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Abstract—Many peer-to-peer file sharing communities imple-
ment credit policies to incentivise users to contribute upload
resources. Such policies implicitly assume a user model - how the
user controlling each peer behaves. We show using an agent-based
model that credit policies, based on bandwidth contribution, and
a selfishuser model, can lead to both “crunches” and “crashes”
where the system seizes completely due to too little credit or
too much credit. We explore the conditions that lead to these
system pathologies and present a theoretical analysis that allows
us to determine if a community is sustainable or will eventually
crunch or crash. Finally we apply the analysis to produce a novel
adaptive credit system that automatically adjusts credit policies
to maintain sustainability.

Keywords—P2P, economics, agent-based simulation, credits,
incentives.

I. I NTRODUCTION

BitTorrent (BT) is a widely used peer-to-peer (P2P) protocol
for distributing files over the Internet [2]. BT uses a swarm
based approach in which peers interested in a particular file
cooperate by trading small pieces of the file. By contributing
upload bandwidth to others, peers collectively distributethe
file without the need for high capacity central servers. In BT
peers are incentivsed to contribute upload bandwidth via a
direct reciprocity approach - a form of tit-for-tat (TFT).

The TFT approach, put simply, involves peers only con-
tributing upload to other peers who reciprocate. Hence freerid-
ing, where a peer only downloads without uploading, is
punished.

However, the TFT approach does not incentivise a crucial
BT activity called “seeding”. A seeding peer stores the entire
file and hence acts in a purely altruistic way by giving
away pieces. To create a new BT swarm at least one seeder
is required. When a peer has downloaded the entire file
it automatically becomes a seeder unless the user of the
peer decides to leave the swarm. A swarm containing many
seeders provides high download rates for peers downloading
from the swarm (termed “leechers”). Yet since seeding is not
incentivised many swarms suffer from so-called “Hit and Run”
(H&R) user behaviour where peers leave the swarm after
downloading the file.

In order to address these, and other, issues private BT file-
sharing communities have recently emerged. In many such
communities the upload and download behaviour is recorded
centrally, over time, across a population of swarms that are
restricted to the community. Many of these communities

apply policies to incentivise good overall upload / download
behaviour - such as ratio enforcement. For example, a simple
policy would be to expect all peers to have some minimum
ratio of upload to download at all times. Other policy variants
include requiring some minimum level of absolute credit
(upload - download) over time, or detecting and punishing
H&R behaviour.

In previous work [4] we showed, via an agent-based model,
that, even with altruistic users, in which all peers seeded as
much as possible, private community credit systems could,
counter-inuitively, lead to poor performance due to a “credit
crunch” or squeeze in which a few peers accumulated much of
the credit in the system depriving others and hence decreasing
overall system throughput. This meant that adding altruistic
capacity to the system, in the form of high capacity peers who
were willing to upload without reciprocation, could actually
reduce overall performance (or throughput) - meaning the total
amount of data exchanged in the system1. It should be noted
that private BitTorrent communities regularly employ policies
such as ’seeding bonus’, ’free leech’, rewarding seeding time
instead of bandwidth, among other schemes. The fact that
various private BitTorrent communities have to employ such
policies is indicative of the fact that they are grappling with
performances loss due to credit mobility issues.

In this paper we explore credit dynamics with two user
model variants:selfish, where peers only contribute what is
necessary to allow them to continue to download content, and
hoarders, where peers desire to accumulate more credit than
is necessary for their immediate downloading needs.

We find for populations of selfish peers, when too much
credit is distributed too evenly, that this leads to a crash in
which peers are not incentivised to contribute and hence the
system seizes to zero throughput containing only leechers.
We define a crash as a situation in which due to credit
abundance the system completely seizes up, providing no
upload or download to any peers. Conversely too little credit
distributed over the peers leads to a crunch in which peers do
not have enough credit to download leading to a seized system
containing only seeders.We define a crunch as a situation in
which due to credit shortages the system completely seizes
providing no upload or download to any peers. We also

1This can be compared to Braess Paradox in which adding capacity to
transport networks may reduce total flow under the assumption of rational
actors – see: http://en.wikipedia.org/wiki/Braess’sparadox



observe that a population containing any number of hoarders
will lead to a crunch eventually as credit is monopolised by
them.

