
Computing manuscript No.
(will be inserted by the editor)

Empirical investigation of BitTorrent community graphs

Tamás Vinkó · Bea Botýanszki

Received: date / Accepted: date

Abstract Most of the users of a BitTorrent community participate in multiple swarms,
usually simultaneously as uploader and downloader. Thus the inter-swarm aspect of
the bandwidth resource allocation has high relevance in thealgorithm design of de-
ployed BitTorrent clients. This inter-swarm connections among the users of a BitTor-
rent community can be represented by a flow network of specialstructure. Using this
representation it has been demonstrated thatde factosolutions to the resource alloca-
tion in BitTorrent communities are suboptimal. In this paper we investigate this con-
clusion in more details using graph measures and optimization techniques. We find
that BitTorrent communities are sensitive for removal of highly contributing users,
that the inter-swarm connectivity can lead to different performance results, and that
torrent selection mechanisms can hardly improve the average download performance
of users. Regarding the theoretical optimum of the discussed problem we show that
it does not necessary comply with the BitTorrent protocol.

Keywords BitTorrent · private communities· resource allocation· flow networks·
network science

1 Introduction

Resource allocation problems in distributed systems can bedefined in various ways
[1]. Focusing on the allocation of bandwidth, one particular goal is to maximize the
total throughput of the system. Although simple solutions to this problem does not
usually lead to fair allocations [2], it maximizes the average downloading speed of
the users in the system. This paper deals with this particular problem in the context of

T. Vinkó, B. Botýanszki
University of Szeged, Institute of Informatics
H-6720 Szeged,́Arpád t́er 2, Hungary
Tel.: +36-62-546 193
Fax: +36-62-546 397
E-mail: tvinko@inf.u-szeged.hu

2 Tamás Vinḱo, Bea Botýanszki

the most widely used distributed content sharing system, BitTorrent [3]. At its high-
est level, BitTorrent is a collection ofswarms. A swarm consists three components:
content, seeders and leechers. Thecontentin a swarm is a file or collection of files
to be shared by the participating users, who are theseedersand leechers. Seeders
are those users who have and share the complete copy of the content. Leechers are
the other type of users, those who are actually downloading the content. Thesizeof
a swarm is the number of leechers and seeders in that swarm. One of the smartest
ideas behind BitTorrent is that the content is split into small pieces and during the
downloading phase, leechers exchange pieces among themselves. Thus leechers can
also be uploaders. This idea makes the BitTorrent protocol very efficient (in terms of
downloading speed) and highly scalable (the larger the swarm size the more efficient
the network is).

After finishing the download of the requested content, the BitTorrent protocol,
by definition, does not require to stay in the swarm as active seeder. This situation
can easily lead to dead swarms, i.e. seedless swarms. One possible and quite popular
solution for this problem is setting up a BitTorrentcommunity[4,6]. In these com-
munities a server, also called atracker, requests the users to register themselves and
it maintains a database about the user’s activity. Though this solution brakes the dis-
tributive aspect of the BitTorrent ecosystem, it usually leads to a very attractive and
efficient content sharing systems. This is due to the so-calledsharing ratio enforce-
mentin which the users are obliged to seed up to a prescribed upload-to-download
ratio1, usually around 0.7. This means that after downloading 1GB content, the user
must upload at least 0.7GB.

This paper puts forward the investigation of theinter-swarmconnections within
a community done in the papers [8,9]. The inter-swarm resource allocation is con-
cerned with the fact that many BitTorrent users are taking part in multiple torrents at
the same time, usually both as leecher and seeder. Thus, the BitTorrent clients have
built-in mechanisms to make decisions on which torrents they should be seeding in
and how the bandwidth should be divided among the swarms theyare participating
in. As it was demonstrated in [9], the currently applied solutions can perform as low
as 50% compared to the optimal. With further experimental analysis we show (i) how
sensitive a BitTorrent community could be to removal of users, (ii) what is the role of
inter-swarm seeding, and (iii) if it is possible to improve the efficiency with different
torrent selections. We will also investigate the theoretical upper bound and show that
it does not necessary fulfil the requirements of the BitTorrent protocol.

2 Models and Datasets

2.1 Graph models

This paper attempts to investigate some part of the conclusions of Capot̆a et al. [9],
namely the inter-swarm bandwidth allocation problems in BitTorrent communities re-
garding the maximum throughput. For that reason here we use the same flow network

1 Other seeding incentive mechanisms are existing and successfully used in communities, e.g. based on
effort [7]

Empirical investigation of BitTorrent community graphs 3

Table 1 Model parameters describing a BitTorrent community

Notation Definition

I set of users in the community
T set of torrents in the community
St ,Lt set of seeders and leechers participating in torrentt ∈ T
µi ,δi upload and download bandwidth of useri
Λi library of useri

model as it was already defined and used in [9]. For the sake of the completeness, the
most important definitions are repeated here.

