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Abstract. Results are reported of testing a number of existing state of the art solvers for
global constrained optimization and constraint satisfaction on a set of over 1000 test problems
in up to 1000 variables, collected from the literature.

The test problems are available online in AMPL and were translated into the input formats
of the various solvers using routines from the COCONUT environment. These translators are
available online, too.

1. Overview

This paper presents test results for software performing a complete search to
solve global optimization or constraint satisfaction problems.

In contrast to local or heuristic searches, a complete search checks all points
in the search region for feasibility, and all feasible points for global optimality.
A solver that performs a complete search – apart from rounding error issues
– is called a complete solver. Since the search region for continuous global
optimization problems contains an infinite number of points, analytic techniques
are needed to make decisions about infinitely many points simultaneously. This
is usually (but not always) done in a branch-and-bound framework.

As the recent survey Neumaier [25] of complete solution techniques in global
optimization documents, there are now about a dozen solvers for constrained
global optimization that claim to solve global optimization and/or constraint
satisfaction problems to global optimality by performing a complete search.

Within the COCONUT project [30,31], we evaluated many of the existing
software packages for global optimization and constraint satisfaction problems.
This is the first time that different constrained global optimization and constraint
satisfaction algorithms are compared on a systematic basis and with a test set
that allows to derive statistically significant conclusions. We tested the global
solvers BARON, COCOS, GlobSol, ICOS, LGO, LINGO, OQNLP, Premium
Solver, and the local solver MINOS.

The testing process turned out to be extremely time-consuming, due to vari-
ous reasons not initially anticipated. A lot of effort went into creating appropriate
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interfaces, making the comparison fair and reliable, and making it possible to
process a large number of test examples in a semiautomatic fashion.

In a recent paper about testing local optimization software, Dolan & Moré
[7,8] write: We realize that testing optimization software is a notoriously difficult
problem and that there may be objections to the testing presented in this report.
For example, performance of a particular solver may improve significantly if
non-default options are given. Another objection is that we only use one starting
point per problem and that the performance of a solver may be sensitive to the
choice of starting point. We also have used the default stopping criteria of the
solvers. This choice may bias results but should not affect comparisons that rely
on large time differences. In spite of these objections, we feel that it is essential
that we provide some indication of the performance of optimization solvers on
interesting problems.

These difficulties are also present with our benchmarking studies. Section 2
describes our testing methodology. We use a large test set of over 1000 problems
from various collections. Our main performance criterium is currently how often
the attainment of the global optimum, or the infeasibility of a problem, is cor-
rectly or incorrectly claimed (within some time limit). All solvers are tested with
the default options suggested by the providers of the codes, with the request to
stop at a time limit or after the solver believed that first global solution was
obtained.

These are very high standards, much more demanding than what had been
done by anyone before. Thorough comparisons are indeed very rare, due to the
difficulty of performing extensive and meaningful testing. Indeed, we know of
only two comparative studies [18,23] in global optimization ranging over more
than perhaps a dozen examples, and both are limited to bound constrained black
box optimization. (See also Huyer [15] for some further tests.)

Only recently rudimentary beginnings were made elsewhere in testing con-
strained global optimization [12]. On the other hand, there are a number of re-
ports about comparing codes in local optimization [1,4,7,8,14,17,28], and there
is an extensive web site [22] with wide-ranging comparative results on local con-
strained optimization codes.

Section 3 describes the tests done on the most important state of the art
global solvers. Shortly expressed, the result is the following:

Among the currently available global solvers, BARON is the fastest
and most robust one, with OQNLP being close. None of the current
global solvers is fully reliable, with one exception: For pure constraint
satisfaction problems, ICOS, while slower than BARON, has excel-
lent reliability properties when it is able to finish the complete search.
Models in dimension < 100 are solved with a success rate (global op-
timum found) of over 90% by BARON while (within half an hour of
CPU time) less than two thirds of the larger models are solved.

OQNLP, the best of the stochastic solvers, had solved the maximal
number of problems a year ago, but is now in most respects second to
the newest version of BARON; moreover, it is much slower and cannot
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offer information about when the search is completed. However, on the
models with > 100 variables, OQNLP still solves (within the imposed
time limit) the highest percentage (72%) of problems.

The best solver, BARON, was able to complete the search in over
two third of the models with less than 100 variables (for larger prob-
lems only about one third, within the time limit of 30 minutes), but
it lost the global minimum in about 4 percent of the cases.

The final Section 4 concludes with various remarks, including guidelines for
developers of global optimization codes derived from our experience with the
initial versions of the packages tested.