Specifically, we make the following contributions:

1) we demonstrate using simulations that credit crunches
and crashes occur, and identify the conditions that lead
to these extreme outcomes;

2) we present a theoretical analysis and produce a set of
propositions that define if a system will crash, crunch,
or be sustainable over a defined time horizon;

3) we evaluate a novel adaptive credit policy informed
by our results and analysis. We demonstrate that the
adaptive policy can avoid both crashes and crunches
under extreme and changing conditions.

II. M ODEL DESCRIPTION

In order to explore the conditions under which credit crashes
and crunches occur we designed an agent-based simulation
model containing the essential properties of private tracker
credit systems.

We abstracted away the particularites of real communities,
so that the underlying credit dynamics become clear and can
be analysed.

Our simulation model is based oncycles. Each cycle repre-
sents a unit of time in which each peer is activated and may
perform some activity - such as uploading or downloading
data from other peers and initiating new seeding or leeching
sessions. Peers accumulate and spend credit by participating in
swarms which are supported by a Tracker. The Tracker keeps
a record of all current swarm members and records the upload
and download amounts against each peer. We describe the
tracker, swarm and peer entities in more detail in the following
subsections below.

A. Tracker

The tracker supports a set of swarms that are available to
the community and stores the upload and download amounts
reported by each peer over time. The tracker implements
a ratio enforcement policy in which peers with upload /
download ratio less than one are stopped from downloading
content until they increase their ratio, through seeding content
in a swarm. In order to allow peers to begin downloading
initially they are awarded initial credit equal to one file size.
It should be noted that the tracker in our model, like in private
BitTorrent communities, is a centralized component.

B. Peers

The community is represented by a set of peers. Each
peer has the same fixed upload capacity, representing units
of data per time unit. Download capacity is assumed to be
infinite - the assumption being that upload is the bottleneckin
most file sharing communities. We make a further simplifying
assumption that peers have a maximum of one seeding or one
leeching session active at any time.

We implement two user types: selfish peers and hoarders.
User types are characterized by their leeching and seeding
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Fig. 1: A state transition diagram indicating how peers move
between seeding and leeching sessions.

behaviour. Selfish peers only seed (to earn credit) if their
current credit balance is less than one file size(C) otherwise
they only leech. This captures the notion that a selfish peer
only wants enough credit to download the next file. Hoarder
peers behave in a similar way but have a higher threshold
before they stop seeding.

More formally, we define two functionsu(t) andd(t), which
are the total number of units a peer has uploaded and the total
number of units a peer has downloaded at timet. The credit
of a peer at timet is K(t) := u(t) − d(t), while the ratio is
R(t) = u(d)/d(t). Peers can always be considered in one of
two states: “rich” or “poor”. Peers are considered to be “poor”
except under the following conditions:

• A selfish peer is “rich” whenK(t) ≥ C.
• A hoarder peer is “rich” whenR(t) ≥ 2.

When a leeching peer finishes downloading a file it decides
whether to seed that file or to select another file to leech (i.e.
to download) from the set of swarms available. If a peer is rich
it selects a new swarm with uniform probability and begins
to leech without seeding the previously downloaded file. If a
peer is poor then it seeds the downloaded file until it becomes
rich and only then stops seeding and starts leeching in another
swarm. Figure 1 shows a state transition diagram indicating
how peers move between leeching and seeding states.

Our user model represents an abstracted form of behaviour
compared to what is observed in real file sharing communities.
Figure 2 shows the cumulative distribution of peer ratio over a
four month period from a real community. It can be observed
that the majority of peers are within one order of magnitude
of ratio R(t) = 1 where t is the end of the period. Notice
here that we also observe a small proportion of peers with
very high ratios whereR(t) > 10, indicating some extreme
hoarding behaviour.

C. Swarms

The community comprises a set of swarmsS. Each swarm
may contain any number of seeders and leechers2. At any
time each peer will be either a seeder or a leecher in a single
swarm. In one time unit each swarm distributes upload units
(pieces) between seeders and leechers and between leechers

2We ensured that all swarms have at least one seeder - if this is possible -
by randomly redistributing a seeder to any swarm that becomes seederless.
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Fig. 2: A CDF of peer ratios collected from a private file
sharing community.

and leechers. The latter distribution of upload captures the
effect of the tit-for-tat (TFT) mechanism in BitTorrent. Wedo
not assume any freeriding or differential upload capacity at
the piece level. All peers utilise their full upload to contribute
to others and all have equal upload capacities.