We use the notations summarized in Table 1. The inter-swarm connections in a
BitTorrent community at a certain time instant2 is represented by the flow network
G = (V,E, f ,c), whereV is the set of vertices,E is the set of edges,f is the flow
function, andc is the capacity function. This is a directed bipartite graph, whereV
is the disjoint union of three subsets of vertices,U,L andD, and with each edge in
E connecting two vertices that are in distinct subsets. Thesethree sets of vertices are
defined in the following way:

– the upload nodesU = {u1, . . . ,um} represent the upload potential of them active
users (both seeders and leechers);

– the leeching sessions nodesL = ∪i∈I Li represent the participation of leechers in
torrents, whereLi = {l ti | i ∈ Lt , t ∈ T} is the set of leeching sessions of useri;
and

– the download nodesD = {d1, . . . ,dn} represent the download potential of the
leechers.

We can see that a useri is represented by the set of nodes{ui ,di}∪ Li . The set of
edgesE represents the transfer potential from the upload nodes to the download nodes
through leeching session nodes. If useri is leeching in a torrentt, then there are
leeching edgesfrom ui to the leeching sessions of all other users in torrentt. Similarly,
if a useri is seeding in a torrentt then there areseeding edgesfrom ui to the leeching
sessions of all other users in torrentt. The set of seeding edges is denoted byEs. All
of the edges thus defined are calledupload edges. Finally, to represent downloading,
the graph also has edges from the leeching session nodes to download nodes. These
edges are calleddownload edges.

The capacity and flow functions ofG are defined as follows:

– thecapacity function c: U ∪L∪D →N represents the bandwidth of peers, where
c(ui) := µi is the upload bandwidth of useri, c(l ti) := ∞, andc(di) := δi is the
download bandwidth of useri, and

– the flow function f : E → R
+ represents the bandwidth allocation, having the

property of flow conservation: for alll tj ∈ L the equality∑ui∈U f (ui , l tj) = f (l tj ,d j)
holds.

It is easy to see that any flow inG is equivalent to a particular bandwidth allocation
in the corresponding BitTorrent communityG represents.

2 For the shake of simplicity we avoid the notion of time in the graph models.

4 Tamás Vinḱo, Bea Botýanszki

2.2 Network flow problems

Using the flow network model of BitTorrent communities as it was described in the
previous subsection now we define the two problems to be considered.

Maxflow Maximizing the throughput in a BitTorrent community is equivalent to
solve the maximum flow problem [17] in the community’s flow network representa-
tion. As it was used in the paper [9] the corresponding linearprogramming formalism
is the following

max∑(ui ,l tj)∈E f (ui , l tj),

s.t. ∑t, j f (ui , l tj)≤ µi ∀ui ∈U,

∑t f (l tj ,d j)≤ δ j ∀d j ∈ D.

For solving the Maxflow problem on the actual graph instanceswe used themaxflow
function of theR/igraph package, which is an implementation of the Goldberg–
Tarjan algorithm [18].

BTflow At any given point in time in a BitTorrent community, the total throughput
produced by the online users is calledBTflow. We consider this throughput value as
a result of a (suboptimal) flow network algorithm. In this paper we use the simulator
written by Mihai Capot̆a (Technical University of Delft, the Netherlands), which was
also used and validated in the paper [9]. We note here that although the simulator
is also providing us with the details about the total flow, i.e. what is the flow value
it puts to the edges, we do not intend to use this information in this paper. Our aim
is to see what kind of conclusions one can have using only the total flow value of
the BTflow. This means that our experiments in the following sections can be done
with any simulator or method which produces reasonable approximation of BTflow
values.

2.3 BitSoup, FileList

The investigated graphs are taken from the same datasets used in [9]. These datasets
are measurement traces of two private BitTorrent communities:BitSoupandFileList.
The most important properties of the traces are summarized in Table 2. It can be
clearly seen that the two communities differ in all aspects.As it was done in [9],
one additional dataset is used here, which was derived from the BitSoup trace in a
way that the seeding capacities got reduced of all users to produce a dataset with an
overall ratio of two leeching sessions per seeding session.This dataset, which will
be referred asSyntheticin the rest of the paper, represents characteristics of open
BitTorrent communities.

From these datasets the graph instances were created, representing the status of
the community with respect to the upload and download potentials. The basic prop-
erties of these graphs are listed in Table 3. We will be using 10 instances of BitSoup
and Synthetic, and 8 instances of FileList. The upload and download capacities were
randomly selected from the measurement data of [21].

Empirical investigation of BitTorrent community graphs 5

Table 2 Properties of the datasets [9], with 95% confidence intervals for means.

BitSoup [19] FileList [20]

Registered users 84 007 91 745
Total torrents 13 741 3 236
Mean active torrents 6 869.6 ± 30.8 512.2 ± 10.2
Mean active sessions 76 370.3 ± 1 135 32 829.4 ± 672.8
Mean seeders/leechers ratio 5.125 ± 0.155 3.65 ± 0.2

Table 3 Basic properties of flow networks: number of nodes and edges, size of the setU .

