. Therefore, we
choose an appropriate time window W for updating the prop-
erties and the reputations of nodes, so that we can reduce the
cost of their update but we can still keep track of the dynamics
of the reputations of nodes. Since we use personalized RWs,
in principle, each node can use a different time window W
according to its resources. For simplicity, however, we study
the case that all nodes use the same value for W , but our
method can be easily generalized for different durations of W
across different nodes.

Usually in reputation systems, we are interested in the
relative values of the reputations of the nodes rather than in
their actual values. Therefore, as a metric for selecting a good
value for W , instead of simply using reputations, we use the
so-called ranking stability of nodes [16]. In order to compute
this metric, we define the global reputation of a node as the
average of its reputations computed by all the other nodes.
Then, denoting the global reputation of node i at a certain time
t in the evolution of the graph by ⇡(i), the ranking stability
of node i at time t is defined as (⇡(i)�⇡(j))/�(⇡(i)); here j
is the node ranked immediately after node i in the ranking of
nodes according to their decreasing reputation values at time
t, and �(⇡(i)) is the standard deviation of the set of values of
node i’s global reputation computed at different time instances
up to and including time t. The rank of a node i is considered

stable if its ranking stability is high.
In order to find the appropriate time window W , we choose

a few different values of W and we keep track of the reputation
and the ranking stability of each node over time as the graph
grows. The reputation and the ranking stability of each node
is recomputed at the end of every time window, that is, at
the time points t · W for t = 1, 2, . . . . Then, in order to
observe the change of the ranking stability, we compute the
coefficient of variation (CV) of the ranking stability of each
node at these time points. A similar approach for computing
the appropriate time window W has been used in [17] but that
approach focused only on the actual reputation values and not
on the ranking stability. The chosen W should result in a CV
of the ranking stability that is neither too large nor too small,
so that we are able to observe the dynamics of the ranking of
reputations without needing to update them very often. For the
Bartercast graph we evaluate W equal to one hour, one day,
and one week, for the Citation graph one month, 6 months, and
one year, and for the Facebook graph one day, one week, and
one month. In the synthetic graphs, time is divided into time
steps during which new edges and nodes are added (Section
III), and we use W equal to 10, 100, and 1000 time steps.

In Figure 1, we present the empirical cdf (ecdf) of the CV
of the ranking stability of the nodes for the chosen values
of W . We observe that the ranking stability of the nodes in
our graphs is sensitive to W , the shorter the window W ,
the higher the variation of the ranking stability of nodes.
Moreover, a short duration of W implies a frequent update
of the reputations of nodes, fluctuating ranking stability, and
noisy observations. On the other hand, a larger duration of W
makes our observations smoother because of the aggregative
effect of node interactions.

In real-world graphs, the variation of the ranking of nodes
is smaller than in synthetic graphs, which implies that the
ranking of their nodes is more stable. The Citation graph has
the lowest variation of the ranking because the creation of
an edge between two nodes requires more time and effort
in comparison with the other graphs. In the Bartercast and
Facebook graphs, the variation of the ranking is closer to
those of the synthetic graphs because its nodes interact easier
and so, their ranking is more dynamic. The highest variation
of the rankings is observed in random graphs because node
interactions follow random patterns. As a result, there are no

1All our figures are better viewed in color
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nodes having a relatively stable behavior over time and being
able to stabilize their ranking. In this paper we choose W in
such a way that the variation of the ranking is neither too small
nor too large. Specifically, we choose W equal to one day for
the Bartercast graph, to one year for the Citation graph, to
one month for the Facebook graph, and to 100 edges for the
random and scale-free graphs.

V. IDENTIFYING PROPERTIES OF NODES INDICATIVE OF
THEIR BEHAVIOR

In this section we define the behavior of nodes and we intro-
duce the properties of nodes that are indicative of their future
behavior. A reputation system whose calculated reputations
predict the quality of future interactions reduces the effect of
uncooperative nodes which do not contribute to the network
resources without abusing the protocol. Such a reputation
system needs to be able to predict the behavior of nodes and
to rank higher the nodes with better future behavior.