Much more detailed results than can be given here are available online at [3].
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(GlobSol), Yahia Lebbah (ICOS), Alex Meeraus (GAMS), János Pintér (LGO),
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Tóth (Szeged, Hungary). Mihály Markót tested and debugged preliminary ver-
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The results presented are part of work done in the context of the COCONUT
project [30,31] sponsored by the European Union, with the goal of integrat-
ing various existing complete approaches to global optimization into a uniform
whole. Funding by the European Union under the IST Project Reference Number
IST-2000-26063 within the FET Open Scheme is gratefully acknowledged.

2. Testing

Introduction. We present test results for the global optimization systems
BARON, COCOS, GlobSol, ICOS, LGO/GAMS, LINGO, OQNLP Premium
Solver, and for comparison the local solver MINOS. All tests were made on the
COCONUT benchmarking suite described in Shcherbina et al. [33].

Our experience with the solvers tested and preliminary test results were com-
municated to the developers of the solvers and lead to significant improvements
in the robustness and user-friendliness of several solvers – the present results are
based on the last available version of each solver.

For generalities on benchmarking and the associated difficulties, in particular
for global optimization, see Shcherbina et al. [33]. Here we concentrate on the
documentation of the testing conditions used and on the interpretation of the
results obtained. For the interpretation of the main results, see the overview in
Section 1.

The test set. A good benchmark must be one that can be interfaced with
all existing solvers, in a way that a sufficient number of comparative results
can be obtained. There are various smaller-scale benchmark projects for partial
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domains, in particular the benchmarks for local optimization by Mittelmann
[22]. A very recent web site, the GAMS Global Library [13] started collecting
real life global optimization problems with industrial relevance, but currently
most problems on this site are without computational results. Our benchmark
(described in more detail in [33]) includes most of the problems from these
collections.

The test set consists of 1322 models varying in dimension (number of vari-
ables) between 1 and over 1000, coded in the modeling language AMPL [9]. They
are sorted by size and source (library). Size k denotes models whose number of
variables (after creating the corresponding DAG and simplifying it) has k deci-
mal digits. Library 1 (from Global Library [13]) and Library 2 (from CUTE [5],
in the version of Vanderbei [36]) consist of global (and some local) optimiza-
tion problems with nonempty feasible domain, while Library 3 (from EPFL [33])
consists of pure constraint satisfaction problems (constant objective function),
almost all being feasible. The resulting 12 model classes are labeled as lib2s1

(= size 1 models from Library 2), etc..

Number of test models
Number of variables 1− 9 10− 99 100− 999 ≥ 1000 any

size 1 size 2 size 3 size 4 total
Library 1 84 90 44 48 266
Library 2 347 100 93 187 727
Library 3 225 76 22 6 329

total 656 266 159 241 1322

We restricted testing to models with less than 1000 variables since the models
of size 3 already pose so many difficulties that working on the (much more CPU
time consuming) larger models is likely to give no additional insight for the
current generation of solvers.

We also excluded a small number of models from these test sets because of
difficulties unrelated to the solvers. In particular, the functions if, log10, tan,
atan, asin, acos and acosh are currently not supported by the ampl2dag con-
verter underlying all our translators into the various solver input formats. Since
they are used in the models ColumnDesign-original, FatigueDesign-original,
djtl, hubfit (if), bearing (log10), yfit, yfitu (tan), artif, helix, s332,
TrussDesign-full, TrussDesign01 (atan), dallasl, dallasm, dallass (asin),
chebyqad, cresc4, cresc50, cresc100, cresc132 (acos), coshfun (acosh),
these models were excluded. A few of the problems in Library 3 (pure con-
straint satisfaction problems) in fact contained objective functions, and hence
were excluded, too. This was the case for the models h78, h80, h81, logcheb,
median exp, median nonconvex, robotarm, steenbre. A few other models, namely
ex8 3 12, ex8 3 14, concon, mconcon, osborneb, showed strange behavior, mak-
ing us suspect that it is due to unspotted bugs in our converters.

The models where none of the solvers found a feasible point and some other
attempts to get one failed, are regarded in the following as being infeasible
(though some of these might possess undiscovered feasible points).
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The computers. Because of the large number of models to be solved, we per-
formed our tests on a number of different computers called Lisa, Hektor, Zenon,
Theseus and Bagend. Their brand and their general performance characteristics
are displayed below. The standard unit time STU, redefined in Shcherbina et
al. [33], is essentially equivalent to 108 standard unit times according to Dixon
& Szegö [6]. For Bogomips and Linpack, see

http://www.tldp.org/HOWTO/mini/BogoMips-2.html

http://www.netlib.org/benchmark/linpackjava

(The high Linpack entry for Zenon is apparently caused by an inefficient Win-
dows environment.)