BitSoup FileList Synthetic

graph nodes edges |U | nodes edges |U | nodes edges |U |

1 37 266 1 254 129 16 958 23 705 1 963 645 12 886 29 039 478 089 9 713
2 41 243 1 526 799 18 128 25 516 5 673 353 14 364 32 965 606 040 10 845
3 33 651 934 852 14 622 27 715 4 341 702 14 193 26 928 382 925 8 807
4 33 261 739 941 15 193 26 178 3 331 577 14 236 25 644 274 148 8 543
5 34 075 1 184 615 15 154 26 731 2 997 262 15 291 26 791 537 086 8 812
6 36 849 775 404 16 613 26 215 6 168 009 13 959 28 872 27 2791 9 628
7 33 493 611 714 15 588 24 719 3 562 633 13 365 25 471 198 556 8 576
8 29 426 682 401 13 418 27 796 4 671 512 14 466 22 672 312 499 7 577
9 30 242 508 129 14 084 22 718 187 612 7 644
10 37 504 927 018 16 434 29 747 472 057 9 863

3 Empirical results

3.1 Network robustness

In the first experiment we are interested to see what kind of degree distribution our
graphs follow. A graph’s degree distribution functionP(k) shows what is the propor-
tion of nodes with degreek. For a large set of real-world networks it has been shown
(e.g. [22]) that they are not random (i.e. their degree distribution does not follow a
Bernoulli distribution function), rather their degree distributions are power-law type,
of form P(k)∼ k−α .

In order to see whether our graphs have power law degree distribution we used the
power.law.fit function ofR/igraph. More precisely, we investigated only the
degree of theU nodes. The results are shown in Table 4. For the three communities
the obtainedα value, thexmin value (that is the index of the node from which the
graph follows power law degree distribution), and thep value of the Kolmogorov-
Smirnov goodness test (if thep value is greater than 0.05 then the graph is power
law) are shown.

The obtainedα values are relatively large. In case of 2≤α ≤ 3 a power law graph
is also called scale free [23]. We got larger values here, so our graphs should not be
called scale free. Interestingly, largeα value has been shown in networks of mobile
phone calls [24]. In these kind of networks, in which the distribution is decaying so
quickly, the usual characteristics of scale free networks (such as hubs) are not present.
We can conclude, though, that the BitTorrent community graphs are of long-tail.

6 Tamás Vinḱo, Bea Botýanszki

Table 4 Power law degree distribution of graphs.

BitSoup FileList Synthetic

graph α xmin KS.p α xmin KS.p α xmin KS.p

1 6.82 395 0.276 6.76 736 0.932 6.59 402 0.999
2 4.64 263 0.013 22.33 2190 0.999 5.48 287 0.518
3 4.85 227 0.207 10.07 1554 0.976 5.41 226 0.186
4 6.63 300 0.998 8.28 1111 0.493 8.89 335 0.999
5 10.62 628 0.993 8.28 1114 0.999 13.80 531 0.868
6 5.21 218 0.995 15.88 2231 0.846 5.54 147 0.783
7 5.30 183 0.934 12.15 1489 0.340 6.37 148 0.994
8 9.46 504 0.951 5.29 1116 0.001 21.37 550 1.000
9 5.04 193 0.785 7.00 177 0.963
10 5.84 352 0.464 8.19 352 0.626

Based on the results above, we now check the effect of nodes removal. Especially,
we are interested to see the variation of the BTflow/Maxflow ratio in case of deleting
nodes representing users from the networks. The following iterative procedure was
executed. In each step 100 users are removed using the one of the following two
rules: (i) select random users (random), or (ii) select the users with the largest degree
(kMax).

The results of these experiments are shown on Figure 1. Note that removing a
user which is leeching at least in one swarm results in removal of more than one
nodes from the flow network representation. It can be clearlyseen, especially in the
FileList experiment, that removing random users leads to smoother decay, contrasted
to thekMax type removal, in the flow values. In general, thekMax removal results
in larger drops in the flow values. Note that while the Maxflow value monotonically
decreasing (not strictly, though), the BTflow values sometimes got slightly improved.
We can also notice that the BTflow/Maxflow ratio does not change radically.

Implications. These experiments proves our expectations based on the degree dis-
tribution experiments above, that the BitTorrent community graphs are sensitive for
removal of large degree users. These indicate that a community should pay attention
on keeping the heavy contributors on-line, since they play essential role in the to-
tal throughput3. Although private BitTorrent communities usually apply promotion
mechanisms to encourage their users for higher contribution, these mechanisms are
mostly focused on the amount of data [5]. Our results clearlyshow that high number
of active connections is also need to be incentivized.

3.2 One swarm per seeder

In the following experiment we are interested to see what is the role of seeders’ inter-
swarming. Thus we split the flow networks in such a way that each and everyU nodes
representing a seeder is connected only to one swarm. Due to the structure of the flow

3 Note that in these particular experiments we did not take the users’ bandwidthsdirectly into account

Empirical investigation of BitTorrent community graphs 7

0 50 100
0

2

4

6x 10
6

x 100 users removed

to
ta

l f
lo

w
 v

al
ue

BTflow (kMax)
Maxflow (kMax)
BTflow (random)
Maxflow (random)

(a) BitSoup

0 50 100
2

4

6

8x 10
6

x 100 users removed

to
ta

l f
lo

w
 v

al
ue

(b) FileList

0 50 100
1

2

3

4

5x 10
6

x 100 users removed

to
ta

l f
lo

w
 v

al
ue

(c) Synthetic

Fig. 1 Removing users.

network model, this does not mean that the seeder nodes wouldhave degree equal to
1, the actual degree depends on the number of leechers in the seeded swarm. Also,
this splitting does not necessary lead to a flow network whichconsists of independent
clusters of swarms, because it can happen that the swarms areconnected through
leechers.