A. Introducing the Properties of Nodes

We take the behavior of a node to be the difference between
the resources it contributes to the network minus the network
resources it consumes. We define the behavior B(i, t) of a
node i at time t · W as B(i, t) =

P
j2Ni

(sji � sij), where
the sij and sji are the strengths of the incoming and outgoing
edges of node i at time t · W . In the Bartercast graph, the
strength of a link is the amount of data transferred across the
link, and the behavior of a node corresponds to its cooperation
level. In the Citation graph, the strength of an edge is the
number of citations and in the Facebook graph, the strength
of an edge is the number of interactions between two friends.

The properties of a node that may be predictive of its
behavior can be divided into three categories based on the
information needed for their computation: local, global, and
temporal. The local properties can be naturally integrated in
a RW since their computation does not need access to global
information and they are computationally simple. The local
properties of a node i that we use are:

• Its degree, which represents its activity.
• Its ego-betweenness centrality (ego-BC), which is its

betweenness centrality in its ego-network, namely the
network containing that node, its neighbours, and all the
links among them [29].

• Its clustering coefficient, which is defined as the fraction
of links among its neighbors that actually exist.

The computation of global properties demands high cost
and global information. However, it is interesting to observe
their predictive ability on the behavior of a node. The global
properties of a node i that we use are:

• Its eigenvector centrality, whose basic idea is that inter-
actions with highly reputed nodes contribute more to the
reputation of a node.

• Its betweenness centrality (BC), which is defined as the
sum of the fractions of shortest paths among all pairs in
the graph that pass through this node and it indicates the
amount of flow passing through that node.

• Its closeness centrality, which is the inverse of the sum
of its distances from every other node in the network.

Finally, we use the temporal properties of node i to predict
its behavior. Temporal properties require only local compu-
tation and can be easily integrated into RW. The temporal
properties of a node i that we use are:

• Its average interaction time, which is the average time
interval between successive interactions of node i.

• The time occurrence of the last interaction of a node i.
• Its age, which is expressed as ⌧(i) = tc � t(i) where tc

is the current time and t(i) is the time instance node i
joined the system.

B. Evaluation

In order to assess to what extent a property of nodes is
predictive of their future behavior, we compute the correlation
between the node properties and the behavior of nodes over
time as the graph grows. More precisely, for each node i and
for each property, we compute the correlation between the
sequence of values of that property of node i at time t =

1, 2, . . . and the sequence of values of its behavior at the next
time step B(i, t+1), for all t available from our datasets. For
all the correlations, we use the Spearman correlation, which
assesses the monotonic relationship between two sequences.

In Figure 2, we present the ecdf of these correlations for
all the nodes in each graph. In our real-world graphs, the
properties of a node are strongly correlated with its future
behavior, particularly in Bartercast where the correlation is
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Figure 2: The ecdf of the correlations between the properties
of each node and its future behavior over time.
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Table II: The local, global and temporal properties of nodes
exhibiting the highest correlation with their future behavior.

Graph Local Global Temporal

Random none none none
Scale-free degree BC, closeness age
Citation degree BC last interaction time

Bartercast clustering BC, closeness all
Facebook degree closeness avg interaction time

almost perfect. In these graphs, there are a few nodes attracting
the majority of links. In Bartercast, these nodes are the nodes
with high upload speeds that share many files, while in the
Citation network, they are the authors of papers with high
impact. As their degree, clustering coefficient, and centrality
increase, these highly connected nodes improve their behavior
as well. Nevertheless, temporal properties are also indicative
of their future behavior because as has been observed in many
real-world networks, the nodes gradually reduce their activity
with time until they become inactive [30]. Facebook exhibits
correlations similar to those in scale-free graphs.

