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Abstract Most of the users of a BitTorrent community participate intiple swarms,
usually simultaneously as uploader and downloader. Thaigtier-swarm aspect of
the bandwidth resource allocation has high relevance imltperithm design of de-
ployed BitTorrent clients. This inter-swarm connectionsoag the users of a BitTor-
rent community can be represented by a flow network of spstiatture. Using this
representation it has been demonstrateddbhdactosolutions to the resource alloca-
tion in BitTorrent communities are suboptimal. In this pape investigate this con-
clusion in more details using graph measures and optirizaéichniques. We find
that BitTorrent communities are sensitive for removal aftty contributing users,
that the inter-swarm connectivity can lead to differentf@enance results, and that
torrent selection mechanisms can hardly improve the aeatagnload performance
of users. Regarding the theoretical optimum of the disaigseblem we show that
it does not necessary comply with the BitTorrent protocol.

Keywords BitTorrent- private communities resource allocationflow networks-
network science

1 Introduction

Resource allocation problems in distributed systems catefiaed in various ways
[1]. Focusing on the allocation of bandwidth, one particgaal is to maximize the
total throughput of the system. Although simple solutiomshis problem does not
usually lead to fair allocations [2], it maximizes the awgalownloading speed of
the users in the system. This paper deals with this partiputdlem in the context of
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the most widely used distributed content sharing systetiToBient [3]. At its high-
est level, BitTorrent is a collection agiwvarms A swarm consists three components:
content, seeders and leechers. Thatentin a swarm is a file or collection of files
to be shared by the participating users, who arestedersand leechers Seeders
are those users who have and share the complete copy of ttentdreechers are
the other type of users, those who are actually downloadiiagontent. Thaizeof

a swarm is the number of leechers and seeders in that swarenofdhe smartest
ideas behind BitTorrent is that the content is split into Brpices and during the
downloading phase, leechers exchange pieces among tivesisehus leechers can
also be uploaders. This idea makes the BitTorrent protcagl &fficient (in terms of
downloading speed) and highly scalable (the larger theravg@ze the more efficient
the network is).

After finishing the download of the requested content, thEdsrent protocol,
by definition, does not require to stay in the swarm as aceesgler. This situation
can easily lead to dead swarms, i.e. seedless swarms. Osiblp@nd quite popular
solution for this problem is setting up a BitTorrestmmunity{4, 6]. In these com-
munities a server, also calledracker, requests the users to register themselves and
it maintains a database about the user’s activity. Thouighstiiution brakes the dis-
tributive aspect of the BitTorrent ecosystem, it usuallde to a very attractive and
efficient content sharing systems. This is due to the s@edahlaring ratio enforce-
mentin which the users are obliged to seed up to a prescribed dyttedownload
ratio!, usually around 0.7. This means that after downloading 1&Rent, the user
must upload at least 0.7GB.

This paper puts forward the investigation of ih&er-swarmconnections within
a community done in the papers [8,9]. The inter-swarm resoatlocation is con-
cerned with the fact that many BitTorrent users are takimgipanultiple torrents at
the same time, usually both as leecher and seeder. ThusijtifeerBnt clients have
built-in mechanisms to make decisions on which torrentg #euld be seeding in
and how the bandwidth should be divided among the swarmsatesparticipating
in. As it was demonstrated in [9], the currently applied fols can perform as low
as 50% compared to the optimal. With further experimentalyesis we show (i) how
sensitive a BitTorrent community could be to removal of esér) what is the role of
inter-swarm seeding, and (iii) if it is possible to improve tefficiency with different
torrent selections. We will also investigate the theoegtipper bound and show that
it does not necessary fulfil the requirements of the BitTarpgotocol.