The following procedure was done for a flow network: for each seeding node
s all the seeding edges but one were removed from the libraryΛs. We applied two
possible rules for selecting the torrent to be kept in the library: (i) select randomly
from Λs (random), or (ii) select one from the torrents inΛs which has the most leech-
ers (maxleecher). Note that this simple procedure can result in graphs with seedless
torrents. Thus post-processing is needed which can be done in the following way.

Step 1 Collect all the seedless torrents into the setT0.
Step 2 For all elementst of T0 do the followings: Letso be the original seeder of

torrentt. Check whether the torrent currently seeded byso had multiple seeders.
If not, then select another seederso from the original seeder oft. Otherwise, let
so be the seeder of torrentt.

The procedure was run for every graphs of the three communities, leading to the
following results. On Figure 2 we can see the BTflow/Maxflow ratio of the orig-
inal graphs together with the ratios on the modified flow networks using the two
removal rules discussed above. We obtained three differentresults here. For the Bit-
Soup graphs both cases led to drops in the performance. For the FileList graphs the
randomrule resulted in performance drops, but themaxleecherrule sometimes led
to slightly better ratio. For the Synthetic graphs we obtainsignificantly better perfor-

8 Tamás Vinḱo, Bea Botýanszki

mance using any of the two rules. Since the Synthetic graphs are derived from the
BitSoup graphs, the results we obtained here using themaxleecherrule are the same
for the corresponding BitSoup graphs, and roughly the same using therandomrule.

2 4 6 8 10
0.4

0.6

0.8

1

graph instances

B
T

flo
w

/M
ax

flo
w

(a) BitSoup

1 2 3 4 5 6 7 8
0.4

0.6

0.8

1

graph instances

B
T

flo
w

/M
ax

flo
w

(b) FileList

2 4 6 8 10
0.4

0.6

0.8

1

graph instances

B
T

flo
w

/M
ax

flo
w

original
random
maxleecher

(c) Synthetic

Fig. 2 Results of the one seeder per swarm experiments

In order to see what is the difference between the flow values in the modified
networks with respect to the original ones we refer to Figure3. While the values got
decreased in BitSoup and FileList, it is interesting to see the opposite case for the
Synthetic graphs.

2 4 6 8 10
0

5

10
x 10

5

graphs

di
ffe

re
nc

e

Maxflow
BTflow

(a) BitSoup, Random

2 4 6 8 10
0

5

10
x 10

5

graphs

di
ffe

re
nc

e

Maxflow
BTflow

(b) BitSoup, Max
leecher

1 2 3 4 5 6 7 8
0

2

4

6x 10
5

graphs

di
ffe

re
nc

e

Maxflow
BTflow

(c) FileList, Random

1 2 3 4 5 6 7 8
0

5

10x 10
5

graphs

di
ffe

re
nc

e

Maxflow
BTflow

(d) FileList, Max leecher

2 4 6 8 10
−10

−5

0x 10
5

graphs

di
ffe

re
nc

e

Maxflow
BTflow

(e) Synthetic, Random

2 4 6 8 10
−10

−5

0x 10
5

graphs

di
ffe

re
nc

e

Maxflow
BTflow

(f) Synthetic, Max
leecher

Fig. 3 Absolute differences in the one seeder per swarm experiments

Implications. The results are promising in the sense that for the BitSoup graphs
(which are representing closed BitTorrent communities in which the participating
users must follow sharing ratio enforcement, thus it is usual that peers are seeding in
multiple torrents at the same time) it is worse for the community if the seeders are not
following inter-swarm uploading. On the other hand, in openBitTorrent communi-
ties (represented by the Synthetic graphs), where no explicit rules are (and could be)

Empirical investigation of BitTorrent community graphs 9

applied regarding the seeding, it is better if each seeder uploads in one swarm only.
According to Kashet al.[25], observation of a private BitTorrent community revealed
that many peers are seeding in multiple torrents. While it is practically impossible to
find relevant measurements regarding the open BitTorrent, Cuevaset al. [26] shows
that, on average, a regular publisher (user who injects new content into the BitTorrent
network) seeds concurrently only in one torrent.

3.3 Optimization on growing networks

Motivated by the fact we have noticed in Section 3.1 that removing user nodes and
the corresponding edges from the flow network, it is possiblethat the BTflow value
gets improved. In this experiment a greedy-type optimization algorithm is proposed
which is working on a growing network and systematically tries to identify particular
edges which removal leads to local improvement in the BTflow value while keeping
the Maxflow value at the same level.