Computer CPU type OS CPU/MHz Bogomips STU/sec Linpack
Lisa AMD Athlon Linux 1678.86 3348.88 50 7.42

XP2000+
Hektor AMD Athlon Linux 1544.51 3080.19 53 6.66

XP1800+
Zenon AMD Family 6 Windows 1001 — 74 46.78

Model 4 NT 4.0
Theseus Pentium III Linux 1000.07 1992.29 130 4.12
Bagend AMD Athlon Linux 1666.72 3329.22 36 5.68

MP2000+

To decide on the best way to compare across computers, we ran the models
from lib1s1 with BARON on both Lisa and Theseus, and compared the re-
sulting ratios of CPU times with the ratios of performance indices, given by the
following table.

Lisa Theseus Ratios Inverse ratios
Frequency 1678.86 1000.07 1.68 0.60
Bogomips 3348.88 1992.29 1.68 0.59
STU 50.00 130.00 0.38 2.60
Linpack 7.42 4.12 1.80 0.56

As Figure 1 with the results shows, the appropriate index to use is the fre-
quency. We therefore measure times in multiples of 1000 Mcycles, obtained by
multiplying the CPU time by the nominal frequency of the CPU in MHz, and
dividing the result by 1000. Figure 1 also shows that small times are not well
comparable; we therefore decided to round the resulting numbers t to 1 digit
after the decimal point if t < 10, and to the nearest integer if t ≥ 10. For tiny
times where this would result in a zero time, we use instead t = 0.05.

The solvers. The following tables summarize some of the main properties
of these solvers, as far as known to us. Missing information is indicated by a
question mark, and partial applicability by a + or− in parentheses; the dominant
technique (if any) exploited by the solver is denoted by ++.
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Fig. 1. Times and timing ratios for lib1s1 with BARON
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The first two rows give the name of the solvers and the access language
used to pass the problem description. The next two rows indicate whether it is
possible to specify integer constraints (although we don’t test this feature), and
whether it is necessary to specify a finite search box within which all functions
can be evaluated without floating point exceptions.

The next three rows indicate whether black box function evaluation is sup-
ported, whether the search is complete (i.e., is claimed to cover the whole search
region if the arithmetic is exact and sufficiently fast) or even rigorous (i.e., the
results are claimed to be valid with mathematical certainty even in the presence
of rounding errors).
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Solver Minos LGO BARON ICOS GlobSol
access language GAMS GAMS GAMS AMPL Fortran90
optimization? + + + − +
integer constraints − + + − −
search bounds − required recommended − required
black box eval. + + − − −
complete − (−) + + +
rigorous − − − + +
local ++ + + + (+)
CP − − + ++ +
other interval − − − + ++
convex/LP − − ++ + −
dual + − + − −
available + + + + +
free − − − (+) +

Solver Premium LINGO αBB GloptiPoly OQNLP
Solver Global

access language Visual Basic LINGO MINOPT Matlab GAMS
optimization? + + + (+) +
integer constraints + + + − +
search bounds + − ? − +
black box eval. − − − − +
complete + + + + −
rigorous (+) − − − −
local + + + − +
CP + + − − −
other interval ++ + + − −
convex/LP + ++ ++ + −
dual − + − ++ −
available + + − + +
free − − − + −

Note that general theorems forbid a complete finite search if black box func-
tions are part of the problem formulation, and that a rigorous search is neces-
sarily complete. In view of the goals of the COCONUT project we were mainly
interested in complete solvers. However, we were curious how (some) incomplete
solvers perform. Five further rows indicate the mathematical techniques used to
do the global search. We report whether local optimization techniques, constraint
propagation, other interval techniques, convex analysis and linear programming
(LP), or dual (multiplier) techniques are part of the toolkit of the solver.

The final two rows indicate whether the code is available (we include in
this list of properties the solver αBB because of its good reported properties,
although we failed to obtain a copy of the code), and whether it is free (in the
public domain).
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In this paper, we study the behavior of the solvers BARON/GAMS (version
7.2, released July 7, 2004) [29,34,35], COCOS (beta test version 1.0, released
September 20, 2004), GlobSol (version released 11 September 2003) [19], ICOS
(beta-test version, released March 29, 2004) [20], LGO/GAMS [27], LINGO (ver-
sion 9.0, released October 12, 2004) [21], OQNLP/GAMS [11], Premium Solver
(Interval Global Solver from the Premium Solver Platform of Frontline Systems,
Version 5) [10]. (GloptiPoly is limited to polynomial systems of dimension < 20,
and was not tested.) Note that our tests apply to the combination of solver plus
interface. For LINGO we used the converter from GAMS. In a few cases, the
failures reported are due to problems in the GAMS interface rather than the
solver.