2 Models and Datasets
2.1 Graph models
This paper attempts to investigate some part of the corriasf Capdi et al.[9],

namely the inter-swarm bandwidth allocation problems iT&irent communities re-
garding the maximum throughput. For that reason here wehessaime flow network

1 Other seeding incentive mechanisms are existing and suatigssfed in communities, e.g. based on
effort [7]
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Table 1 Model parameters describing a BitTorrent community

Notation  Definition

set of users in the community

|

T set of torrents in the community

S, L set of seeders and leechers participating in totrent
i, & upload and download bandwidth of user

Ni library of user

model as it was already defined and used in [9]. For the sakkeeafdmpleteness, the
most important definitions are repeated here.

We use the notations summarized in Table 1. The inter-swarmections in a
BitTorrent community at a certain time instri$ represented by the flow network
G = (V,E, f,c), whereV is the set of verticest is the set of edged, is the flow
function, andc is the capacity function. This is a directed bipartite graghereV
is the disjoint union of three subsets of verticdsl. andD, and with each edge in
E connecting two vertices that are in distinct subsets. THase sets of vertices are
defined in the following way:

— the upload noded = {us,...,un} represent the upload potential of tireactive
users (both seeders and leechers);

— the leeching sessions nodes-= Uic| L; represent the participation of leechers in
torrents, wherej = {If | i € Li,t € T} is the set of leeching sessions of uger
and

— the download nodeB® = {d,...,d,} represent the download potential of the
leechers.

We can see that a users represented by the set of nodgs, d;} UL;. The set of
edge< represents the transfer potential from the upload nodéstddwnload nodes
through leeching session nodes. If useés leeching in a torrent, then there are
leeching edgeom u; to the leeching sessions of all other users in torreBimilarly,
if a useri is seeding in a torrenitthen there argeeding edgefsom u; to the leeching
sessions of all other users in torrénThe set of seeding edges is denotedshyAll
of the edges thus defined are caligdoad edgesFinally, to represent downloading,
the graph also has edges from the leeching session nodew/itbodal nodes. These
edges are calledownload edges

The capacity and flow functions & are defined as follows:

— thecapacity function cU ULUD — N represents the bandwidth of peers, where
c(uj) = pi is the upload bandwidth of usérc(l!) := e, andc(d;) := & is the
download bandwidth of usérand

— the flow function f: E — R™ represents the bandwidth allocation, having the
property of flow conservation: for dff € L the equalityy ey f(ui, 1) = (I}, d;)
holds.

It is easy to see that any flow 1@ is equivalent to a particular bandwidth allocation
in the corresponding BitTorrent communi®represents.

2 For the shake of simplicity we avoid the notion of time in thegiraodels.
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2.2 Network flow problems

Using the flow network model of BitTorrent communities as @&sadescribed in the
previous subsection now we define the two problems to be dered.

Maxflow Maximizing the throughput in a BitTorrent community is eeplent to
solve the maximum flow problem [17] in the community’s flowwetk representa-
tion. As it was used in the paper [9] the corresponding lipeagramming formalism
is the following

maXZ(ui,ltj)EE f(Ui,'E),
st yuif(u,lf) < Vuel,
th(lﬁadj)géj vd;j € D.

For solving the Maxflow problem on the actual graph instamezased theaxf | ow
function of theR/ i gr aph package, which is an implementation of the Goldberg—
Tarjan algorithm [18].

BTflow At any given point in time in a BitTorrent community, the tbtAroughput
produced by the online users is calBiiflow We consider this throughput value as
a result of a (suboptimal) flow network algorithm. In this pape use the simulator
written by Mihai Capai (Technical University of Delft, the Netherlands), whichsv
also used and validated in the paper [9]. We note here tHadwadh the simulator
is also providing us with the details about the total flow, what is the flow value
it puts to the edges, we do not intend to use this informatiothis paper. Our aim
is to see what kind of conclusions one can have using onlydta fiow value of
the BTflow. This means that our experiments in the followiegt®ns can be done
with any simulator or method which produces reasonablecqapiation of BTflow
values.