In more detail, we model the distribution of upload in a
swarm in the following way. In our model a file is divided into
units (or pieces in BitTorrent terminology). Similar to many
BitTorrent implementations, each peer has four upload slots
from which it can upload data to four different leeching peers
per time cycle. At every time cycle, each peer in a swarm is
fired in random order. When a peer is activated it chooses four
leeching peers at random to upload data to. In line with the
rarest piece first[6] selection algorithm in BitTorrent, peers
upload the rarest pieces to other peers first. We define rarest
pieces to be the least replicated pieces among all the peers in
a swarm. Hence all pieces are ordered by rarity and each of
the four receiving peers is given the rarest piece that it does
not currently posses. In the case that a receiving peer already
has all the pieces available in the sending peer then another
peer is selected randomly to receive a piece. In this way each
peer will send one piece to four other randomly selected peers
in the swarm if this is possible.

It is important to note that our aim is to produce a simple
model that captures the main characteristics of BitTorrent
piece sharing under constant and ideal conditions in order
to investigate the importance of credit dynamics. In the real
world the actual interactions between peers would be highly
influenced by differential bandwidths, different clients and the
local nature of the piece rareness determination. Our aim here
is not to produce simulations that align with measurements
from target systems but to abstract the important mechanisms
with respect to credit dynamics.

As stated previously, the tracker records all upload and
download against each peer and hence keeps a running total
of credit and ratio for each peer.

TABLE I: Results for selfish peers with constant credit

prop.of rich avg. throughput avg. prop. of final
at start (std.dev) seeders(std.dev) state

0.1 0.0003 (0.0000) 1.0000 (0.0000) crunch
0.3 0.2183 (0.0014) 0.9525 (0.0014) sustain
0.5 0.7769 (0.0023) 0.7685 (0.0023) sustain
0.7 0.9684 (0.0036) 0.5064 (0.0036) sustain
0.8 0.5867 (0.4780) 0.2485 (0.4780) sustain/crash
0.9 0.0008 (0.0000) 0.0000 (0.0000) crash

III. S IMULATION RESULTS - CONSTANT CREDIT

We performed a number of simulation experiments to ex-
plore the conditions under which a sustainable file sharing
community is viable under the assumption of a fixed credit
amount in the population. We used the following parameters:
number of peersN = 1000, number of swarmss = 100,
file size C = 10 units, peer upload capacityU = 4 units.
The small file size means the simulation runs produce results
at a large scale of granularity. We also performed runs with
C = 100 and found no significant difference in results. In
general our results are independent of the size ofC. As stated
previously we assume no limit on download capacity. For each
experiment we performed 10 independent runs with different
psuedo-random number seeds. Each run was executed to 2000
cycles.

A. Populations of selfish peers

In order to explore the results of different initial credit
levels on the performance of populations containing all selfish
peers we ran several simulation experiments varying a single
parameter - the initial proportion of peers who are given
enough credit to be “rich” (i.e. given initial credit ofC).

Results can be seen in Table I. All values are averages of 10
runs. The columns have the following meanings:rich shows
the proportion of peers that are initially awardedC credit;
throughput gives the throughput of the system in cumulative
units of data exchanged over the entire run (normalised);
seeders shows the proportion of peers in the population at
the end of the run that are seeding;state indicates the state
of the system:crunch means the system seized due to lack
of credit andcrash indicates seizure due to too much credit.
Sustainmeans the system finds a stable sustainable throughput
avoiding both crashes and crunches. We ran extended runs up
to 20,000 cycles and found the sustainable outcomes were
maintained.

When the number of rich peers is initialised to 30%,
50% and 70% we see sustainable outcomes with increasing
throughput and reduced number of seeders. This is intuitive
since as the amount of credit increases in the system less peers
are poor and hence more exchange of data can occur.

In the crunch state, where only 10% of peers are initialised
as rich, notice that the system is composed of all seeders
by the end of the run and hence no exchange of data can
occur. Conversely, in the crash state, where 90% of peers are
initialised as rich, all peers are leechers by the end of the run,
again, meaning no exchange of data is possible. Inspection of
individual runs evidences that crunches and crashes happen
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Fig. 3: Two alternative trajectories when initial number ofrich
peers is set to 80%. Notice both sustain and crash outcomes
are possible.

quickly - within the first ten cycles or so. This is reflected
in the low (almost zero) cumulative throughput values under
crash and crunch states.