In scale-free graphs, the future behavior of nodes is cor-
related mostly with their degree, BC, and age, due to the
way they are constructed. In a scale-free graph, a new node
connects with higher probability to nodes with high degrees,
and so, a few older nodes obtain higher degrees and exhibit
better behavior while the majority of nodes have much smaller
degrees. In such graphs, the nodes with higher degree partici-
pate in the majority of the paths between the other nodes, and
as a result they have high BC and high closeness centrality.
Besides age, the other temporal properties are not correlated
with the future behavior of nodes. In random graphs, all nodes
have uniform connectivity and the interactions between the
nodes are random. Therefore, there is almost no correlation
between the properties of nodes and their future behavior.

In Table II, we present for all our graphs the properties
of nodes having the highest correlations with their future
behavior. For most graphs, the degree of nodes, even though
it is the simplest local property, exhibits the highest corre-
lation in comparison with the other local properties. Only
for Bartercast, the clustering coefficient of nodes is more
correlated with their future behavior because of its high churn.
In Bartercast, a high clustering coefficient indicates that a node
participates in the core of the network where its neighbors
are active and interact with each other. A node having a low
clustering coefficient is located in the periphery of the network.
Nevertheless, in Bartercast also the degree of nodes predicts
very well their future behavior.

The global properties of nodes that are based on short-
est paths, namely BC and closeness, exhibit much higher
correlations than eigenvector centrality which is based on
random walks. In the Citation graph, the flow of information
passing through an author influences his future connections.
As a result, an author with high BC has a higher probability
to contribute more in the network. In Facebook, a node
within a short distance from other nodes has better access
to their wall-post and vice versa. Therefore, this node having

higher closeness centrality, has a higher probability to have
a good behavior. In scale-free graphs and Bartercast, BC and
closeness perform equally well. In these graphs, the nodes
having high BC also have high closeness centrality because
the clustering of these graphs is low. As a result, the nodes
having many shortest paths passing through them are closer
to the other nodes in the network. As our experiments show
eigenvector centrality does not predict well future behavior of
nodes.

The temporal property of nodes having the highest corre-
lations depends on the construction process of each graph.
In scale-free, the age of nodes predicts better their behavior
since older nodes attract the majority of links. In Citation
graph, the time of last interaction is more predictive because it
indicates that an author is still active. In Facebook, the average
time between two interactions performs better since it reveals
the tendency of a node to participate in conversations. For
Bartercast, all the temporal properties perform almost equally
well. In a network with high churn like Bartercast, the nodes
that stay for a long time in the system tend to interact more
often with other nodes and contribute to the system. Thus,
all the temporal properties of these nodes are equally good
predictors of their behavior.

VI. BIASING RANDOM WALKS IN THE FACE OF
UNCOOPERATIVE NODES

After having observed the correlations between the prop-
erties of nodes and their future behavior, we bias two types
of RW with those properties: the naive RW (nRW) and the
supervised RW (sRW). We assess to what extent the reputa-
tions computed by both types of bRWs predict the behavior
of nodes and rank lower the nodes with bad future behavior.

A. Naive Random Walks

Naive RWs are implemented in a similar way as the
simple RW but now the edge weights, and so the transition
probabilities, depend on the node properties presented in Table
II. The only additional cost of nRWs is the computation
of these properties. We consider four types of nRWs: local
nRW, global nRW, temporal nRW,and mixed nRW, in which
we bias each walk with the corresponding local, global,
temporal property of nodes, and with the combination of
all these properties, respectively. In each case, the transition
probabilities are proportional to the property of the targeted
node. If according to Table II, more than one node properties
correspond to a random walk, we chose the property with the
lowest computational cost.

