
A Multidimensional Branch-and-Prune Method for

Interval Global Optimization ∗

Tamás Vinkó (tvinko@inf.u-szeged.hu)
Reseacrh Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary

Dietmar Ratz (ratz@aifb.uni-karlsruhe.de)
Department of Applied Informatics and Formal Descriptions, University of
Karlsruhe, Karlsruhe, Germany

Abstract. In this paper a new multidimensional extension of the recently developed
one-dimensional enclosure method called kite is given for interval global optimiza-
tion. A more sophisticated version of the pruning technique based on the kite
method is introduced. By the new componentwise approach all the one-dimensional
theoretical results and procedures can be used in the higher dimensional case. The
possibilities in the implementation of the new algorithm together with numerical
results on 40 standard test problems are presented.

Keywords: Interval methods, global optimization, inclusion function, pruning, kite

AMS classification: 90C30, 65K05

1. Introduction

In a recent paper a new inclusion function called kite enclosure has
been developed and investigated for global optimization for the one-
dimensional case [12]. The aim of the present paper is to give an
extension of those results for the multidimensional problems. Consider
the problem of finding all solutions x∗ of

min
x∈X

f(x) (1)

where the objective function f : D ⊆ Rn → R is continuously differen-
tiable and X ⊆ D is the search box representing bound constraints for
x. We wish to find the set of all global minimizers x∗ and the global min-
imum value f(x∗). With interval global optimization algorithms based
on branch-and-bound methods [3, 4, 9] we can provide guaranteed and
reliable solutions for the problem (1).

In the following real numbers are denoted by lower case letters
(a, b, . . .) and real bounded and closed n-dimensional intervals by cap-
ital letters (X,Y, . . .). The set of compact intervals is denoted by I :=

∗ This work has been supported by the grant OTKA T 034350

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

bnp.tex; 25/02/2005; 12:45; p.1



2 A Branch-and-Prune Method for Optimization

{[a, b] | a ≤ b; a, b ∈ R}. In general the lower and the upper bounds of
an interval X = X1 × . . .×Xn are denoted by X and X, respectively.
The range of the function f on X is denoted by f(X). We call a function
F : In → I an inclusion function of f in X if x ∈ Y implies f(x) ∈ F (Y )
for all Y ∈ I(D) ⊆ In, where I(D) stands for all intervals in D. Applying
automatic differentiation [2, 4, 6] we are able to compute inclusion
functions for the derivatives without additional human interaction. An
enclosure of the gradient vector f ′(y) is denoted by F ′(Y ), while the
ith component of this vector by F ′i (Y ) = [Li, Ui]. For all i = 1, . . . , n
the inequality LiUi < 0 is supposed in this work.

The detailed forms of the branch and bound algorithm used in this
paper can be found in [2, 3, 4, 9]. Here a new accelerating tool is
investigated which is based on the pruning possibilities of the one-
dimensional kite method.

2. Componentwise extension of the kite enclosure method

In the one-dimensional case the kite inclusion function is simply the
simultaneous usage of the linear boundary value form [7] and the cen-
tered form [8] with a proper selection of the center point. For higher
dimension the extension of the linear boundary value form exists (see
[5] for details). The centered form is also available for multidimensional
functions. However, the simultaneous usage of them is in general dif-
ficult to realize. In the following an effective and easier to implement
way of the extension is given.

In [11] the centered form and a pruning method based on slopes is
developed for the multidimensional case in a componentwise manner.
The extension of the kite enclosure together with the pruning effect is
also possible in this way. In the following this approach is discussed.

Let f : D ⊆ Rn → R and Y = Y1 × . . . × Yn ⊆ D. Let us define
gi : Yi ⊆ R→ I (i ∈ {1, . . . , n}) by

gi(w) := f(Y1, . . . Yi−1, w, Yi+1, . . . , Yn), w ∈ Yi.
Using this one-dimensional interval valued function we are able to use
the one-dimensional version of the kite enclosure method. If we have
V ⊇ gi(Y i),W ⊇ gi(Yi) and Z ⊇ gi(ci) where (ci ∈ Yi), then the
componentwise kite enclosure can be built up with the usage of the
componentwise centered form, i.e.