It is interesting to consider the results when the initial
number of rich peers is set to 80%. As can be seen this
produces both sustain and crash outcomes reflected in the
high variance of throughput. We are not sure why exactly this
happens. But what’s obvious is that here we are very close to
the threshold leading to a crash and we find path dependency
based on initial random conditions leading to either a high
sustainable throughput, in a third of runs, or a sudden crash
otherwise. Figure 3 shows the two alternative trajectories.
Such properties are common in complex systems where small
differences in initial chance conditions can lead to radically
different outcomes.

B. Populations containing hoarder peers

When we introducedany number of hoarder peers into our
system it eventually led to a crunch - this is true even for
a single hoarder in the population. The speed of the crunch
depended on the number of hoarders. This is intuitive since
hoarders seed (to earn credit) until they have a ratioR(t) ≥
2. This means that as the simulation progresses the hoarders
eventually hold all the credit in the system and a crunch is
inevitable.

C. Discussion

The results of our initial experiments indicate that a com-
munity will seize if all the swarms seize. A seized swarm is
one that will not allow any peer within it to leave. A peer can
leave either by downloading the entire file and then moving to
another swarm (if the peer finishes the download and remains
rich) or by seeding to earn enough credit to become rich
so that it can move to another swarm for leeching. In the
crunch condition there will not be enough leechers to satisfy
seeders and in the crash condition there will not be enough
seeders to satisfy leechers. In these cases the swarm becomes

xi

seeders
pieces
credits

leechers

L(t) R(t)

Fig. 4: Diagram showing the relationship between theL and
R sets in relation to a given peerx.

a kind of trap or sink that, unless some new peers with certain
characteristics enter the swarm in the future, stops the peers
from further exchange in other swarms.

Given the state of a swarm, including all peer credit levels
at some time step, it is possible to define if the swarmwill
seize in the future due to a crash or crunch condition - unless
something changes. In the next section we present a theoretical
analysis which specifies these conditions. Following this we
validate the model by checking that these conditions apply to
crashes and crunches. We then apply the conditions to test
a novel mechanism for automatically adapting credit policies
when the system is identified as heading for crash or crunch
conditions in order to avoid them.

IV. T HEORETICAL RESULTS

We wish to determine for a given set of swarms if the system
will crunch, crash or be sustainable. We assume a peer can
either leech or seed, exclusively, and only exist in one swarm
at one time. Firstly we define some terms and definitions and
then present three propositions which give conditions for each
of the three outcomes.

The following notation is used:

• Sℓ is the swarmℓ, whereℓ = 1, . . . , s, i.e. the number
of swarms iss.

• the number of leechers and seeders in swarmℓ is xℓ(t)
andyℓ(t), respectively, at timet,

• xℓ
i is the leecheri andyℓ

j is the seederj in swarmℓ,
• cxℓ

i
(t) is the credit of leecheri andcyℓ

j
(t) is the credit of

seederj in swarmℓ at time t.
• pxℓ

i
(t) is the proportion of the file that leecherxℓ

i has at
time t,

• C is the amount of credit required to download a file (i.e.
the file size).

• u is the upload bandwidth.

Moreover, defineLℓ
i(t) as the set of leechers which have

less pieces of the given file, represented by swarmℓ, than
leecherxℓ

i , andRℓ
i(t) is the set of leechers which have more

pieces of the given file, represented by swarmℓ, than peerxℓ
i

at time t. Formally, Lℓ
i(t) := {j : pxℓ

j
(t) < pxℓ

i
(t)} and

Rℓ
i(t) := {j : pxℓ

j
(t) > pxℓ

i
(t)}. Figure 4 shows a diagram

of these sets. It can be seen from the figure that we make the
simplifying assumption that peers can only download pieces
from those peers who have more pieces. Therefore, a peer
can only give credit to those peers who have more pieces.
It should be noted that in reality, this is not the case. If two
peers have downloaded complementary parts of a file, they can



exchange pieces between themselves no matter who has more
pieces. However, the results in Section V demonstrate that this
assumption doesn’t impede upon the predictive powers of our
subsequent analysis.