We evaluate whether the reputations of nodes predict their
future behaviors, considering that in most reputation systems
we are interested in the ranking of nodes according to their
reputations. At each time t · W , we compute the correlation
between the sequence of the reputations of all the nodes in the
graph and the sequence of their behaviors at the next time step
(t+ 1) ·W , and we observe this correlation over consecutive
time windows. We note that correlating the reputations at time
t with the corresponding behaviors at time t+2 is equivalent
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Figure 3: The correlation of the reputations of nodes as computed with naive Random Walks and their future behavior for
consecutive time windows (note: the scale of the vertical axis of the Bartercast plot is different).

to choosing a W of double size. In Figure 3, we present the
result of our evaluation for the random walks with teleportation
probability ↵ = 0.15, a commonly used value for teleportation
[6]. The presented result is the average of all the nodes. We
found that the value of ↵ does not affect much the correlation
and so, we present only the values for ↵ = 0.15.

In all graphs in Figure 3, the reputations computed by
the nRWs achieve much higher correlations with the future
behaviors of nodes than the simple RW. Therefore, all nRWs
are able to predict the nodes with the best future behavior.
Nevertheless, the performance of the nRWs depends on the
topology of the graph. In graphs such as scale-free, Citation
and Facebook, where the creation of links follows specific
patterns almost stable over time, all RWs exhibit higher cor-
relations than in random graphs and Bartercast. Furthermore,
temporal and global RWs exhibit similar correlations implying
that the global and temporal properties of a node are highly
dependent. For instance, in most cases, an old node with small
average interaction time has high centrality.

Table III: The size of the intersection of the top-5 most highly
reputed nodes at time t ·W and the top-5 best behaved nodes
at time (t+ 1) ·W averaged over all t.

simple RW local RW global RW temporal RW mixed RW

Random 0.64 0.95 0.91 0.42 0.94
Scale-free 3.64 4.87 4.75 2.37 4.79
Bartercast 2.15 3.22 2.94 2.67 3.16
Citation 3.36 4.64 4.23 3.77 4.58

Facebook 2.90 3.40 2.90 3.00 3.20

In many applications of reputation systems, such as rec-
ommendation of friends in Facebook or recommendation of
papers in Citation graphs, we are interested only in the top
ranked nodes. In Table III, we show the size of the intersection
of the set of the top-5 most highly reputed nodes at time t ·W
and the set of the top-5 nodes with the best behavior at time
(t+1) ·W , averaged for all t. In all graphs, the nRWs rank the
top-5 nodes with the best future behavior higher than simple
RW does, with local nRW achieving the highest number of
common nodes and temporal nRW the smallest. In all graphs
other than the random graph, the number of common nodes
is high. In random graphs, the nodes follow a random pattern
of interactions and so, we cannot predict accurately even the
top-5 nodes with the best future behavior.
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Figure 4: The distance in number of hops between a pair of
nodes before they interact.

B. Supervised Random Walks

Although naive RWs are able to predict the best behaved
nodes with high accuracy, the weights they use combine node
properties into transition probabilities in a rather arbitrary way.
For further evaluation of the ability of random walks to predict
the best behaved nodes, we use supervised RWs (sRWs) where
the weights assigned to each edge are learned and optimized
during the previous time window. We compare sRW with
simple RW and naive mixed RW. For each edge eij , we assume
that the vector  ij (see Section II-B) keeps all the properties
of node j presented in Section V.

The computation of the optimal weights for sRW starting
from a node i includes the computation of the vector ui,
which is the solution of the multimodal optimization problem
presented in Section II-B. Due to its multimodality, this
optimization problem is very computationally expensive and
so, we need to further reduce the cost of computation. We
observe that the vast majority of nodes in our graphs interact
with other nodes that are only a few hops away. In Figure 4, we
present the probability of interaction between two nodes in our
graph as a function of their distance just before they interact.
As we see, our graphs exhibit a high locality of interaction,
which implies that we can reduce the cost of the computation
of reputations by pruning the graph which is traversed by the
random walks started at an initiator node without losing much
on the performance. We observe that in all graphs but random
graphs, more than 90% of pairs of interacting nodes have a
distance of at most 3 hops just before they interact. Therefore,
here, we use random walks with length of 3 hops.

In Figure 5, we present the correlation between the reputa-
tions of nodes as computed by RW, nRW, and sRW, and their
future behavior. For sRW, we start the random walks from
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Figure 5: The correlation between the reputations of nodes as computed by simple, naive and supervised Random Walks and
their future behavior for consecutive time windows.