2.3 BitSoup, FileList

The investigated graphs are taken from the same dataseténu®d. These datasets
are measurement traces of two private BitTorrent comnesBitSoupandFileList.
The most important properties of the traces are summariz&lle 2. It can be
clearly seen that the two communities differ in all aspeés.it was done in [9],
one additional dataset is used here, which was derived fhenBitSoup trace in a
way that the seeding capacities got reduced of all usersoupe a dataset with an
overall ratio of two leeching sessions per seeding ses3iois. dataset, which will
be referred asSyntheticin the rest of the paper, represents characteristics of open
BitTorrent communities.

From these datasets the graph instances were createdserfimg the status of
the community with respect to the upload and download pi@tisniThe basic prop-
erties of these graphs are listed in Table 3. We will be usihindtances of BitSoup
and Synthetic, and 8 instances of FileList. The upload anchtttad capacities were
randomly selected from the measurement data of [21].
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Table 2 Properties of the datasets [9], with 95% confidence interfa@lmeans.

BitSoup [19] FileList [20]
Registered users 84007 91745
Total torrents 13741 3236
Mean active torrents 6869.6 + 30.8 512.2+10.2
Mean active sessions 76370.3+1135 32829.4+672.8
Mean seeders/leechers ratio 5.125 £ 0.155 3.65+0.2

Table 3 Basic properties of flow networks: number of nodes and edgesp§the set).

BitSoup FileList Synthetic
graph  nodes edges  |U| nodes edges U] nodes edges |U|

1 37266 1254129 16958 23705 1963645 12886 29039 478089 9713
2 41243 1526799 18128 25516 5673353 14364 32965 606040 10845
3 33651 934852 14622 27715 4341702 14193 26928 382925 8807
4 33261 739941 15193 26178 3331577 14236 25644 274148 8543
5 34075 1184615 15154 26731 2997262 15291 26791 537086 8812
6 36849 775404 16613 26215 6168009 13959 28872 272791 9628
7 33493 611714 15588 24719 3562633 13365 25471 198556 8576
8 29426 682401 13418 27796 4671512 14466 22672 312499 7577
9 30242 508129 14084 22718 187612 7644

10 37504 927018 16434 29747 472057 9863

3 Empirical results
3.1 Network robustness

In the first experiment we are interested to see what kind gfegedistribution our
graphs follow. A graph’s degree distribution functiBfk) shows what is the propor-
tion of nodes with degrele For a large set of real-world networks it has been shown
(e.g. [22]) that they are not random (i.e. their degree ithistion does not follow a
Bernoulli distribution function), rather their degreetdisutions are power-law type,

of form P(k) ~ k=7,

In order to see whether our graphs have power law degreédisdn we used the
power . | aw. fit function ofR/ i gr aph. More precisely, we investigated only the
degree of th&J nodes. The results are shown in Table 4. For the three contiggini
the obtaineda value, thexmin value (that is the index of the node from which the
graph follows power law degree distribution), and {h&alue of the Kolmogorov-
Smirnov goodness test (if the value is greater than 0.05 then the graph is power
law) are shown.

The obtainedr values are relatively large. In case of2r < 3 a power law graph
is also called scale free [23]. We got larger values here us@aphs should not be
called scale free. Interestingly, largevalue has been shown in networks of mobile
phone calls [24]. In these kind of networks, in which the rilsttion is decaying so
quickly, the usual characteristics of scale free netwasksli as hubs) are not present.
We can conclude, though, that the BitTorrent community hisagre of long-tail.
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Table 4 Power law degree distribution of graphs.

BitSoup FileList Synthetic
graph a Xmin  KS.p a Xmin KS.p a Xmin  KS.p
1 6.82 395 0.276 6.76 736  0.932 6.59 402 0.999
2 464 263 0.013 22.33 2190 0.999 548 287 0.518
3 485 227 0.207 10.07 1554 0.976 541 226 0.186
4 6.63 300 0.998 8.28 1111 0.493 8.89 335 0.999
5 10.62 628 0.993 8.28 1114 0.999 13.80 531 0.868
6 521 218 0.995 15.88 2231 0.846 5.54 147  0.783
7 5.30 183 0.934 12.15 1489 0.340 6.37 148 0.994
8 9.46 504 0.951 529 1116 0.001 21.37 550 1.000
9 5.04 193 0.785 7.00 177 0.963
10 5.84 352 0.464 819 352 0.626

Based on the results above, we now check the effect of nodes/et. Especially,
we are interested to see the variation of the BTflow/Maxfloworia case of deleting
nodes representing users from the networks. The followtErgtive procedure was
executed. In each step 100 users are removed using the ohe @jlowing two
rules: (i) select random usensfidon), or (ii) select the users with the largest degree
(kMax).