FCF (Y, c, i) = Z + F ′i (Y )(Yi − ci), (ci ∈ Yi), (2)

and the componentwise linear boundary value form

FLBV F (Y, i) =
UiV − LiW
Ui − Li

+ (Yi − Y i)
LiUi
Ui − Li

. (3)

bnp.tex; 25/02/2005; 12:45; p.2



T. Vinkó and D. Ratz 3

The simultaneous usage of the formulae (2) and (3) leads to the follow-
ing result.

THEOREM 1. Let FK(Y, c, i) = min{yR(c, i), yT (c, i)}, where c ∈ Y ,

yR(c, i) =
UiV − LiZ + UiLi(ci − Y i)

Ui − Li
,

yT (c, i) =
UiZ − LiW + UiLi(Yi − ci)

Ui − Li
,

Z ⊇ gi(ci), V ⊇ gi(Y i) and W ⊇ gi(Yi), and i = 1, . . . , n. Then

max{FLBV F (Y, i), FCF (Y, c, i)} ≤ FK(Y, c, i) ≤ f(Y ) (4)

hold for every i = 1, . . . n.

Proof. One can proceed the proof of the Proposition 2 from [12] for
all i = 1, . . . , n. 2

Note that Theorem 1 tells that the componentwise kite method is
not worse than the componentwise centered form or the componentwise
linear boundary value form (for the same component Yi of the interval
Y ).

In the formula (4) the parameter c can be set to be optimal. That
is we can find the point c∗ such that

FK(Y, c∗, i) = max
c∈Y

FK(Y, c, i) = max
c∈Y

min{yR(c, i), yT (c, i)}. (5)

To obtain this optimal c∗ the Theorem 1 of [12] can be used for every
coordinate direction. Note that here the value c∗ depends on the interval
Y and the direction i, i.e. if i 6= j then the value c∗(Y, i) is usually not
equal to the value c∗(Y, j). From [12] we know that the point c∗(Y, i)
is not always unique and it can be given as a solution of a nonlinear
equation, which has the form αigi(z) + βi = 0 (αi, βi, z ∈ R). In the
implementation we usually do not compute the exact value of c∗(Y, i),
only an approximation of it is given using the same technique as in the
one-dimensional case. For details see [12].

From the formula (4) or even from (5) a lower bound for f(X) can be
obtained: the value max1≤i≤n FK(Y, c, i) is always less than or equal to
f(Y ). However, the centered form or the multidimensional extension of
the linear boundary value form can give a better (greater) lower bound
for the range of the objective function in general. To compute a lower
bound for the value f(Y ) with the componentwise kite inclusion 3n
function evaluations (2 evaluations at the endpoints and 1 evaluation at

bnp.tex; 25/02/2005; 12:45; p.3



4 A Branch-and-Prune Method for Optimization

the centers) and one gradient evaluation are needed. Thus, the compo-
nentwise versions of the inclusion functions above are not recommended
to be used in the interval global optimization algorithms. It is why this
approach is used better in the construction of a new accelerating tool.

3. Componentwise pruning in higher dimension

Using the computed value needed for the construction of the compo-
nentwise kite inclusion function a pruning method can be developed.
The following theorem proves the correctness of the necessary formulae.

THEOREM 2. Let Y ⊆ X ⊆ In be the current considered subinterval,
c ∈ Y , F ′(Y ) be an enclosure of the gradient of f(Y ), and f̃ be the
current guaranteed upper bound for the global minimum value. If we
have Z ⊇ gi(ci), V ⊇ gi(Y i) and W ⊇ gi(Yi),

pi = Y i +
f̃ − V
Li

, qi = ci +
f̃ − Z
Ui

,

ri = ci +
f̃ − Z
Li

, si = Yi +
f̃ −W
Ui

,

then for every i ∈ {1, . . . , n} the following statements hold.

(a) If f̃ < min{V ,W,Z} then all the global minimizer points of Y are
contained in the intervals Y1× . . .× Yi−1× [pi, qi]× Yi+1× . . .× Yn
and Y1 × . . .× Yi−1 × [ri, si]× Yi+1 × . . .× Yn.