To enable us to assess how difficult it is (i) to find a global minimum, and (ii)
to verify it as global – in many instances, part (ii) is significantly harder than
part (i) –, results (without timings) from the local solver MINOS [24] are also
included in our comparison.

ICOS only handles pure constraint satisfaction problems, and hence was
tested only on Library 3. Two of the solvers (BARON and ICOS) also allow
the generation of multiple solutions, but due to the lack of a reliable basis for
comparison, this feature has not been tested. Two of the solvers (BARON and
LINGO) allow one to pose integer constraints, and two (LINGO and Premium
Solver) allows nonsmooth expressions. Neither of these features has been tested
in this study.

Passing the models. The access to all test models is through an AMPL
interface, which translates the AMPL model definition into the internal form of
a directed acyclic graph (DAG) which is labelled in such a way as to provide
a unique description of the model to be solved. This internal description could
be simplified by a program dag simplify which performs simple presolve and
DAG simplification tasks. Moreover, all maximization problems are converted
to minimization problems, with objective multiplied by −1. This preprocessing
ensures that all solvers start with a uniform level of description of the model. The
DAG is then translated into the input format required by each solver. (For the
tests, we switched off the model simplification stage, since it is not yet efficiently
implemented.)

A testing environment was created to make as much as possible of the testing
work automatic. We had to rerun many calculations for many models whenever
bugs were fixed, new versions of a solver became available, new solvers were
added, improvements in the testing statistics were made, etc.; this would have
been impossible without the support of such a testing environment.

The simplifier and the translators from AMPL into the input formats for the
solvers tested are available in the COCONUT environment (Schichl [32]). The
remainder of the test environment is not fully automatic and hence not publicly
available.

Performance criteria. All solvers are tested with the default options sug-
gested by the providers of the codes. (Most solvers may be made to work sig-
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nificantly better by tuning the options to particular model classes; hence the
view given by our comparisons may look more pessimistic than the view users
get who spend time and effort on tuning a solver to their models. However, in a
large-scale, automated comparison, it is impossible to do such tuning.)

The timeout limit used was (scaled to a 1000 MHz machine) around 180
seconds CPU time for models of size 1, 900 seconds for models of size 2, and
1800 seconds for models of size 3 (except for GlobSol and Premium Solver which
had slightly different time limits, the results stemming from earlier runs). The
precise value changed between different runs since we experimented with dif-
ferent units for measuring time on different machines. But changing (not too
much) the value for the timeout limit hardly affects the cumulative results, since
the overwhelming majority of the models was either completed very quickly, or
extremely slow.

The solvers LGO and GlobSol required a bounded search region, and we
bounded each variable between −1000 and 1000, except in a few cases where
this leads to a loss of the global optimum.

The reliability of claimed results is the most poorly documented aspect of
current global optimization software. Indeed, as was shown by Neumaier &
Shcherbina [26] as part of the current project, even famous state-of-the-art
solvers like CPLEX 8.0 (and many other commercial MILP codes) may lose an
integral global solution of an innocent-looking mixed integer linear program. We
use the following five categories to describe the quality claimed:

Sign Description

X model not accepted by the solver
I model claimed infeasible by the solver
G result claimed to be a global optimizer
L result claimed to be a local (possibly global) optimizer
U unresolved (no solution found or error message)
T timeout reached (qualifies L and U)

Note that the unresolved case may contain cases where a feasible but nonop-
timal point was found, but the system stopped before claiming a local or global
optimum.

Checking for best function value. The program solcheck from the CO-
CONUT Environment checks the feasibility of putative solutions of solver results.
This was necessary since we found lots of inconsistencies where different solvers
produced different results, and we needed a way of checking whether the problem
was in the solver or in our interface to it. A point was considered to be (nearly)
feasible if each constraint c(x) ∈ [c, c] was satisfied within an absolute error of
tol for bounds with absolute value < 1, and a relative error of tol for all other
bounds. Equality constraints were handled by the same recipe with c = c.

To evaluate the test results, the best function value is needed for each model.
We checked in all cases the near feasibility of the best points used to verify the
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claim of global optimality or feasibility. In a later stage of testing we intend to
prove rigorously the existence of a nearby feasible point. More specifically:

The results of all solvers tested were taken into account, and the best function
value was chosen from the minimum of the (nearly) feasible solutions by any
solver. For models where this did not give a (nearly) feasible point, we tried to
find feasible points by ad hoc means, which were sometimes successful. If there
was still no feasible solution for a given model, the (local) solution with the
minimal residual was chosen (but the result marked as infeasible).