The results of these experiments are shown on Figure 1. lHaterémoving a
user which is leeching at least in one swarm results in rehafvenore than one
nodes from the flow network representation. It can be clesabn, especially in the
FileList experiment, that removing random users leads toather decay, contrasted
to thekMax type removal, in the flow values. In general, tkidax removal results
in larger drops in the flow values. Note that while the Maxflcaiue monotonically
decreasing (not strictly, though), the BTflow values somes got slightly improved.
We can also notice that the BTflow/Maxflow ratio does not clearaglically.

Implications. These experiments proves our expectations based on theeddigr
tribution experiments above, that the BitTorrent commugitaphs are sensitive for
removal of large degree users. These indicate that a contyrahould pay attention
on keeping the heavy contributors on-line, since they pksertial role in the to-
tal throughput. Although private BitTorrent communities usually applyprotion
mechanisms to encourage their users for higher contributiese mechanisms are
mostly focused on the amount of data [5]. Our results clestityw that high number
of active connections is also need to be incentivized.

3.2 One swarm per seeder

In the following experiment we are interested to see whdtégtle of seeders’ inter-
swarming. Thus we split the flow networks in such a way thaheat everyJ nodes
representing a seeder is connected only to one swarm. Dhe $trticture of the flow

3 Note that in these particular experiments we did not take seesibandwidthslirectly into account
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Fig. 1 Removing users.

network model, this does not mean that the seeder nodes wauéddegree equal to
1, the actual degree depends on the number of leechers ie¢ded swarm. Also,
this splitting does not necessary lead to a flow network wbatsists of independent
clusters of swarms, because it can happen that the swarntom@nected through
leechers.

The following procedure was done for a flow network: for eaebding node
s all the seeding edges but one were removed from the libfiaryVe applied two
possible rules for selecting the torrent to be kept in theahjn (i) select randomly
from As (random), or (i) select one from the torrents iy, which has the most leech-
ers fnaxleechex. Note that this simple procedure can result in graphs vagdiess
torrents. Thus post-processing is needed which can be dahe following way.

Step 1 Collect all the seedless torrents into thelget

Step 2 For all elementsof Tp do the followings: Lets, be the original seeder of
torrentt. Check whether the torrent currently seededsphiad multiple seeders.
If not, then select another seedgrfrom the original seeder df Otherwise, let
S, be the seeder of torrenit

The procedure was run for every graphs of the three comnesnigading to the
following results. On Figure 2 we can see the BTflow/Maxflowiaaf the orig-
inal graphs together with the ratios on the modified flow neksaising the two
removal rules discussed above. We obtained three diffeesntts here. For the Bit-
Soup graphs both cases led to drops in the performance. &iildlist graphs the
randomrule resulted in performance drops, but thexleecherule sometimes led
to slightly better ratio. For the Synthetic graphs we obtadgmificantly better perfor-
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mance using any of the two rules. Since the Synthetic graphslerived from the
BitSoup graphs, the results we obtained here usingritvdeecherule are the same
for the corresponding BitSoup graphs, and roughly the sasimguherandomrule.