(b) If W ≤ f̃ < min{V ,Z} then all the global minimizer points of Y
are contained in the intervals Y1×. . .×Yi−1×[pi, qi]×Yi+1×. . .×Yn
and Y1 × . . .× Yi−1 × [ri, Yi]× Yi+1 × . . .× Yn.

(c) If V ≤ f̃ < min{Z,W} then all the global minimizer points of Y
are contained in the intervals Y1×. . .×Yi−1×[Y i, qi]×Yi+1×. . .×Yn
and Y1 × . . .× Yi−1 × [ri, si]× Yi+1 × . . .× Yn.

(d) If Z ≤ f̃ < min{V ,W} then all the global minimizer points of Y
are contained in the interval Y1×. . .×Yi−1×[pi, si]×Yi+1×. . .×Yn.

(e) If max{W,Z} ≤ f̃ < V then all the global minimizer points of Y
are contained in the interval Y1×. . .×Yi−1×[pi, Yi]×Yi+1×. . .×Yn.

(f) If max{V ,Z} ≤ f̃ < W then all the global minimizer points of Y
are contained in the intervals Y1×. . .×Yi−1×[Y i, si]×Yi+1×. . .×Yn.

bnp.tex; 25/02/2005; 12:45; p.4



T. Vinkó and D. Ratz 5

(g) If max{V ,W} ≤ f̃ < Z then all the global minimizer points of Y
are contained in the intervals Y1×. . .×Yi−1×[Y i, qi]×Yi+1×. . .×Yn
and Y1 × . . .× Yi−1 × [ri, Yi]× Yi+1 × . . .× Yn.

Proof. (a) Let x∗ ∈ Y ⊆ X be the global minimizer point and
let i ∈ {1, . . . , n} be arbitrary but fixed. First, we have to show that
pi ≤ x∗i holds. Since f̃ < V is supposed and V ≤ f(x∗) then x∗i 6= Y i.
From the inequalities

Li ≤
f(x∗)− V
x∗i − Y i

≤ f̃ − V
x∗i − Y i

we have (x∗i − Y i)Li ≤ f̃ − V . Then since

x∗ ≥ f̃ − V
Li

+ Y i = pi

holds because Li < 0 was supposed.
To prove that x∗i is not included in the open interval (qi, ri) first we

suppose that x∗i < ci holds. Then from

Ui ≥
f(x∗)− Z
x∗i − ci

we have Ui(x
∗
i − ci) ≤ f(x∗)− z ≤ f̃ − Z. From these inequality

x∗i ≤ ci +
f̃ − Z
Ui

= qi

holds. Now suppose that x∗i > ci. Then from

Li ≤
f(x∗)− Z
x∗i − ci

≤ f̃ − Z
x∗i − ci

we have (x∗i − ci)Li ≤ f̃ − Z. Then

x∗i ≥ ci +
f̃ − Z
Li

holds because x∗i − ci > 0 and Li < 0 were supposed. The case x∗i = ci
is not possible, because Z = gi(ci) > f̃ was supposed and f̃ ≥ f(x∗).

Finally, from

Ui ≥
f(x∗)−W
x∗i − Yi

≥ f̃ −W
x∗i − Yi

bnp.tex; 25/02/2005; 12:45; p.5



6 A Branch-and-Prune Method for Optimization

we have (x∗i − Yi)Ui ≤ f̃ −W . Then

x∗i ≤ Yi +
f̃ −W
Ui

holds because Ui > 0 by our earlier assumption. With this we completed
the proof of the case (a).

The proof of cases (b)–(g) are similar to the case (a) thus we have
omitted them. 2

Based on the Theorem 2 we can conclude that in any case if Yi =
[Y i, Yi] and ((pi > Y i) ∧ (si < Y i)) or ((qi < Y i) ∧ (ri > Yi)) then
the whole subinterval Y can be rejected: it does not contain any global
minimizer points.

4. Proposed algorithm

Now we give the algorithmic description of the new branch-and-prune
global optimization method based on the above results.

Step A Let X be the starting interval. Compute F (X), F ′(X), ini-
tialize WorkList = {(X,F (X), F ′(X))}, ResultList = {}, and the
guaranteed upper bound f̃ = F (c) for the global minimum value.