We also need to define the amount of credit that any given
leecher can earn from other leechers:

qxℓ
i
(t) :=

∑

j∈Lℓ
i
(t)

(pxℓ
i
(t) − pxℓ

j
(t))

Given the above we can now define a setXℓ(t) containing
those leechers with enough existing credit, plus credit earning
potential, at timet, to download the entire file associated with
swarmℓ and still be in a rich state. As previously defined a
peer is considered rich if it has credit of at leastC (i.e. one
file size). Leecherxℓ

i will be able to download a file and still
remain rich if cxℓ

i
(t) − (1 − pxℓ

i
(t))C ≥ C holds. During the

downloadxℓ
i is not only paying but also earning some credits

from other leechers in the swarmℓ, from those who have less
pieces thanxℓ

i . From these peersxℓ
i can earnqxℓ

i
(t) ·C amount.

On the other hand,xℓ
i cannot earn credits from those who are

seeding and who have more pieces. The number of those peers
areyℓ(t)+ |Rℓ

i(t)|. Thus, from the other leechers,xi can earn
qxℓ

i
(t)/(yℓ(t)+ |Rℓ

i(t)|) ·C amount of credit. This leads to the
definition

Xℓ(t) :=
{

xℓ
i : cxℓ

i
(t) + pℓ

i(t)C +
qxℓ

j
(t)

yℓ(t) + |Rℓ
i(t)|

C ≥ 2C
}

.

Note that when a leecher finishes its download and becomes
poor then it stays in the same swarm to seed. In this caseXℓ

remains the same, becausey+Ri does not change. According
to our assumption no new seeders can join to this swarm from
other swarms.Xℓ can be changed when new leechers join
the swarm as they can give the other leechers the chance to
become rich after their download (Xℓ could increase then), or
when seeders are leaving the swarm (Xℓ could decrease).

Similarly, we define the setYℓ(t) for seeders in the swarm
ℓ containing those seeders which have the credit earning
potential, at timet to become rich. A seeder earns credit from
all the leechers. One leecherxℓ

i gives (1 − pxℓ
i
(t))C amount

of credit to all the seeders and to those other leechers who
have more pieces thanxℓ

i . Thus we define

Yℓ(t) :=
{

yℓ
j : cyℓ

j
(t) +

xℓ(t)
∑

k=1

1 − pℓ
k(t)

yℓ(t) + |Rℓ
k(t)|

C ≥ C
}

.

Note that, similarly toXℓ, the setYℓ can be changed in time
only when new leechers are joining (Yℓ could increase) or
when a seeder is leaving the swarm (Yℓ could decrease then).

We now introduce a temporal horizon by defining a function
for download time for leechers and required seeding time for
seeders.

The expected download timeTxℓ
i

for the leecherxi in the
swarmℓ depends on the remaining amount to be downloaded
(which is (1 − pxℓ

i
(t))C) and on the number of seeders and

leechers in the swarm. The seeders can give pieces to all
the leechers with the rate ofyℓ(t)/xℓ(t) · u. Moreover, every

leecherxk, which has more pieces thanxi, i.e. the peers inRi

can give pieces to those who have less pieces thanxk, which
is the setLk. The rate of this is

∑

k∈Ri
1/|Lk| ·u. Combining

these observations we get:

Txℓ
i
(t) := t +

(1 − pxℓ
i
(t)) · C

( yℓ(t)
xℓ(t)

+
∑

k∈Rℓ
i
(t)

1
|Lℓ

k
(t)|

) · u
.

Note thatTxℓ
i

is only the expected time given current swarm
composition. The actual time could be longer if new leechers
joined or seeders left the swarm. We also need the expected
time Tyℓ

j
for a seederyj in swarmℓ to become rich. A seeder,

at time t, needs to earnC − cℓ
yj

(t) credit. The rate at which
this can be obtained depends on the total upload capacity of
all leechers less the leecher to leecher (TFT) interactions. This
leads to the formula:

Tyℓ
j
(t) = t +

C − cyℓ
j
(t)

∑xℓ(t)
i=1

1
yℓ(t)+|Rℓ

i
(t)|

u
.

Note thatTyℓ
j

is also only the expected time given the situation
in the swarm at a time instance.