1 1, 1 wginal
—original
E
g 08 E § ~-random
g” 508 308 - maxleecher
s S ¢t 2
g R 3
2 206 06
@ i @ — N\
0.4 A
2 4 6 8 10 0.4 3 4 5 6 8 0454 6 8 10
graph instances graph instances graph instances
(a) BitSoup (b) FileList (c) Synthetic

Fig. 2 Results of the one seeder per swarm experiments

In order to see what is the difference between the flow valnegbe modified
networks with respect to the original ones we refer to Fidiré/hile the values got
decreased in BitSoup and FileList, it is interesting to $eedpposite case for the
Synthetic graphs.
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Fig. 3 Absolute differences in the one seeder per swarm experiments

Implications. The results are promising in the sense that for the BitSoaplgr
(which are representing closed BitTorrent communities hiclv the participating
users must follow sharing ratio enforcement, thus it is Utha peers are seeding in
multiple torrents at the same time) it is worse for the comityuifthe seeders are not
following inter-swarm uploading. On the other hand, in o@tTorrent communi-
ties (represented by the Synthetic graphs), where no éxplles are (and could be)
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applied regarding the seeding, it is better if each seedeadp in one swarm only.
According to Kaslet al.[25], observation of a private BitTorrent community re\eshl
that many peers are seeding in multiple torrents. While itagfically impossible to
find relevant measurements regarding the open BitTorrardy&set al. [26] shows
that, on average, a regular publisher (user who injects oateat into the BitTorrent
network) seeds concurrently only in one torrent.

3.3 Optimization on growing networks

Motivated by the fact we have noticed in Section 3.1 that inguser nodes and
the corresponding edges from the flow network, it is posdté the BTflow value
gets improved. In this experiment a greedy-type optimizatlgorithm is proposed
which is working on a growing network and systematicallggrio identify particular
edges which removal leads to local improvement in the BTflalue while keeping
the Maxflow value at the same level.

Algorithm 1 Greedy optimizer algorithm

Require: Flow networkG.

1: k:=0; Gy := empty flow network; Hy := empty flow network; Ts:=0; Tn:=T,
2: whilek < |T|do

3 ki=k+1;

4 repeat

5: t:=Uni f or mTy);

6 Uc={uy| (ul}) E©))
7:

8

9

i) €E(G)};
Qo= {(uy, 1) |y € N U{ (1 dh) | d € N

: V(Gy) :==V(Gk-1) UNg;  E(Gk) := E(Gk-1) UQx;
10: V(Hk) ==V (H 1) UN;  E(Hk) == E(Hk 1) UQx;
11: if k= 1then break;
12: until UgNV (Hk_1) #0
13:  Ts:=TsU{t}; Tn:=Tn\{t}
14: by :=BTf | ow(Hy);
15:  mg:=Maxfl ow(Gy);
16:  if by < mg then

N :=Uu{lf |iel}ud{d | (Itlt

17: My := Ng ﬁV(kal);

18: Py :=Power Set ({(ui, 1) € Es(G) | ui € Mi, It € Mi}) \ 0;
19: Hy := Hi;

20: forall B, € Z do

21: E(Htemp = E(Hx) \ R

22: V (Hiemp) =V (Hy);

23: if Maxf | ow(Htemp) = m¢ andBTf | ow(Hiemp) > by then
24: Hy = Htemp

25: by :=BTf | ow(Hy);

26: end if

27: end for

28: Hi :=Hy;