To test which accuracy requirements on the constraint residuals were ade-
quate, we counted the number of solutions of BARON and LINGO on lib1s1

which were accepted as feasible with various solcheck tolerances tol. Based
on the results given in the following table, it was decided that a tolerance of
tol= 10−5 was adequate. (The default tolerances used for running BARON and
LINGO were 10−6.)

solver tol all accepted +G G! G? I?

BARON 1e-4 91 88 75 36 1 0
1e-5 91 88 75 36 1 0
1e-6 91 88 56 24 13 0
1e-7 91 88 49 19 18 0

LINGO 1e-4 91 91 82 66 3 0
1e-5 91 91 81 65 4 0
1e-6 91 91 77 63 6 0
1e-7 91 91 52 41 28 0

3. Test results

Notation in the tables. In the summary statistic tables the following notation
is used:

Column Description

library describes the library
all library/size

accepted the number of models accepted by the solver
+G number of models for which the global solution was found
G! number of models for which the global solution was

correctly claimed to be found
G? number of models for which a global solution was claimed

but the true global solution was in fact significantly better
or the global solution is reported but in fact that is an
infeasible point

I? number of models for which the model was claimed
infeasible although a feasible point exists
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For models where a local optimizer finds the global optimum (without know-
ing it), the purpose of a global code is to check whether there is indeed no better
point; this may well be the most time-consuming part of a complete search. For
the remaining models the search for the global optimum is already hard. We
therefore split the evaluation into

– ‘easy location models’, where the local optimizer MINOS found a feasible
point with the global objective function value, and

– ‘hard location models’, all others where MINOS failed.

For the easy and hard models (according to this classification), the claimed status
is given in the columns; the rows contain a comparison with the true status:

Column Description

wrong number of wrong claims, i.e. the sum of G? and I? from
the summary statistic table

+G how often the solution found was in fact global
−G how often it was in fact not global
I how many models are in fact infeasible

For the purposes of comparison in view of roundoff, we rounded function
values to 3 significant decimal digits, and regarded function values of < 10−4 as
zero (but print them in the tables as nonzeros) when the best known function
value was zero. Otherwise, we regard the global minimum as achieved if the
printed (rounded) values agree.

For each library detailed tables for all models and all solvers tested, and many
more figures (of the same type as the few presented here) are also available,
for reasons of space they are presented online on the web [3]. There we give a
complete list of results we currently have on the nine model classes (i.e., excluding
the models with 1000 or more variables, and the few models described before.)

GlobSol and Premium Solver. To test GlobSol, we used an evaluation
version of LAHEY Fortran 95 compiler. Note that we had difficulties with the
Intel Fortran compiler.

In the first round we tested GlobSol on Library 1 size 1 problems (containing
91 problems) with the same time limit as used for the other solvers. GlobSol
failed to solve most of the problems within the strict time limit. For this reason
we decided to use a very permissive time limit (even then, only half the accepted
problems were solved).

The same tests as for GlobSol were performed for Premium Solver, with
similar performance.

Figure 2 compares the global solvers GlobSol, Premium Solver, and BARON
on the size 1 problems from Library 1. The figure contains timing results for
the models described in the figure caption, sorted by the time used by BARON.
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Conversion times for putting the models into the format required by the solvers
are not included. Times (given in units of 1000 Mcycles) below 0.05 are places on
the bottom border of each figure, models for which the global minimum was not
found by the solver get a dummy time above the timeout value, and are placed at
the top border of each figure, in slightly different heights for the different solvers.
In this way one can assess the successful completion of the global optimization
task.

Fig. 2. Times for lib1s1, all models, GlobSol and Premium Solver vs. BARON
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In a few cases, GlobSol and Premium Solver found solutions where BARON
failed, which suggests that BARON would benefit from some of the advanced
interval techniques implemented in GlobSol and Premium Solver.

However, GlobSol and Premium Solver are much less efficient in both time
and solving capacity than BARON. To a large extent this may be due to the
fact that both GlobSol and Premium Solve strive to achieve mathematical rigor,
resulting in significant slowdown due to the need of rigorously validated tech-
niques. (There may be also systematic reasons in the comparison, since GlobSol
does not output a best approximation to a global solution but boxes, from which
we had to extract a test point.)
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Moreover, the theoretically rigorous performance guarantees are not borne
out, in that both solvers make some wrong claims, probably due to lack of care
in programming.

In view of these results, we refrained from further testing GlobSol and Pre-
mium Solver.

The summary statistics on lib1s1 can be found in the following tables.