Algorithm 1 Greedy optimizer algorithm
Require: Flow networkG.
1: k := 0; Gk := empty flow network; Hk := empty flow network; TS := /0; TN := T;
2: while k< |T| do
3: k := k+1;
4: repeat
5: t :=Uniform(TN);
6: Uk := {u j | (u j , l ti) ∈ E(G)};
7: Nk :=Uk∪{l ti | i ∈ I}∪{di | (l ti ,di) ∈ E(G)};
8: Qk := {(u j , l ti) | u j ∈ Nk}∪{(l ti ,di) | di ∈ Nk};
9: V(Gk) :=V(Gk−1)∪Nk; E(Gk) := E(Gk−1)∪Qk;

10: V(Hk) :=V(Hk−1)∪Nk; E(Hk) := E(Hk−1)∪Qk;
11: if k= 1 then break;
12: until Uk∩V(Hk−1) 6= /0
13: TS := TS∪{t}; TN := TN \{t};
14: bk :=BTflow(Hk);
15: mk :=Maxflow(Gk);
16: if bk < mk then
17: Mk := Nk∩V(Gk−1);
18: Pk :=PowerSet({(ui , l t

′

j) ∈ Es(G) | ui ∈ Mk, l t
′

j ∈ Mk})\ /0;
19: H ′

k := Hk;
20: for all Pk ∈ Pk do
21: E(Htemp) := E(Hk)\Pk;
22: V(Htemp) :=V(Hk);
23: if Maxflow(Htemp) = mk andBTflow(Htemp)> bk then
24: H ′

k := Htemp;
25: bk :=BTflow(H ′

k);
26: end if
27: end for
28: Hk := H ′

k;
29: end if
30: end while
31: returnH∗ := H|T|;

10 Tamás Vinḱo, Bea Botýanszki

In the following, we refer to the lines of Algorithm 1 for the formal description.
The input is a flow networkG. The algorithm iterates through the set of torrentsT.
The variablesTS andTN are the sets of selected and non-selected torrents, respectively
(line 1). In lines 4–12 the algorithm tries to find a torrent which grows the optimized
network in such a way that it remains connected (i.e. the number of its clusters equals
to 1). In order to do so, it selects a torrent uniformly at random fromT (line 5). Then,
in lines 7–10 the flow networkGk is constructed that it containsGk−1 together with
all leeching session nodes representing the torrent selected in line 5, plus all those
nodes which are connected to these leeching session nodes. Note thatNk is the set
of these nodes (line 7). The flow networkHk, to be locally optimized, is constructed
similarly (line 10). In case the intersection of the new upload nodes and the set of
nodes inHk−1 (assuming thatk > 1) is empty, then the algorithm needs to select
another torrent. We need to ensure that torrentt is not selected in the next iterations
(line 13). If the ratio of the BTflow value ofHk and the Maxflow value ofGk equals
to 1, thenHk cannot be improved. Otherwise, select those nodes fromNk which are
also inV(Gk−1) and put them into the setMk (line 17). These nodes are connected
to multiple torrents (i.e. they are connected to leeching nodes representing multiple
torrents). For allseedingnodes inMk compose the setPk which is the power set
of all seeding upload edges (line 18). For allPk ∈ Pk identify which edge setPk

should be deleted in order to improve the ratiork (lines 21–25). In this loop, the
algorithm systematically tries to identify those seeding edges which can be deleted
without decreasing the Maxflow value and, at the same time, leading to increase of
the BTflow value. In order to do so, the procedures for calculating the Maxflow and
BTflow have to be executed, thus this loop is the most expensive part of the optimizer
method.

0 100 200

0.6

0.8

1

number of swarms

B
T

flo
w

/M
ax

flo
w

H
G

(a) BitSoup

0 20 40
0.9

0.95

1

number of swarms

B
T

flo
w

/M
ax

flo
w

H
G

(b) FileList

0 200 400 600

0.6

0.8

1

number of swarms

B
T

flo
w

/M
ax

flo
w

H
G

(c) Synthetic

Fig. 4 Results of the greedy optimizer on the growing flow networks

The results of the greedy algorithm for the communities are shown on Figure 4.
For all three cases the BTflow/Maxflow values are shown for theoriginal growing
graph (G) and for the optimized one (H). Note that due to the high resource re-
quirement of the algorithm implementation (in particular,we had memory allocation
issues for the FileList experiment) we could run the algorithm up to a limited number
of torrents.

Implications. It can be clearly seen that the proposed optimization methodcan im-
prove the BTflow/Maxflow ratio only for graphs with very few swarms. That is the

Empirical investigation of BitTorrent community graphs 11

Table 5 Results after deleting seed edges with zero flow

BitSoup FileList Synthetic

graph 0f ratio 0f ratio 0f ratio 0f ratio 0f ratio 0f ratio

1 0.689 0.718 0.637 0.653 0.690 0.672 0.271 0.494 0.492
2 0.687 0.689 0.610 0.588 0.705 0.719 0.287 0.475 0.464
3 0.649 0.669 0.633 0.633 0.621 0.653 0.242 0.469 0.467
4 0.676 0.694 0.649 0.650 0.657 0.634 0.243 0.478 0.473
5 0.612 0.709 0.653 0.659 0.704 0.701 0.221 0.475 0.464
6 0.688 0.677 0.625 0.455 0.583 0.599 0.249 0.455 0.437
7 0.697 0.720 0.637 0.427 0.585 0.586 0.242 0.498 0.481
8 0.591 0.693 0.629 0.423 0.577 0.565 0.193 0.425 0.428
9 0.654 0.705 0.669 0.224 0.505 0.516
10 0.517 0.649 0.604 0.149 0.414 0.441

case for BitSoup and Synthetic. However, as the number of swarms are increasing,
the difference between the performance in the optimized graph and the original graph
tends to vanish. Thus, we can conclude that the performance of the BTflow algorithm
cannot really be improved with the torrent selection mechanism our greedy algorithm
finds.