29:  endif

30: end while

31: returnH™ :=Hp;
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In the following, we refer to the lines of Algorithm 1 for therimal description.
The input is a flow networks. The algorithm iterates through the set of torrehts
The variableSsandTy are the sets of selected and non-selected torrents, reghgct
(line 1). In lines 4-12 the algorithm tries to find a torrentigthgrows the optimized
network in such a way that it remains connected (i.e. the rurohits clusters equals
to 1). In order to do so, it selects a torrent uniformly at @mdromT (line 5). Then,
in lines 7-10 the flow networlsy is constructed that it contair,_; together with
all leeching session nodes representing the torrent seléatline 5, plus all those
nodes which are connected to these leeching session nodtstidtNy is the set
of these nodes (line 7). The flow netwadt, to be locally optimized, is constructed
similarly (line 10). In case the intersection of the new @alaodes and the set of
nodes inHx_1 (assuming thak > 1) is empty, then the algorithm needs to select
another torrent. We need to ensure that tortéatnot selected in the next iterations
(line 13). If the ratio of the BTflow value dfly and the Maxflow value o6 equals
to 1, thenHy cannot be improved. Otherwise, select those nodes Kpmhich are
also inV(Gk_1) and put them into the sl (line 17). These nodes are connected
to multiple torrents (i.e. they are connected to leechindesarepresenting multiple
torrents). For allseedingnodes inMy compose the set” which is the power set
of all seeding upload edges (line 18). For Blle % identify which edge seB
should be deleted in order to improve the ratio(lines 21-25). In this loop, the
algorithm systematically tries to identify those seedidges which can be deleted
without decreasing the Maxflow value and, at the same tinaelihg to increase of
the BTflow value. In order to do so, the procedures for catmgdathe Maxflow and
BTflow have to be executed, thus this loop is the most expeipsivt of the optimizer
method.

Fig. 4 Results of the greedy optimizer on the growing flow networks

z 1 S z 1 h
S | 5 el S
Bog e 3 Bog " G
=% T e 20095 s =
8 e 8 ’ 8 D s
£ 0.6/ |- fi + £0.6 Fhad
z S i 0.9 e 2 d
0 ’ 20 0 200 400 600
number of swarms number of swarms number of swarms
(a) BitSoup (b) FileList (c) Synthetic

The results of the greedy algorithm for the communities amws on Figure 4.
For all three cases the BTflow/Maxflow values are shown forathginal growing
graph G) and for the optimized oneH(). Note that due to the high resource re-
quirement of the algorithm implementation (in particulae had memory allocation
issues for the FileList experiment) we could run the aldgonitip to a limited number
of torrents.

Implications. It can be clearly seen that the proposed optimization metiandm-
prove the BTflow/Maxflow ratio only for graphs with very few amns. That is the
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Table 5 Results after deleting seed edges with zero flow

BitSoup FileList Synthetic

graph of ratio  Of ratio of ratio  Of ratio of ratio  Of ratio

1 0.689 0.718 0.637 0.653 0.690 0.672 0.271 0.494  0.492
2 0.687 0.689 0.610 0.588 0.705 0.719 0.287 0.475 0.464
3 0.649 0.669  0.633 0.633 0.621  0.653 0.242 0.469  0.467
4 0.676 0.694 0.649 0.650 0.657 0.634 0.243 0.478 0.473
5 0.612 0.709 0.653 0.659 0.704 0.701 0.221 0.475 0.464
6 0.688 0.677 0.625 0.455 0.583 0.599 0.249 0.455 0.437
7 0.697 0.720  0.637 0.427 0.585  0.586 0.242 0.498  0.481
8 0.591 0.693 0.629 0.423 0577 0.565 0.193 0.425 0.428
9 0.654 0.705  0.669 0.224 0.505 0.516
10 0.517 0.649 0.604 0.149 0.414 0.441

case for BitSoup and Synthetic. However, as the number ofrss/are increasing,
the difference between the performance in the optimizegrgaad the original graph
tends to vanish. Thus, we can conclude that the performétrhe 8Tflow algorithm
cannot really be improved with the torrent selection me@rmamur greedy algorithm
finds.

4 On the upper bound

Now we turn our attention to the theoretical optimum of theximmeal throughput
in the flow networks representing statuses of BitTorrentmamities. Up until now,
we have been considering only thialue of the maximum flow. In this section we
also take into account the details of the solution, i.e. witlee flow values are taken,
what is the flow value put on the edges. The results of this@ecbuld depend on
the actual algorithm solving the maximum flow problem. We hse= tharaxf | ow
procedure from th&/ i gr aph package.

4.1 Seed edges with zero flow

In the first experiment we run the maximum flow algorithm anahgighe results
we remove those edges from the networks on which the actwaiBtue equals to
zero. Using these modified graphs, we check what is the totalvalue produced
by the BTflow algorithm. This edge removal rule is basicallotution to the torrent
selection mechanism.