Proposition 1 - crunch. If Xℓ(t
′) andYℓ(t

′) are both empty
for all ℓ = 1, . . . , s, then the system will crunch (i.e. the
throughput becomes zero) at time

t′ + max
ℓ=1,...,s

max
i=1,...,xℓ(t′)

Txℓ
i
(t′).

Proof. For the sake of simplicity we omitt′ and ℓ from the
formulas. If X and Y are both empty for all the swarms,
then it means that there are no leechers and no seeders who
become rich. Thus, there will be no exchange of credit in the
whole system. This happens after the very last leecher finishes
its download, which is the maximum of all the maximum of
download times per swarms.

Proposition 2 - crash. If |Yℓ(t
′)| = yℓ(t′) and

min
k∈Pℓ(t′)

Txℓ
k
(t′) > max

j=1,...,yℓ(t′)
Tyℓ

j
(t′)

for all the swarms, wherePℓ(t) := {i : xℓ
i /∈ Xℓ(t)}, then the

system will crash (i.e. the throughput becomes zero) at time

max
ℓ=1,...,s

max
j=1,...,yℓ(t′)

Tyℓ
j
(t′).

Proof. The system crashes if there are no seeders. The con-
dition |Y | = y indicates that all the seeders in the whole
system will be rich, thus they will become leechers. The set
P contains those leechers which will not be rich after finishing
their download. Note that this set can be empty for some
swarms. Peers fromP would stay to seed in their swarm
if they finished their download. However, they cannot finish
downloading the file if there are no seeders left in the swarm.



TABLE II: Results for selfish peers with adaptive credit

prop.of rich avg. throughput avg. prop. of final
at start (std.dev) seeders(std.dev) state

0.1 0.1922 (0.0221) 0.9556 (0.0221) sustain
0.3 0.2220 (0.0100) 0.9544 (0.0100) sustain
0.5 0.7770 (0.0023) 0.7761 (0.0023) sustain
0.7 0.9674 (0.0024) 0.4970 (0.0024) sustain
0.8 0.9742 (0.0163) 0.5300 (0.0163) sustain
0.9 0.8797 (0.0689) 0.7266 (0.0689) sustain

Proposition 3 - sustainability. If the set

U(t′) := {ℓ : |Xℓ(t
′)| > 0 and |Yℓ(t

′)| < yℓ(t′)}

is not empty then the system is sustainable until

t′′ = t′ + min{MU ,MV},

where

MU := min
ℓ∈U

{ min
x∈Xℓ(t′)

Tx, min
y∈Yℓ(t′)

Ty},

V := {ℓ : |Xℓ(t
′)| > 0 or |Yℓ(t

′)| < yℓ(t′)} and

MV := min
ℓ∈V

{ min
x∈Xℓ(t′)

Tx, min
y∈Yℓ(t′)

Ty}.

Proof. The setU contains all swarms in which there are some
leechers which will be rich after their download and seeders
which will not be leaving (i.e. not be rich), based on the current
situations at timet′. Those seeders who are characterised, as
of time t′, as not leaving the swarm could leave if new leechers
joined the swarm. This would happen when a leecher or seeder
from another swarm leaves and joins this swarm. Thus, giving
the time horizon for sustainability we need to know the earliest
time when the current situation could change. For this, we
definedMU , which is the minimum time of the first leecher
leaving any swarm inU and the first seeder becoming rich
from any swarm inU . Moreover,MV gives the same for the
swarms inV. Finally, we need to take the minimum ofMU

andMV in order to get the prediction period for the system’s
sustainability.

V. SIMULATION RESULTS - ADAPTIVE CREDIT

Based on our experimental and theoretical results we de-
signed a novelproactive credit intervention mechanismto
avoid crashes and crunches. At each cycle we examine the sys-
tem and compare it against the crash and crunch propositions
derived from the theoretical analysis. Hence we can obtain an
early warning for potential crunch or crash outcomes.

When the system is determined to be entering a crunch
the system applies a new credit policy we term “freeleech”
policy. This means leeching peers in the swarms do not pay
any credit (no download is recorded) but seeders and other
uploadeds are still credited with upload. Hence leechers can
download for free and new credit is injected into the system.

When the system is determined to be entering a crash it
applies a “freeseed” policy. This means seeding peers (and
uploading leechers) in the swarm do not receive any credit (no
upload is recorded) but leechers still pay credit to download.
Hence seeders (and uploading leechers) upload for free and
leechers pay credit that is removed from the system.
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Fig. 6: Two typical runs from a system with and without the
adaptive credit system containing initial 50% rich peers and
1% hoarders. Notice that without adaptive credit the system
quickly crunches.