GlobSol summary statistics
library all accepted +G G! G? I?
lib1s1 91 77 39 38 20 0

Premium summary statistics
library all accepted +G G! G? I?
lib1s1 91 75 45 31 10 1

A more detailed table gives more information. Included is an evaluation of
the status claimed about model feasibility and the global optimum, and the true
status (based on the best point known to us).

GlobSol on lib1s1

status all wrong easy location hard location
+G −G I +G −G I

all 91 20 30 34 0 9 18 0
G 58 20 30 13 0 8 7 0
U 19 0 0 16 0 1 2 0
X 14 0 0 5 0 0 9 0

Premium Solver on lib1s1

status all wrong easy location hard location
+G −G I +G −G I

all 91 11 36 28 0 9 18 0
G 41 10 25 9 0 6 1 0
L 12 0 6 2 0 2 2 0

LT 9 0 4 3 0 1 1 0
U 12 0 1 2 0 0 9 0
X 16 0 0 11 0 0 5 0
I 1 1 0 1 0 0 0 0

COCOS. The COCONUT environment is an open domain global optimiza-
tion platform. Apart from the translators used for the present comparison, it
contains a configurable solver COCOS with many modules that can be com-
bined to yield various combination strategies for global optimization. We tested
the strategy called by “cocos -hopt +bs +lp solve <model>.dag”.
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COCOS summary statistics
library all accepted +G G! G? I?
lib1s1 91 91 51 36 12 0
lib1s2 80 80 26 11 14 0
lib1s3 41 41 3 0 2 0
lib2s1 324 324 182 98 29 0
lib2s2 99 99 37 10 5 0
lib2s3 95 95 11 2 1 0
lib3s1 217 217 143 48 2 0
lib3s2 69 69 38 19 0 0
lib3s3 22 22 4 3 0 0

Reliability analysis for COCOS

global minimum found/accepted
size 1 376/632 ≈ 59%
size 2 101/248 ≈ 41%
size 3 18/158 ≈ 11%

all 495/1038 ≈ 48%

correctly claimed global/accepted
size 1 182/632 ≈ 29%
size 2 40/248 ≈ 16%
size 3 5/158 ≈ 3%

all 227/1038 ≈ 22%

wrongly claimed global/claimed global
size 1 43/225 ≈ 19%
size 2 19/59 ≈ 32%
size 3 3/8 ≈ 38%

all 65/292 ≈ 22%

claimed infeasible/accepted and feasible
size 1 0/626 = 0%
size 2 0/241 = 0%
size 3 0/147 = 0%

all 0/1014 = 0%

ICOS. ICOS is a pure constraint solver, which currently cannot handle mod-
els with an objective function, and hence was tested only on Library 3. (An
enhanced version of ICOS, capable also of rigorously solving global optimization
problems is under development.)

ICOS also claims to provide mathematically rigorous results, and indeed, it
is the only complete solver tested that did not make any false claims in our tests.
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ICOS summary statistics
library all accepted +G G! G? I?
lib3s1 217 207 145 68 0 0
lib3s2 69 63 34 12 0 0
lib3s3 22 20 5 0 0 0

Reliability analysis for ICOS
(on pure CSPs only)

global minimum found/accepted
size 1 145/207 ≈ 70%
size 2 34/63 ≈ 54%
size 3 5/20 ≈ 25%

all 184/290 ≈ 63%

correctly claimed global/accepted
size 1 68/207 ≈ 33%
size 2 12/63 ≈ 19%
size 3 0/20 = 0%

all 80/290 ≈ 28%

wrongly claimed global/claimed global
size 1 0/68 = 0%
size 2 0/12 = 0%

all 0/80 = 0%

claimed infeasible/accepted and feasible
size 1 0/201 = 0%
size 2 0/59 = 0%
size 3 0/18 = 0%

all 0/278 = 0%

BARON, LINGO, OQNLP, LGO and MINOS. The following tables
contain the summary statistics for the performance of the other solvers tested,
apart from COCOS.

BARON7.2/GAMS summary statistics
library all accepted +G G! G? I?
lib1s1 91 88 88 64 0 0
lib1s2 80 77 71 46 3 0
lib1s3 41 33 23 5 1 0
lib2s1 324 296 254 206 11 0
lib2s2 99 89 82 48 2 0
lib2s3 95 87 51 25 6 0
lib3s1 217 195 182 180 3 3
lib3s2 69 63 57 57 2 1
lib3s3 22 20 14 13 1 0
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LINGO9 summary statistics
library all accepted +G G! G? I?
lib1s1 91 91 84 70 3 0
lib1s2 80 80 53 42 14 1
lib1s3 41 41 12 1 2 1
lib2s1 324 324 260 232 26 1
lib2s2 99 99 71 45 10 0
lib2s3 95 95 49 26 11 0
lib3s1 217 217 189 189 15 0
lib3s2 69 69 55 55 9 0
lib3s3 22 22 10 9 4 0