The results are shown in Table 5. For each communities we ghewatio of the
seeding edges among all the edges of the network (columthefBTflow/Maxflow
ratio in the original graph (ratio’), and the BTflow/Maxflomatio in the new graphs
('Of ratio’). First of all, we notice that the ratio of the s#irg edges with zero flow can
be as high as 69%. However, we conclude that BitTorrent'fopmance is usually
dropped using this rule, only some cases it got slightlydoett
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Table 6 Results after deleting upload edges with zero flow.

BitSoup FileList Synthetic

graph of ratio  Of ratio of ratio  Of ratio of ratio  Of ratio

1 0.693 0.718  0.793 0.653 0.690 0.839 0.279 0.493  0.599
2 0.691 0.689 0.802 0.588 0.705 0.936 0.295 0474 0.600
3 0.654 0.669  0.795 0.633 0.620 0.829 0.253 0.468 0.625
4 0.682 0.694 0.821 0.651 0.656 0.907 0.257 0.478 0.631
5 0.616 0.708 0.794 0.659 0.704  0.907 0.228 0.475 0.601
6 0.694 0.677 0.766 0.455 0.582 0.731 0.265 0.455 0.642
7 0.704 0.720  0.800 0.427 0584  0.879 0.259 0.498 0.703
8 0.596 0.692 0.851 0.423 0576  0.697 0.203 0.425 0.633
9 0.662 0.704 0.827 0.241 0.505 0.705

10 0.522 0.648 0.729 0.158 0.414 0.648

4.2 Upload edges with zero flow

In the following we extend our rules used in the previous satisn toall uploading
edges at which the maximum flow algorithm puts zero flow valie results of these
experiments are shown on Table 6. It can be clearly seen thease of BitTorrent’s
performance. However, according to the BitTorrent titfar mechanism, a leecher
must be uploading to other leechers in the same swarm. Thusustemphasize that
these solutions are infeasible.

Nevertheless, the results of this experiment shows that ifekax the requirement
of sharing the content fa@omeusers then a community can obtain significantly better
(8—23%) performance increment regarding the total thrpugh

4.3 The Maxflow problem

What we have seen in the previous subsections is the facthtbaBitTorrent per-
formance could be improved by deleting the uploading edg#szero flow values
(which are set to be zero by a maximum flow algorithm), but thisiolating the
rules of BitTorrent. In the following we extend the optimimen model of the maxi-
mum flow problem defined in Section 2.2. In this extended madshg an additional
variable? > 0, it is required for each and every leeching edges to putrgs dow
value as possible while keeping the sum of the total flow \@htehe possible max-
imum level. Note that practically it is possible to set up 0/kBpload bandwidth
in a BitTorrent client (if a user wants to do so), but in thisedhe client would be
downloading contents only from seeders. On the other hamtsidering a case in
which there is only one leecher in a swarm seeded by some ofiees, then this
leecher does not need to be uploading. In the flow network mges#=l in this paper
this leecher isiotincluded among tha nodes.
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TheMaxflow linear programming (LP) model can be formalized in the folloy
way:

maxt+ 3y 1t)ee (U, 1}),
st oyf(ul)<wm  VYueu,
Y F(15,dj) <9 vd; € D,
flu,h>¢>0  v(u,lb) ek,

whereE, C E is the set of those upload edges which belong teodes representing
leechers in the flow network.

Solving this LP model for all the graphs we obtained 0. This means that the
value of the maximum flow (as in the original model) can be kepy in case we put
zero flow values for some leecher uploading edges.

Another LP model can be constructed in which one defines thigbla’ specific
for each leeching edges. This model formulated as

maXZ(ui,Iﬁ)eEé f(uhlﬁ) + E(Ui,ltj)EE f(uia |§),

St Yo f(uslh) < pi VU €U,
Y f(1j.dj) <9 vd; €D,
f(u,1f) > £(ui,1f) >0 v(u,If) € Ey.