Step B While WorkList is not empty do the following steps.

Step C Get (Y, F (Y ), F ′(Y )) from the WorkList and for every coor-
dinate direction of Y do the following steps.

Step C.1 Compute the componentwise kite enclosure for the ith

coordinate.

Step C.2 Apply the pruning method based on the kite for the ith

coordinate.

Step D For the subintervals Ui (i = 1 . . .m ≤ n+ 1) produced by the
pruning do the following steps.

Step D.1 Compute F (Ui), F
′(Ui). Apply the monotonicity and

the midpoint tests.

Step D.2 Compute the centered form for Ui (and improve f̃ if it
is possible).

Step D.3 If the stopping criterion holds for the current interval
then put it to the ResultList else put it (together with the
values F (Ui), F

′(Ui)) to the WorkList.

bnp.tex; 25/02/2005; 12:45; p.6



T. Vinkó and D. Ratz 7

Step E Go back to Step B.

First of all it must be emphasized that in this new algorithm the
componentwise kite enclosure is used as a pruning step (i.e. an accel-
erator) and not only as an inclusion function. To obtain a (possibly)
better enclosure of the objective function on the current subinterval
the original centered form is used (in Step D.2). This is done so since
the centered form gives usually a better (higher) lower bound than the
componentwise kite method. However, in the Step C the information
needed for the kite enclosure could be used to update the value f̃ .
Also, the candidate subinterval Y can be rejected if the inequality
f̃ < FK(Y, c, i) (i.e. a range test) is fulfilled.

In the Step C.2 a special splitting technique is used which was in-
troduced in [10]. This performs one component step according to the
following scheme:

1. Let V,W ⊆ Yi the intervals produced by the pruning step.

2. If W = V = ∅, then stop (there is no solution in Y ).

3. If V 6= ∅, then set Yi := V and store Y.

4. Set Yi := W and continue with next i.

With this method the pruning procedure produces at most n+1 subin-
tervals. If pruning is possible in an iteration step, then the inclusion
of the derivative is not computed in the next iteration (which deals
with the previously shrunk interval). Note that the Step C performs a
bisection if no pruning is possible.

In Step C it is not necessary to compute Yi in the fixed order i =
1, . . . , n. One can use a sorted index vector to obtain different orders
of the components. In our experience we have tried to use sorted index
vectors generated by interval branching rules from A to D [1]. We have
found that the best choice is the rule C based on the maximization of
the merit function

D(i) = w(F ′i (Y )(Yi −mid(Yi))), (6)

where w(X) and mid(X) denote the width and the midpoint of the
interval X, respectively. The new index vector t = (t1, . . . , tn) with
tk ∈ {1, . . . , n} and ti 6= tj for i 6= j, satisfies D(tk) ≥ D(tk+1), k =
1, . . . , n− 1.

According to our considerations above we can state that using the
proposed algorithm we cannot loose global minimizer points which are
in the starting interval X. In the pruning step for a given interval Y

bnp.tex; 25/02/2005; 12:45; p.7



8 A Branch-and-Prune Method for Optimization

if the value m is equal to zero then there is no global (with respect to
X) minimizer of f in Y .

5. Numerical results

This section deals with the discussion of the numerical results based on
the componentwise realization of the multidimensional kite enclosure
method and its pruning technique. The goal of the test is to demon-
strate the effect and the behavior of the new accelerating tool compared
to the traditional algorithm. The implementation of the algorithm given
in the Section 4 has been done on a Pentium III, 1GHz computer under
Linux operating system and in the environment of the C++ Toolbox
for Verified Computing [2]. For the comparison the new algorithm was
used without the Step C and in Step D the value m was set to be 2 (i.e.
only bisection was used). In the computational experiments 40 standard
test functions were taken from the literature. The stopping criterion was
fulfilled when the maximal width of the current subinterval was smaller
than 10−6 (except for the problems GP, Sch27, Sch214, G7, R5, R6,
R7, R8, EX2 where this number was 10−2.)