4 On the upper bound

Now we turn our attention to the theoretical optimum of the maximal throughput
in the flow networks representing statuses of BitTorrent communities. Up until now,
we have been considering only thevalueof the maximum flow. In this section we
also take into account the details of the solution, i.e. where the flow values are taken,
what is the flow value put on the edges. The results of this section could depend on
the actual algorithm solving the maximum flow problem. We usehere themaxflow
procedure from theR/igraph package.

4.1 Seed edges with zero flow

In the first experiment we run the maximum flow algorithm and using the results
we remove those edges from the networks on which the actual flow value equals to
zero. Using these modified graphs, we check what is the total flow value produced
by the BTflow algorithm. This edge removal rule is basically asolution to the torrent
selection mechanism.

The results are shown in Table 5. For each communities we showthe ratio of the
seeding edges among all the edges of the network (column 0f),the BTflow/Maxflow
ratio in the original graph (’ratio’), and the BTflow/Maxflowratio in the new graphs
(’0f ratio’). First of all, we notice that the ratio of the seeding edges with zero flow can
be as high as 69%. However, we conclude that BitTorrent’s performance is usually
dropped using this rule, only some cases it got slightly better.

12 Tamás Vinḱo, Bea Botýanszki

Table 6 Results after deleting upload edges with zero flow.

BitSoup FileList Synthetic

graph 0f ratio 0f ratio 0f ratio 0f ratio 0f ratio 0f ratio

1 0.693 0.718 0.793 0.653 0.690 0.839 0.279 0.493 0.599
2 0.691 0.689 0.802 0.588 0.705 0.936 0.295 0.474 0.600
3 0.654 0.669 0.795 0.633 0.620 0.829 0.253 0.468 0.625
4 0.682 0.694 0.821 0.651 0.656 0.907 0.257 0.478 0.631
5 0.616 0.708 0.794 0.659 0.704 0.907 0.228 0.475 0.601
6 0.694 0.677 0.766 0.455 0.582 0.731 0.265 0.455 0.642
7 0.704 0.720 0.800 0.427 0.584 0.879 0.259 0.498 0.703
8 0.596 0.692 0.851 0.423 0.576 0.697 0.203 0.425 0.633
9 0.662 0.704 0.827 0.241 0.505 0.705
10 0.522 0.648 0.729 0.158 0.414 0.648

4.2 Upload edges with zero flow

In the following we extend our rules used in the previous subsection toall uploading
edges at which the maximum flow algorithm puts zero flow value.The results of these
experiments are shown on Table 6. It can be clearly seen the increase of BitTorrent’s
performance. However, according to the BitTorrent tit-for-tat mechanism, a leecher
must be uploading to other leechers in the same swarm. Thus wemust emphasize that
these solutions are infeasible.

Nevertheless, the results of this experiment shows that if we relax the requirement
of sharing the content forsomeusers then a community can obtain significantly better
(8–23%) performance increment regarding the total throughput.

4.3 The Maxflowℓ problem

What we have seen in the previous subsections is the fact that the BitTorrent per-
formance could be improved by deleting the uploading edges with zero flow values
(which are set to be zero by a maximum flow algorithm), but thisis violating the
rules of BitTorrent. In the following we extend the optimization model of the maxi-
mum flow problem defined in Section 2.2. In this extended model, using an additional
variableℓ ≥ 0, it is required for each and every leeching edges to put as large flow
value as possible while keeping the sum of the total flow values at the possible max-
imum level. Note that practically it is possible to set up 0 kB/s upload bandwidth
in a BitTorrent client (if a user wants to do so), but in this case the client would be
downloading contents only from seeders. On the other hand, considering a case in
which there is only one leecher in a swarm seeded by some otherusers, then this
leecher does not need to be uploading. In the flow network model used in this paper
this leecher isnot included among theu nodes.

Empirical investigation of BitTorrent community graphs 13

TheMaxflowℓ linear programming (LP) model can be formalized in the following
way:

maxℓ+∑(ui ,l tj)∈E f (ui , l tj),

s. t. ∑t, j f (ui , l tj)≤ µi ∀ui ∈U,

∑t f (l tj ,d j)≤ δ j ∀d j ∈ D,

f (ui , l ti)≥ ℓ≥ 0 ∀(ui , l
t
i) ∈ Eℓ,

whereEℓ ⊂ E is the set of those upload edges which belong toui nodes representing
leechers in the flow network.

Solving this LP model for all the graphs we obtainedℓ = 0. This means that the
value of the maximum flow (as in the original model) can be keptonly in case we put
zero flow values for some leecher uploading edges.