Solving this second model for the graphs of the three comtiesnive got the fol-
lowing results shown in Table 6. Firstly, the value of theatahroughput is slightly
decreased (by only 1% compared to the original maximum flolweyaso this de-
crease is negligible). Secondly, we obtained positivalues forsomeleeching up-
load edges, but there are many of those having zero flow vallmesratio of these
leeching edges with zero flow is at least 95%, but usually évgimer. We know that
this is unacceptable solution in the BitTorrent protocol.

Implications. Our experiments in this section put the earlier obtainedltesbout
the BitTorrent performance regarding the maximal throughipto different perspec-
tive. Earlier we have seen that using BTflow a community getaldout 50—-70%
of the optimal performance. However, the theoretical uggmmd does not neces-
sary fulfil the requirements of BitTorrent (at least using thassical maximum flow
algorithm). Thus we conclude that the BTflow —at least in thienf we have been
using it in this paper— might not be as far away from the optipssformance as it
is suggested by earlier results. Possible improvementeébmworld systems include
implementation of a distributed maximum flow (DMF) algorithinto the BitTorrent
client. There are two main problems to be considered: (i)xth#= must respect the
BitTorrent-specific constraints discussed above, andn(iXed environment of tradi-
tional and this specialized BitTorrent clients would notessary guarantee optimal
performance.
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5 Related work

Recently the analysis of the seeding bandwidth allocattantar-swarm level has
attracted the researchers attention. In Mengl. [10] analysis of the amount of
time required for all peers to get the files in peer-to-pedwaks is given. Based
on a fluid-model the theoretical lower bound is derived andptimal algorithm
(of exponential running time), together with heuristice given. For multi-swarm
multi-party P2P conferencing systems Liagtgal.[11] propose optimal cross-swarm
bandwidth sharing strategies to address the bandwidttecig@. However, these pa-
pers did not compare their solutions to the ones applied ifoBient clients. The
papers [12,13] study the bandwidth allocation mechanisirBitdorrent-like sys-
tems using synthetic traces only and finding out that inda€Bent performs sub-
optimally. In our paper we use measurement traces of reahoniies. Regarding
the flow network model, Zhonet al. [14] evaluate the topological characteristics of
overlay BitTorrent networks using a graph model which i$edént from the one we
use. Delavizet al. [16] use several network (graph) measures to understaniethe
havioural aspects of a BitTorrent reputation mechanismalfyi, the recent paper of
Hu et al.[15] investigate the inter-swarm aspect among BitTorrenmtimunities, thus
it is at one level higher than our focus.

6 Summary and Conclusions

Using a flow network model we investigated a particular reseallocation problem
in BitTorrent communities, in which the aim was to maximibe total throughput
in the system. In the actual experiments a simulator was imsedler to calculate
to throughput which would have been provided by standar@dgient clients. Based
on measurement traces of two communities we discoveredhbatnderlying flow
network representation has long-tail degree distribuéiod thus it is robust against
removal of average users. On the other hand, due to the sasentehigh degree
nodes (users who contribute in many torrents, regardleggeofbandwidth) play es-
sential role in keeping the high performance. The torretgcs®n mechanism can
be simulated with deleting edges from the flow network regméstion. Our experi-
ments with the extreme edge removal, which led to representaf one-swarm-per-
seeder scenarios, revealed that depending on the originatuge of the graph this
can lead to both performance drop (in closed communitiejooease (in open com-
munities). As it was already claimed in [9], the actual totrselection mechanism
employed in many BitTorrent clients is efficient enough,vided that it is coupled
with efficient bandwidth allocation mechanism. Our expenmts done here with a
greedy optimization technique on growing flow networks aomdi this finding. On
the other hand, closer look on the solutions given by a maxinflow algorithm,
which provides the theoretical upper bound on the bandvétititation problem we
considered, disclosed that they represent skewed todiecations putting zero flow
values to most of the edges. This leads to the conclusiorihbaierformance of the
standard BitTorrent clients are not as low as it was asserted
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