OQNLP/GAMS summary statistics
library all accepted +G G! G? I?
lib1s1 91 91 83 0 0 1
lib1s2 80 80 70 0 0 1
lib1s3 41 28 12 0 0 5
lib2s1 324 315 272 0 0 1
lib2s2 99 95 90 0 0 0
lib2s3 95 83 68 0 0 1
lib3s1 217 213 196 0 0 3
lib3s2 69 67 47 0 0 2
lib3s3 22 19 11 0 0 3

LGO/GAMS summary statistics
library all accepted +G G! G? I?
lib1s1 91 85 65 0 0 0
lib1s2 80 78 39 0 0 8
lib1s3 41 31 4 0 0 12
lib2s1 324 309 234 0 0 4
lib2s2 99 94 61 0 0 15
lib2s3 95 57 23 0 0 10
lib3s1 217 212 155 0 0 46
lib3s2 69 66 35 0 0 21
lib3s3 22 11 3 0 0 4

MINOS/GAMS summary statistics
library all accepted +G G! G? I?
lib1s1 91 91 64 0 0 0
lib1s2 80 80 47 4 0 4
lib1s3 41 41 19 1 0 4
lib2s1 324 323 245 15 1 12
lib2s2 99 97 80 4 2 3
lib2s3 95 92 42 1 0 8
lib3s1 217 213 155 3 0 27
lib3s2 69 68 35 0 1 12
lib3s3 22 21 11 1 0 4
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The corresponding reliability analysis tables are as follows.

Reliability analysis for BARON 7.2

global minimum found/accepted
size 1 524/579 ≈ 91%
size 2 210/229 ≈ 92%
size 3 88/140 ≈ 63%

all 821/950 ≈ 86%

correctly claimed global/accepted
size 1 450/579 ≈ 78%
size 2 151/229 ≈ 66%
size 3 43/140 ≈ 31%

all 644/950 ≈ 68%

wrongly claimed global/claimed global
size 1 14/464 ≈ 3%
size 2 7/158 ≈ 4%
size 3 8/51 ≈ 16%

all 29/675 ≈ 4%

claimed infeasible/accepted and feasible
size 1 3/571 ≈ 1%
size 2 1/222 ≈ 0%
size 3 0/128 = 0%

all 4/921 ≈ 0.4%

Reliability analysis for LINGO9

global minimum found/accepted
size 1 533/632 ≈ 84%
size 2 179/248 ≈ 72%
size 3 71/158 ≈ 45%

all 783/1038 ≈ 75%

correctly claimed global/accepted
size 1 491/632 ≈ 78%
size 2 142/248 ≈ 57%
size 3 36/158 ≈ 23%

all 669/1038 ≈ 64%

wrongly claimed global/claimed global
size 1 44/535 ≈ 8%
size 2 33/175 ≈ 19%
size 3 17/53 ≈ 32%

all 94/763 ≈ 12%

claimed infeasible/accepted and feasible
size 1 1/624 ≈ 0%
size 2 1/241 ≈ 0%
size 3 1/143 ≈ 0%

all 3/1008 ≈ 0.3%
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Reliability analysis for OQNLP

global minimum found/accepted
size 1 551/619 ≈ 89%
size 2 207/242 ≈ 86%
size 3 91/130 ≈ 72%

all 847/993 ≈ 86%

claimed infeasible/accepted and feasible
size 1 5/611 ≈ 1%
size 2 3/235 ≈ 1%
size 3 9/124 ≈ 8%

all 17/944 ≈ 2%

Reliability analysis for LGO

global minimum found/accepted
size 1 454/606 ≈ 75%
size 2 135/238 ≈ 57%
size 3 30/99 ≈ 30%

all 619/943 ≈ 66%

claimed infeasible/accepted and feasible
size 1 50/598 ≈ 8%
size 2 44/229 ≈ 18%
size 3 26/91 ≈ 30%

all 120/918 ≈ 13%

Reliability analysis for MINOS

global minimum found/accepted
size 1 464/627 ≈ 74%
size 2 162/245 ≈ 66%
size 3 72/154 ≈ 47%

all 698/1026 ≈ 68%

correctly claimed global/accepted
size 1 18/627 ≈ 3%
size 2 8/245 ≈ 3%
size 3 3/154 ≈ 2%

all 29/1026 ≈ 3%

wrongly claimed global/claimed global
size 1 1/19 ≈ 5%
size 2 3/11 ≈ 27%
size 3 0/3 = 0%

all 4/33 ≈ 12%

claimed infeasible/accepted and feasible
size 1 39/619 ≈ 6%
size 2 19/238 ≈ 8%
size 3 16/151 ≈ 11%

all 74/1008 ≈ 7%
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Finally, we compare all solvers on lib1s1 (problems from GlobalLib with
less than 10 variables).