Table IV: The size of the intersection of the top-5 most highly
reputed nodes at time t ·W and the top-5 best behaved nodes
at time (t+ 1) ·W averaged over all t.

simple RW naive RW supervised RW

Random 0.09 0.24 0.26
Scale-free 2.5 3.10 3.14
Bartercast 1.75 3.00 3.00
Citation 3.18 4.21 4.22

Facebook 1.24 1.53 2.14

the two most well connected nodes in each graph, due to the
high computational complexity of sRW. Our sRW outperforms
nRW and RW in all graphs. However, the computational cost
of sRW is much higher than nRW.

In Table IV, we present the size of the intersection of the set
of the top-5 most highly reputed nodes and the set of the top-5
best behaved nodes in the next time window averaged over all
consecutive time windows. In most graphs, the sRW identifies
the best behaved nodes only slightly better than nRW does.
Therefore, if we are only interested in the top ranked nodes,
nRW constitutes a good compromise between accuracy and
computational cost.

VII. BIASING RANDOM WALKS IN THE FACE OF
SYBIL ATTACKS

In this section, we bias RWs with node properties in order
to increase their resilience against sybil attacks. Our aim is to
make RWs stay away from malicious nodes and sybils so that
the reputations assigned to such nodes are low. We bias only
nRWs because for sRWs we cannot have a meaningful training
set [31], since we have not observed any sybil attack in our
datasets. Nevertheless, our experimental evaluation shows that
even nRWs drastically reduce the effect of sybil attacks.

Most of the schemes proposed against sybils attacks in the
literature [15], [32] are based on the observation that the sybil
nodes can create only a limited number of edges to honest
nodes because interacting with honest nodes requires a high
social engineering cost [33]. As a result, the honest nodes
form a region that is well separated from the sybil region
containing the sybil nodes. The sybil nodes connect with each
other and with the malicious nodes in an arbitrary way. The
two regions are connected by the attack edges that link nodes
in the sybil region to victim nodes in the honest region. The
probability that an RW escapes to the sybil region depends on

the number of attack edges and the visit ratios of the RW to the
victims, but not on the topological characteristics of the sybil
region [15]. In our experiments, we take as the honest region
our initial graph G = (V,E). Since the topology of the sybil
graph is not important, we create a sybil graph Gs = (Vs, Es)

using the BA model [28]. Then, we chose some sybil nodes
from Gs and some prespecified victim nodes from G, and
connect them through the corresponding attack edges Ea. The
resulting graph is G0

= (V 0, E0
) where V 0

= {V [ Vs} and
E0

= E [ Es [ Ea. To chose the victim nodes in G we use
two approaches. Either the victims are chosen uniformly at
random, or the malicious nodes try to increase their impact
and attack highly reputed nodes by choosing the victims
with probabilities proportional to their reputations. The latter
selection of victims is also known as centrality attack [34].

The properties of nodes used to bias RWs must not depend
on the topological properties of the sybil region. Therefore, we
do not use global properties of nodes, but we use the following
local and the temporal properties:

• The similarity of two nodes i and j with neighborhoods
Ni and Nj , respectively, defined by the Jaccard similarity
(|Ni\Nj |/|Ni[Nj |), which assumes that two nodes are
similar if they have many common neighbors.

• The weight of an edge eij connecting two nodes i and j,
indicating the strength of the corresponding interaction,
as mentioned in Section II-B.

• The inverse log-weighted similarity between two nodes
i and j, defined as the number of their common neigh-
bors weighted by the inverse logarithm of their degrees
(
P

k2|Ni\Nj |(1/ log[d(k)]), where d(k) is the degree of
node k). It assumes that two nodes are similar if they
have low-degree common neighbors [35].