Another LP model can be constructed in which one defines the variableℓ specific
for each leeching edges. This model formulated as

max∑(ui ,l tj)∈Eℓ
ℓ(ui , l tj)+∑(ui ,l tj)∈E f (ui , l tj),

s. t. ∑t, j f (ui , l tj)≤ µi ∀ui ∈U,

∑t f (l tj ,d j)≤ δ j ∀d j ∈ D,

f (ui , l ti)≥ ℓ(ui , l ti)≥ 0 ∀(ui , l
t
i) ∈ Eℓ.

Solving this second model for the graphs of the three communities we got the fol-
lowing results shown in Table 6. Firstly, the value of the total throughput is slightly
decreased (by only 1% compared to the original maximum flow value, so this de-
crease is negligible). Secondly, we obtained positiveℓ values forsomeleeching up-
load edges, but there are many of those having zero flow values. The ratio of these
leeching edges with zero flow is at least 95%, but usually evenhigher. We know that
this is unacceptable solution in the BitTorrent protocol.

Implications. Our experiments in this section put the earlier obtained results about
the BitTorrent performance regarding the maximal throughput into different perspec-
tive. Earlier we have seen that using BTflow a community gets to about 50–70%
of the optimal performance. However, the theoretical upperbound does not neces-
sary fulfil the requirements of BitTorrent (at least using the classical maximum flow
algorithm). Thus we conclude that the BTflow –at least in the form we have been
using it in this paper– might not be as far away from the optimal performance as it
is suggested by earlier results. Possible improvements forreal world systems include
implementation of a distributed maximum flow (DMF) algorithm into the BitTorrent
client. There are two main problems to be considered: (i) theDMF must respect the
BitTorrent-specific constraints discussed above, and (ii)mixed environment of tradi-
tional and this specialized BitTorrent clients would not necessary guarantee optimal
performance.

14 Tamás Vinḱo, Bea Botýanszki

5 Related work

Recently the analysis of the seeding bandwidth allocation at inter-swarm level has
attracted the researchers attention. In Menget al. [10] analysis of the amount of
time required for all peers to get the files in peer-to-peer networks is given. Based
on a fluid-model the theoretical lower bound is derived and anoptimal algorithm
(of exponential running time), together with heuristics are given. For multi-swarm
multi-party P2P conferencing systems Lianget al. [11] propose optimal cross-swarm
bandwidth sharing strategies to address the bandwidth challenge. However, these pa-
pers did not compare their solutions to the ones applied in BitTorrent clients. The
papers [12,13] study the bandwidth allocation mechanisms of BitTorrent-like sys-
tems using synthetic traces only and finding out that indeed BitTorrent performs sub-
optimally. In our paper we use measurement traces of real communities. Regarding
the flow network model, Zhonget al. [14] evaluate the topological characteristics of
overlay BitTorrent networks using a graph model which is different from the one we
use. Delavizet al. [16] use several network (graph) measures to understand thebe-
havioural aspects of a BitTorrent reputation mechanism. Finally, the recent paper of
Hu et al.[15] investigate the inter-swarm aspect among BitTorrent communities, thus
it is at one level higher than our focus.

6 Summary and Conclusions

Using a flow network model we investigated a particular resource allocation problem
in BitTorrent communities, in which the aim was to maximize the total throughput
in the system. In the actual experiments a simulator was usedin order to calculate
to throughput which would have been provided by standard BitTorrent clients. Based
on measurement traces of two communities we discovered thatthe underlying flow
network representation has long-tail degree distributionand thus it is robust against
removal of average users. On the other hand, due to the same reason, high degree
nodes (users who contribute in many torrents, regardless oftheir bandwidth) play es-
sential role in keeping the high performance. The torrent selection mechanism can
be simulated with deleting edges from the flow network representation. Our experi-
ments with the extreme edge removal, which led to representation of one-swarm-per-
seeder scenarios, revealed that depending on the original structure of the graph this
can lead to both performance drop (in closed communities) orincrease (in open com-
munities). As it was already claimed in [9], the actual torrent selection mechanism
employed in many BitTorrent clients is efficient enough, provided that it is coupled
with efficient bandwidth allocation mechanism. Our experiments done here with a
greedy optimization technique on growing flow networks confirms this finding. On
the other hand, closer look on the solutions given by a maximum flow algorithm,
which provides the theoretical upper bound on the bandwidthallocation problem we
considered, disclosed that they represent skewed torrent allocations putting zero flow
values to most of the edges. This leads to the conclusion thatthe performance of the
standard BitTorrent clients are not as low as it was asserted.

Empirical investigation of BitTorrent community graphs 15

Acknowledgements This work was partially supported by the European Union and the European So-
cial Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013). T. Vinḱo was
supported by the Bolyai Scholarship of the Hungarian Academyof Sciences.