lib1s1 summary statistics
library all accepted +G G! G? I?
BARON 91 88 88 64 0 0
LINGO 91 91 83 70 6 0
OQNLP 91 91 83 0 0 1
LGO 91 85 65 0 0 0
MINOS 91 91 64 0 0 0
COCOS 91 91 51 36 12 0
Premium 91 75 45 31 10 1
GlobSol 91 77 39 38 20 0

4. Conclusions

The results speak for themselves, and the main conclusions were already given
in the opening section. Here we add a few more observations.

– The most remarkable observation is that the models from Library 1, which
were collected specifically as test problems for global optimization, do not
behave much differently from those of Library 2, which were collected as test
problems for local optimization routines. In particular, many problems
that were solved in the past only as local optimization problems
were in fact global problems where the global minimizer is not
easily found.

– The GAMS solvers LGO and OQNLP are very cautious, never claiming a
global minimum. This reflects the observed unreliability of the internal claims
(as seen by studying the logfile) of the LGO version used by GAMS, and the
decision of GAMS rather to err on the conservative side.

– It is on first sight surprising that under GAMS, the local solver MINOS
sometimes claims to have found a global result. This is the case, e.g., because
some models are recognized as linear programs for which every local solution
is global. (The cases with G? are caused by too inaccurate approximate
solutions.)

– In a few cases, solvers reported infeasibility, although the point they found
was considered feasible by solcheck.

– Conversely, a number of the wrong claims of globality (especially of LINGO)
are caused by the fact that an approximate minimizer was found but that
the constraints were not satisfied with the accuracy one could have expected
from the solver settings – some residual was larger than 10−5, although the
requested tolerance was 10−6.

– In the mean time, BARON/GAMS had some bugs fixed, which eliminates all
wrong claims to infeasibility and reduces the rate of wrong claims of global
optimality to 12/675 = 1.8%. This raises the hope that the next official
release has a much improved reliability.
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Fig. 3. Performance profiles for reaching the global optimum
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Performance profiles. Upon request by a reviewer, we also add some per-
formance profiles (introduced by Dolan & Moré [8]). However, the profiles
must be interpreted with much caution since often a global solver finds the
global minimum quite early and then spends a lot of time checking whether
there is another one. Unless a time limit is reached, BARON and LINGO quit
only after they completed the search, while OQNLP and LGO quit according
to some statistical criterion, and MINOS quits directly after finishing the local
optimization. This is reflected in a severe dependence of the performance profiles
on the solvers selected; cf. Figures 3 and 4.

Figure 3 displays the fraction of problems solved to global optimality within
a factor 2τ of the time the best solver (from BARON, LINGO, OQNLP, LGO
and MINOS) needed for the problem, among all problems accepted by all these
solvers. Figure 4 displays the same, but with MINOS excluded. (The numbers
at τ = 0 add up to more than 100% because of the way we rounded tiny times –
as discussed in Section 2 –, which resulted in many ties for the best times, which
were multiply counted. The steps in the profiles also come from this rounding
procedure.)

Similarly, Figure 5 displays the fraction of problems where BARON or LINGO
finished the global search successfully within a factor 2τ of the time the better
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Fig. 4. Performance profiles for reaching the global optimum
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of the two solvers needed for finishing the global search, among all problems
accepted by both solvers.

Guidelines for code developers. Our extensive testing revealed a number
of desirable properties of solvers, that would have saved much of our time, and
that code developers should consider taking into account:

– Solvers should never enter infinite loops; there should be an option to stop
after (approx.) a given time limit.

– A constant objective should not cause difficulties.
– Solvers which have access to the computational tree should not fail because

of overflow, underflow, exceptions, exp(1000), 1/0, 0 ∗ log(0), log(0).
– Avoid confusing messages (e.g., detected infeasibility should not be labelled

”success”).
– Output messages should be meaningful to the user (e.g., ”numerical difficul-

ties encountered” =⇒ Results still OK??).
– There should be an informative final quality claim (such as the XIGLU clas-

sification used here).
– A large number of problems have not all variables bounded; so solvers should

be able to address this. If a solver needs finite bounds to perform well, these
should be set by default to reasonable values where none are provided by the
model, and a warning should be given to the user.
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Fig. 5. Performance profiles for reaching the global optimum
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