• The time tij that an edge eij is created.
The nodes in the sybil region can claim any values for

these properties without affecting the probability of a RW
escaping from an honest node to the sybil region. Since in
order to escape to the sybil region, the RW has to traverse an
attack edge, the properties of the nodes adjacent to the attack
edges determine the probability that an RW escapes into the
sybil region. We assume that it is more costly for an attacker
to create an attack edge with a large weight than an attack
edge of a low weight and so, attacks edges of low weights
are more common. Therefore in our experiment, we assign
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Figure 6: The escape probability to the sybil region of the simple and the biased Random Walks versus the ratio of the number
of attack edges and the number of honest nodes when the victims are chosen uniformly at random.
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Figure 7: The escape probability to the sybil region of the simple and the biased Random Walks versus the ratio of the number
of attack edges and the number of honest nodes when the victims are chosen with probabilities proportional to their reputations.

probabilistically a weight to each attack edge so that, attack
edges with small weights are more common. For the time
the attack edges have been created, we assume that they are
uniformly distributed over time. We bias the nRW with each
of the properties defined above, and we correspondingly have
four types of nRWs: Jaccard nRW, weighted nRW, inverse
nRW, and temporal nRW.

In Figure 6, we show the escape probability of the different
RWs versus the ratio of the number of attack edges and the
number of honest nodes when victims are chosen uniformly at
random. Due to the large size of most of our graphs, the results
are the average escape probability with 500 nodes performing
the corresponding RW with teleportation parameter ↵ = 0.15.
The effect of parameter ↵ on the escape probability is not
assessed in this paper. However, there is a first study on this
effect in [11].

The real-world graphs where the honest nodes form a well
connected region, have the smallest escape probability for all
types of RWs, while the synthetic graphs have the largest. The
type of nRW giving the smallest escape probability depends
on the topology and the characteristics of the graph. In the
random, scale-free, and Citation graphs, the weights take
values in a small range and so, the weighted nRWs perform
similarly to simple RW. In these graphs, inverse nRW results
in the smallest escape probability, especially in the Citation
graph, which has a large clustering coefficient indicating that
nodes share many neighbors. On the other hand, in Bartercast,
where the weights can vary from a few KB to several MB, the
weight of an edge indicates accurately the trust between the
interacting nodes and so, weighted nRW results in an escape
probability that is almost zero, even though the number of
attack edges is relatively high. On the contrary, due to its small

clustering coefficient which is smaller than the corresponding
random graph, the Jaccard and inverse nRWs result in escape
probabilities similar to that of simple RW. Nevertheless, the
Jaccard and inverse nRWs result in small escape probabilities
for all the graphs but Bartercast. The temporal nRW performs
better in Facebook, resulting in an escape probability that is
almost zero because two nodes with many fresh interactions
between them trust each other.

In Figure 7, we show the escape probabilities of different
RWs when the victims are chosen with probabilities propor-
tional to their reputations. Counter-intuitively, when malicious
nodes use this targeted attack instead of randomly choosing
victims, the escape probability is smaller for all types of RWs.
The most highly reputed nodes attract the majority of the
attack edges while they also have many edges from honest
nodes connected to them. As a result, an RW visiting them
has a lower probability to traverse an attack edge even though
highly reputed nodes are visited with a higher probability
by RWs. Nevertheless, in a random graph the difference
between the impact of the two types of sybil attack on the
escape probability is very small due to the homogeneity of
its nodes. Furthermore, in all graphs, inverse nRW gives a
smaller escape probability than Jaccard nRW because low-
degree nodes usually have low reputations and are not targeted
by the malicious nodes.

VIII. CONCLUDING DISCUSSION

Our evaluations indicate that using node properties improves
a lot the resilience of RWs against uncooperative nodes and
Sybil attacks. Concluding, our results imply the following.

First, the time window used for observing a graph depends
on the characteristics of the graph. In graphs such as Citation,
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where the creation of an edge requires large effort and time,
the time window can be large, for example a year, and still
follow accurately the dynamics of nodes. On the contrary, in
graphs such as Bartercast graph, where the creation of edges
is easier, we need a smaller time window, for example a day.