References

1. A. Wierzbicki, Trust and Fairness in Open, Distributed Systems, Vol. 298, Springer, 2010.
2. T. Lan, D. Kao, M. Chiang, A. Sabharwal, An axiomatic theoryof fairness in network resource allo-

cation, in: Proceedings of the IEEE INFOCOM, 2010, pp. 1–9.
3. B. Cohen, Incentives build robustness in BitTorrent, in:Workshop on Economics of Peer-to-Peer

systems, Vol. 6, 2003, pp. 68–72.
4. X. Chen, Y. Jiang, X. Chu, Measurements, analysis and modeling of private trackers, in: IEEE Tenth

International Conference on Peer-to-Peer Computing (P2P),2010, pp. 1–10.
5. X. Chu, X. Chen, A. Jia, J. Pouwelse, D. Epema, Dissecting darknets: measurement and performance

analysis. ACM Trans Internet Technol 13:125, 2014
6. Z. Liu, P. Dhungel, D. Wu, C. Zhang, K. Ross, Understandingand improving ratio incentives in private

communities, in: IEEE 30th International Conference on Distributed Computing Systems (ICDCS),
2010, pp. 610–621.

7. R. Rahman, M. Meulpolder, D. Hales, J. Pouwelse, D. Epema, H.Sips, Improving efficiency and
fairness in p2p systems with effort-based incentives, in: IEEE International Conference on Commu-
nications (ICC), 2010, pp. 1–5.

8. T. Vinkó, F. Santos, N. Andrade, M. Capotă, On swarm-level resource allocation in BitTorrent com-
munities, Optimization Letters 7 (2013) 923–932.

9. M. Capot̆a, N. Andrade, T. Vinḱo, F. Santos, J. Pouwelse, D. Epema, Inter-swarm resource alloca-
tion in BitTorrent communities, in: IEEE International Conference on Peer-to-Peer Computing (P2P),
2011, pp. 300–309.

10. X. Meng, P.-S. Tsang, K.-S. Lui, Analysis of distribution time of multiple files in a P2P network,
Computer Networks 57 (15) (2013) 2900 – 2915.

11. C. Liang, M. Zhao, Y. Liu, Optimal bandwidth sharing in multiswarm multiparty p2p video-
conferencing systems., IEEE/ACM Trans. Netw. 19 (6) (2011) 1704–1716.

12. R. S. Peterson, E. G. Sirer, Antfarm: Efficient content distribution with managed swarms, in: NSDI,
2009.

13. R. J. Dunn, S. D. Gribble, H. M. Levy, The importance of history in a media delivery system, in:
IPTPS, 2007.

14. L. Zhong, X. Wang, M. Kihl, Topological model and analysisof the P2P BitTorrent protocol, in: 9th
World Congress on Intelligent Control and Automation (WCICA), 2011, pp. 753–758.

15. C. Hu, D. Shan, Y. Cheng, T. Qin, Inter-swarm content distribution among private bittorrent networks.,
IEEE Journal on Selected Areas in Communications 31 (9-Supplement) (2013) 132–141.

16. R. Delaviz, N. Zeilemaker, J. A. Pouwelse, D. H. J. Epema, A network science perspective of a
distributed reputation mechanism, in: IFIP Networking, 2013, pp. 1–9.

17. L. R. Ford, D. R. Fulkerson, Maximal flow through a network,Canadian Journal of Mathematics 8
(1956) 399–404.

18. A. V. Goldberg, R. E. Tarjan, A new approach to the maximum-flow problem, J. ACM 35 (4) (1988)
921–940.

19. N. Andrade, E. Santos-Neto, F. Brasileiro, M. Ripeanu, Resource demand and supply in BitTorrent
content-sharing communities, Computer Networks 53 (4) (2009)515–527.

20. J. Roozenburg, Secure decentralized swarm discovery inTribler, Master’s thesis, Delft University of
Technology (2006).

21. T. Isdal, M. Piatek, A. Krishnamurthy, T. Anderson, Leveraging bittorrent for end host measurements,
in: S. Uhlig, K. Papagiannaki, O. Bonaventure (Eds.), Passive and Active Network Measurement, Vol.
4427 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2007, pp. 32–41.

22. L. A. N. Amaral, A. Scala, M. Barthelemy, H. E. Stanley, Classes of small-world networks, Proceed-
ings of the National Academy of Sciences 97 (21) (2000) 11149–11152.

23. G. Caldarelli, Scale-free networks: complex webs in nature and technology, Oxford University Press,
2007.

16 Tamás Vinḱo, Bea Botýanszki

24. J.-P. Onnela, J. Saramäki, J. Hyv̈onen, G. Szab́o, D. Lazer, K. Kaski, J. Kertész, A.-L. Barab́asi,
Structure and tie strengths in mobile communication networks,Proceedings of the National Academy
of Sciences 104 (18) (2007) 7332–7336.

25. I. A. Kash, J. K. Lai, H. Zhang, A. Zohar, Economics of BitTorrent communities, in: Proceedings of
the 21st international conference on World Wide Web, ACM, 2012, pp. 221–230.

26. R. Cuevas, M. Kryczka, A. Cuevas, S. Kaune, C. Guerrero, R. Rejaie, Is content publishing in BitTor-
rent altruistic or profit-driven?, in: Proceedings of the 6th International Conference, Co-NEXT ’10,
ACM, 2010, pp. 1–12.