When the system is determined to be in a sustainable state
then the regular credit policy is applied, that is, all upload and
download is recorded as normal.

If one views uploaders asproducersand downloaders as
consumersthen freeleech is rather like a 100% rebate for the
consumer for any purchase and freeseed is like a 100% tax on
the producer.

A. Populations of selfish peers

Table II shows the results of performing simulation runs
with the same parameters as were used for the runs given
in Table I but with the adaptive credit mechanism turned on.
Notice that all runs produce a sustainable outcome including
those runs (10% rich and 90% rich) which previously led to
crunches and crashes. This indicates that the propositionshave
given early enough warning for the adaptive credit policy to
avoid the crash and crunch conditions. If the system ever enters
a crash or crunch condition then it would seize completely and
the adaptive credit policies could not recover it. Hence these
results are a form of experimental validation of the previously
derived propositions. Figure 5 shows three typical runs for
different initial amounts of credit. A crunch is avoided in (a)
via the activation of freeleech at several cycles - note the
increase in credit over time. A crash is avoided in (c) via
the activation of freeseed within the initial cycles - note the
decreasing credit over time.

B. Populations containing hoarder peers

In order to test if the adaptive credit system can deal
with more extreme conditions we ran simulations in which
a small subset (1%) of the population are set as hoarders. As
stated previously any number of hoarders in a population will
eventually lead to a crunch. This is because hoarders store-up
increasing amounts of credit and eventually deprive all other
peers of credit. Figure 6 shows two typical runs with and
without the adaptive credit system. As can be seen, without
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Fig. 5: Three typical runs for different initial numbers of rich peers with the adaptive credit mechanism turned on. Notehow
in the extreme cases for (a) and (c) the amount of credit in thesystem is dynamically changed preventing a crunch or crash
respectively.

adaptive credit the system eventually crunches, whereas the
adaptive credit system keeps the system sustainable.

However, notice that the throughput of the system is very
low because the adaptive credit system does not attempt
to optimise the system but rather only to avoid a crunch
condition. Hence the system injects new credit each time
a crunch is predicted. This additional credit is eventually
collected by the hoarders and the process repeats.

We found that if we increase the number of hoarders to
5% of the population then the adaptive credit system could
not prevent a crunch occurring. This is due to the user model
assumptions we made in our analysis. That is, we assumed
that peers will behave in the selfish way described in section
II-B.

C. Discussion

The aim of the adaptive credit system was to avoid crunch
and crash states. This was achieved but comes at a potential
cost. The reason for using credit systems within private
communities is to provide incentives for peers seeding con-
tent. The freeleech and freeseed policies temporarily suspend
these incentives. It could be argued that this could lead to
reduced performance if users learned to game the system by
only downloading during freeleech periods and not seeding
during freeseed periods. However, as we have seen, the credit
interventions only occur for short periods in our runs. This
potentially means that it would be impractical for a user to
notice and take advantage of such periods. An additional
refinement, that could help preserve incentives even during
freeseed and freeleech periods, would be to parameterise the
freeseed and freeleech “tax” amount. This would mean that
rather than always taking 100% of any leecher or seeder
credit, other values such as 50% could be used. Any value less
than 100% would still provide incentives for good behaviour.
Furthermore, the taxation amount could be variable, and could
be applied in a continuous fashion, rather than getting triggered
at the extreme conditions of crash and crunch.

As was observed in the situation where hoarders were
introduced into the population, the adaptive policy depends on
the assumptions of the selfish user model since this formed the

basis of our theoretical analysis. It was interesting to note that
the systemcould cope with a small proportion of hoarders
(following a different behaviour from the selfish peers) butit
is an open question as to how well it would cope with other
small numbers of behavioural variants. We discuss this issue
further in the conclusion section below.

VI. RELATED WORK

To the best of our knowledge, there hasn’t been much work
done on studying crunches, crashes and sustainability in P2P
systems with credit based incentive schemes. In previous work,
we introduced the concept of a credit crunch with the aid of
a simplified model of a private tracker. We considered a very
simple user model of all altruists and only concentrated on
“limited” crunches in which insufficient initial credit in the
system led to decreased (and not zero) throughput [4]. The
present paper builds upon that work and introduces a more
nuanced user model, presents a theoretical analysis and studies
crunches and crashes that seize the entire system.