Our numerical experience shows that in the computation of the com-
ponentwise kite enclosure using the formula (5) the resulted intervals
gi(Y i), gi(ci), gi(Yi) could be very large. In this case the pruning usually
cannot be used because of that large overestimations. For this reason
the algorithm leaves the pruning step (Step C) and do a bisection if
one of the width of the intervals gi(Y i), gi(ci), gi(Yi) is greater than a
specified heuristic parameter. In our tests this parameter was set to be
max{D(t1), 100}, where D is the merit function defined in (6). Using
this modification the total computational effort can be reduced.

Both algorithms were able to solve all the test problems. The numer-
ical results are summarized in Table I. The given efficiency indicators
are the number of the function evaluations (F-eval), the number of
the derivative evaluations (D-eval), the maximal list length necessary
(MLL) and the CPU time in seconds (CPUt). In the last but one row
Σ denotes the sum of the given efficiency indicators followed by the
relative compound indicator for the new method compared to the old
one as per cents. The last row contains the average of the percentages
(AoP) for the respective columns.

Summarizing the results we can conclude that the number of func-
tion evaluations were larger for 24 test functions for the new method.
It is understandable since the construction of the componentwise kite
needs more function evaluations at the borders of the considered subin-

bnp.tex; 25/02/2005; 12:45; p.8



T. Vinkó and D. Ratz 9

Table I. Numerical results of the basic and the kite pruning algorithm.

Problem F-eval. D-eval. MLL CPUt

name dim. old new % old new % old new % old new %

S5 4 281 450 160 179 177 98 9 9 100 0.36 0.55 152

S7 4 291 478 164 183 184 100 12 12 100 0.50 0.79 158

S10 4 291 478 164 183 184 100 12 12 100 0.71 1.12 157

H3 3 1,338 1,232 92 889 683 76 21 13 61 1.07 0.99 92

H6 6 3,654 4,705 128 2,399 1,767 73 118 79 66 9.01 10.87 120

GP 2 15,991 24,043 150 8,653 7,696 88 798 761 95 8.32 10.76 129

SHCB 2 1366 1,896 138 859 750 87 60 57 95 0.31 0.38 122

THCB 2 874 848 97 563 291 51 24 17 70 0.15 0.13 86

BR 2 1,278 769 60 831 297 35 17 10 58 0.26 0.14 53

RB 2 460 559 121 283 252 89 11 12 109 0.07 0.07 100

RB5 5 2,582 2,775 107 1,601 1,445 90 58 58 100 1.93 1.93 100

L3 2 2,522 2,481 98 1,629 671 41 119 98 82 1.40 1.22 87

L5 2 587 933 158 385 285 74 29 37 127 0.36 0.53 147

L8 3 237 282 118 153 150 98 9 9 100 0.13 0.15 115

L9 4 315 369 117 203 200 98 12 12 100 0.27 0.30 111

L10 5 393 453 115 253 251 99 15 15 100 0.48 0.54 112

L11 8 627 709 113 403 401 99 24 24 100 1.90 2.09 109

L12 10 783 878 112 503 501 99 30 30 100 3.71 4.15 111

L13 2 162 229 141 103 96 93 7 6 85 0.04 0.05 125

L14 3 243 329 135 153 145 94 10 11 110 0.10 0.13 130

L15 4 323 436 134 203 194 95 13 14 107 0.21 0.27 128

L16 5 388 514 132 243 238 97 16 12 75 0.37 0.46 124

L18 7 542 708 130 339 334 98 22 16 72 0.91 1.13 124

Sch21 2 2,004 2,125 106 1,249 868 69 36 31 86 0.47 0.45 95

Sch31 3 253 357 141 153 159 103 3 5 166 0.08 0.11 137

Sch25 2 649 736 113 415 323 77 8 8 100 0.10 0.10 100

Sch27 3 708,262 28,505 4 472,269 15,726 3 45,364 1,901 4 9,597.84 53.44 0

Sch214 4 15,771 11,692 74 10,317 6,399 62 382 355 92 6.92 4.47 64

Sch218 2 2,022 2,393 118 1,215 1,140 93 18 18 100 0.26 0.28 107

Sch32 3 866 863 99 545 411 75 13 10 76 0.21 0.20 95

Sch37 5 8,830 8,766 99 5,887 5,823 98 32 32 100 5.84 5.67 97

Sch37 10 559,102 557,054 99 372,735 370,687 99 1,024 1,024 100 2,070.49 2,026.59 97