Secondly, the prediction of the behavior of nodes depends
on the characteristics of the graph. Predicting the behavior of
nodes is very accurate in graphs with both specific construction
patterns and nodes with heterogenous properties, such as the
scale-free, Citation and Facebook graphs. In graphs of nodes
with uniform properties and highly dynamic behavior, biased
random walks predict less accurately the behavior of nodes
but still much better than simple RW.

Furthermore, the appropriate node properties to bias random
walks against Sybils depend on the characteristics of the graph.
In graphs with large clustering coefficient, such as our scale-
free, Facebook and Citation, RW biased with node similarities,
especially inverse log-weighted similarity, are very effective.
In graphs with edges with heterogenous strengths, such as
Bartercast and Facebook, biasing RW with the strength of
an edge is very effective while using temporal properties is
effective in graphs with strong temporal patterns.

In most of our graphs, random walks biased with very
simple node properties with low computational cost such as,
the degree, the weights, and the age, perform very well against
uncooperative nodes or sybil strategies. Biasing random walks
does not necessarily add a lot of extra computational cost
and as a result, biased random walks can be easily used in
decentralized systems where nodes have limited resources.

In this paper, we have shown that node properties enhance
a lot the robustness of RW against exploitative nodes. Never-
theless in a distributed environment, nodes do not necessarily
have access to the properties of other nodes, nor the infor-
mation to compute them. Nodes can exchange their properties
using a gossip-like protocol, but this is not reliable due to
potential misreporting by some nodes. A reliable alternative
is the use of a system like Bartercast [12], where the nodes
store locally their own perception of the graph and then they
can compute the properties of the nodes in their locally stored
graph. Moreover, directing most of the RWs through nodes
with particular properties results in overloading those nodes.
This overload might cause even the failure of some highly
reputed nodes and thus, it must be studied before adopting
biased RW.

ACKNOWLEDGEMENT

This work was partially supported by the European Union
and the European Social Fund through project FuturICT.hu
(grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).

REFERENCES

[1] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop
reputations for peer to peer file sharing workloads,” in NSDI’08, 2008.

[2] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust incentive
techniques for peer-to-peer networks,” in ACM EC, 2004.

[3] D. Quercia and S. Hailes, “Sybil attacks against mobile users: friends
and foes to the rescue,” in INFOCOM, 2010.

[4] R. Chakravorty, S. Agarwal, and S. Banerjee, “Mob: A mobile bazaar
for wide-area wireless services,” in ACM MobiCom, 2005.

[5] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in p2p networks,” in WWW, 2003.

[6] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” Technical Report 1999-66, 1999.

[7] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating web spam
with trustrank,” in VLDB, 2004.

[8] J. Hopcroft and D. Sheldon, “Manipulation-resistant reputations using
hitting time,” in Conference on Algorithms and models for the web-
graph, 2007.

[9] Z. Gyongyi and H. Garcia-Molina, “Web spam taxonomy,” in AIRWeb,
2005.

[10] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and
defense techniques for reputation systems,” ACM Comput. Surv., 2009.

[11] A. Mohaisen, H. N, and K. Y., “Keep your friends close: Incorporating
trust into social network-based sybil defenses,” in INFOCOM, 2011.

[12] R. Delaviz, N. Andrade, and J. A. Pouwelse, “Improving accuracy and
coverage in an internet-deployed reputation mechanism,” in P2P, 2010.

[13] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D. H. J. Epema, M. Reinders, M. R. van Steen, and H. J. Sips, “Tribler:
a social-based peer-to-peer system,” Concurr. Comput.: Pract. Exper.,
2008.

[14] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in ACM WOSN, 2009.

[15] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit: A
near-optimal social network defense against sybil attacks,” in IEEE
Symposium on Security and Privacy, 2008.

[16] G. Ghoshal and A.-L. Barabási, “Ranking stability and super-stable
nodes in complex networks,” Nature Communications, 2011.
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