Many P2P incentive schemes based on credits have been
proposed in the literature such as [3], [10], [12]. These
schemes usually build upon three components: 1) A virtual
currency, 2) Micropayments and 3) An accounting structure.
In a P2P setting there are issues in maintaining this structure.
For the accounting structure, such schemes usually have to
rely on trusted accounting centers or third parties. Although,
the payments can occur in a decentralized way as proposed
in [1]. Sirivianos et al present monetary exchanges facilitated
by a centralized bank [11]. Great emphasis is laid on creating
a non manipulable scheme of exchanges using cryptographic
techniques. The presence of a centralized bank means that
the scheme is not scalable but has greater security than a
completely decentralized solution.

Vishnumurthy et al. present a system involving virtual
currency where sets of bank nodes keep the transaction balance
of peers [13]. Karma is defined as the value which captures
the amount of resources that a peer has contributed and
consumed. This represents the users standing in the global
system. Importantly, the level of karma (or credit) in the
system is maintained and measures are taken to avoid inflation



and deflation that can occur when peers leave the system. In
this way [13] is an important contribution because the work
begins to realize the problems that are inherent in dealing with
credit systems. In avoiding inflation and deflation, their only
aim is to maintain the per-capita karma i.e. the total karma
divided by the number of active users.

Kash et al. [5] show that in a scrip system, where agents
can consume and produce services, both an overabundance of
money supply and its shortage lead to inefficiency. Surplus
credit can lead to a monetary crash where freeriding is
encouraged. At the other end of the spectrum, a shortage in
the money supply leads to agents not having enough money
and not being able to afford services in the system. They
also consider hoarders and how to optimise the credit supply.
Our work is different in that we focus not on a generic
service exchange scenario but a filesharing scenario inspired
by BitTorrent private communities. Also we apply a selfish
user model3 rather than a utility optimising one. In addition we
focus on detecting and avoiding extreme crashes and crunches,
where the entire system seizes, rather than optimising the
system.

Currently deployed credit systems can be easily gamed since
they rely on self-reporting of upload and download behaviour
by peers – currently such behaviour is policed by human
administrators. Additionally the BitTorrent protocol itself can
be gamed through strategic clients that act selfishly [7], [8],
[9].

VII. C ONCLUSIONS

We have presented findings from an agent-based model of a
private BitTorrent file sharing community which uses credits to
incentivise uploading behaviour. We have examined the credit
dynamics found in the model with a population of selfish
peers that only upload in order to continue to download. We
identified, in simulation, conditions that lead to both crunches
and crashes where the system completely seizes - meaning no
further sharing activity is possible. We applied a theoretical
analysis to precisely characterise the conditions that lead to
the system crunching or crashing. We validated the analysis
against simulation runs and applied the derived conditions
to implement a novelcredit intervention mechanismthat
proactively stops the system seizing by temporarily changing
the credit policies. A system that is predicted to crunch
allows freeleeching (i.e. downloaders do not use any creditbut
uploaders still gain credit) conversely a system that is predicted
to crash imposes freeseeding (i.e. downloaders use credit as
normal but seeders do not gain credit). These interventions
are only applied while the system is in such critical states.
Freeleeching injects credit into the system and freeseeding
removes credit from the system.

Our findings are based on the assumption of a selfish user
model and an abstracted private community model. We have
purposefully excluded differential upload and download rates

3The selfish user model could be interpreted as a so-called “satisficing”
model since peers stop trying to gain credit when they reach a satisfaction
threshold.

and other plausible user model variants in order to understand
the effect of credit dynamics in a system with known proper-
ties. Even given our assumptions we found that understanding
and predicting credit dynamics and system behaviour was far
from trivial.

Given these issues we can not claim that our adaptive credit
policy could currently be deployed in a real private tracker
community but would almost certainly need to be refined and
informed by empirical work.

Possible future work could involve introducing a distribution
of user model variants to our simulation model and analysis
using a probabilistic rather than a deterministic approach. This
may allow for some level of probabilistic prediction of crash
or crunch states. More importantly, we may be able to induce
probabilistic user models from empirical data collected from
real private communities.
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