G5 5 14,590 1,741 11 9,727 705 7 32 32 100 11.28 1.25 11

G7 7 43,774 11,578 26 29,183 2,855 9 128 128 100 64.03 13.45 21

R4 2 2,454 1,390 56 1,615 633 39 72 32 44 0.41 0.20 48

R5 3 33,386 14,727 44 22,251 8,893 39 1,024 512 50 28.48 10.16 35

R6 5 52,558 31,543 60 35,023 19,881 56 1,024 768 75 91.02 48.48 53

R7 7 71,730 44,337 61 47,795 28,349 59 1,024 768 75 203.42 112.16 55

R8 9 90,902 79,971 87 60,567 51,541 85 1,024 896 87 409.26 328.78 80

EX2 5 425,349 690,379 162 279,673 213,027 76 13,236 12,007 90 2,428.82 2,556.78 105

Σ 2,068,030 1,534,711 74 1,371,812 744,612 54 65,890 19,851 30 14,951.50 5,270.99 35

AoP 106 76 89 97

tervals. In such cases the new method cannot solve the problems faster
than the old one.

The number of the derivative evaluations were smaller for the new
method in almost every cases. Actually, this number refers to the num-
ber of the iteration steps in the algorithms, thus we can see that the
new and the old method converge in a different path in the branch-
and-bound tree to the global optimizier points.

The memory complexity was smaller for the new method, it puts
much less subintervals to the list of the candidate intervals. The total

bnp.tex; 25/02/2005; 12:45; p.9



10 A Branch-and-Prune Method for Optimization

CPU time used by the new algorithm is 35% of that of the old method
showing a computation time saving for the whole set of test problems.
However, calculating the average of the percentages for each of the
problems we obtain 3% improvement. From these two indicators we
can conclude that the new algorithm can perform better on the harder
to solve problems.

We can conclude from the indicators that the new method is not
better for the Shekel functions (S5, S7, S10). On the other hand for
the problems of Ratz (R4 – R8) the proposed algorithm performs well.
The largest improvements were achieved for the Schwefel-27 (Sch27)
and the Griewank problems (G5, G7).

Summarizing the numerical results we can conclude that the new
algorithm using the pruning technique proved to be better than the
traditional one on the test problems. The improvements are larger on
the harder to solve problems.

References

1. T. Csendes and D. Ratz. Subdivision direction selection in interval methods
for global optimization. SIAM Journal on Numerical Analysis, 34(3):922–938,
1997.

2. R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. C++ Toolbox for Verified
Computing I: Basic Numerical Problems: Theory, Algorithms, and Programs.
Springer-Verlag, Berlin, 1995.

3. E. Hansen. Global Optimization Using Interval Analysis. Marcel Decker, New
York, 1992.

4. R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, Boston,
1996.

5. F. Messine and J.-L. Lagouanelle. Enclosure methods for multivariate differ-
entiable functions and application to global optimization. Journal of Universal
Computer Science, 4(6):589–603, 1998.

6. R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadel-
phia, 1979.

7. A. Neumaier. Interval Methods for Systems of Equations. Cambridge
University Press, Cambridge, 1990.

8. H. Ratschek and J. Rokne. Computer Methods for the Range of Functions.
Ellis Horwood, Chichester, 1984.

9. H. Ratschek and J. Rokne. New Computer Methods for Global Optimization.
Ellis Horwood, Chichester, 1988.

10. D. Ratz. Automatische Ergebnisverifikation bei globalen Optimierungsproble-
men. PhD thesis, Universitaet Karlsruhe, 1992.

11. D. Ratz. Automatic Slope Computation and its Application in Nonsmooth
Global Optimization. Shaker-Verlag, Aachen, 1998.

12. T. Vinkó, J.-L. Lagouanelle, and T. Csendes. A new inclusion function for
optimization: Kite – the one-dimensional case. Journal of Global Optimization
30:435–456, 2004.

bnp.tex; 25/02/2005; 12:45; p.10


