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Abstract. In decentralized interaction-based reputation systeodesistore in-
formation about the past interactions of other nodes. Basdthis information,
they compute reputations in order to take decisions abdutdunteractions.
Computing the reputations with the complete history ofratgions is inefficient
due to its resource requirements. Furthermore, the compistory of interac-
tions accumulates old information, which may impede theesddom capturing
the dynamic behavior of the system when computing reputstitm this paper,
we propose a scheme for reducing the amount of history niaégdan decentral-
ized interaction-based reputation systems based on senofests as the age of
nodes, and we explore its effect on the computed reputasbowing its effec-
tiveness in both synthetic and real-world graphs.
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1 Introduction

A family of decentralized reputation systems useful in mbargrnet applications con-
sists of interaction-based systems (also called conteverdsystems [8]). These sys-
tems are based on algorithms analyzing all interactionsngnusers and computing
the reputations without using any explicit feedback frorarassuch as PageRank [18]
for ranking web pages and Bartercast [17] for computing t&mns of users in P2P
systems. In interaction-based systems, the amount ofteistanformation on the inter-
actions maintained by each node affects the performancéentharacteristics of the
reputation mechanism. Networks such as popular online etsdnd social networks
consist of hundreds of thousands or even millions of actsersiand thus, using the
complete history for computing the reputation of nodes @hhitive due to its resource
requirements. Particularly in decentralized systemsh siscfile-sharing P2P systems,
the available resources at nodes are limited and thus, @ahalde solutions can be
applied. Furthermore, a long-term history allows previpugell-behaved nodes to ex-
ploit their good reputations by acting maliciously [9, 16].An this paper, we propose
a scheme for reducing the amount of history maintained irenlgalized interaction-
based reputation systems. We experimentally explorefistedn the computed repu-
tations using synthetic and real-world graphs.

In order to reduce the history of interactions, we use onlylzsst of the complete
history to approximate reputations. We model the inteoastiof thecomplete history
of a network as a growing graph with the nodes of the netwoiiksagertices and the



interactions between pairs of nodes as its edges, and thespondingeduced his-
tory as a subgraph of the complete history. The reduced histodgrised from the
complete history by deleting the least important edges adés We define the impor-
tance of a node according to its age, its activity level,égutation, and its position in
the graph, while the importance of an edge is defined acaptdiits age, its weight,
and its position in the graph. Then we evaluate our approatigisynthetic random
and scale-free graphs, and two real-world graphs, oneatéfrom the Bartercast rep-
utation system of our BitTorrent-based P2P client TribRd][and the other from the
author-to-author Citation network of Physical Review Erjuaflt. The main difference
between the Bartercast and the Citation graphs, besidestituetural properties, is that
the former is derived from a deployed distributed systenh wérsonalized reputations
while the latter is derived from a centralized system withbgll reputations.

On these networks, we apply two different computationséputations, one based
on the max-flow algorithm [6] and the other based on eigevesntrality [4]. We
evaluate our approach according the following two obs@mat (i) for the vast ma-
jority of reputation systems, the rank of reputations is enianportant than the actual
reputation values themselves; and (ii) in most cases thdifibation of the highest
ranked nodes is enough. We demonstrate that the perfornadutice reduced history
depends on the topology of the complete history. Furtheemee show that the perfor-
mance of the reduced history depends on the reputationtigofinally, we conclude
that reduced history can be applied in a large range of n&swvor

2 Motivation and Problem Statement

Our main motivation for reducing the history of interactian a network is the compu-
tational cost and the storage requirements of decentdadggmitation algorithms. Repu-
tation systems, such as those of eBay or Google, cover hdsdfehousands of active
nodes while reputation algorithms (e.g., Eigentrust [PzElgeRank [18] and max-flow
based ones [6]) have a high computational complexity. Ired&alized systems, like
BarterCast, where each node stores and analyzes daty losaly, e.g., the max-flow
algorithm (with complexityO(nm?) wheren is the number of nodes and and the
number of edges), even much smaller graph305fnodes make the computation of
reputations prohibitive. Taking into account that the cibations of nodes in the com-
putation of reputations are not equal in quality and quaf8}, we aim to delete the
least important contributions and compute reputationsgushly a subset of the com-
plete history. In this way, we can reduce the computationat significantly without
decreasing the accuracy very much.

In addition to the computational cost, the dynamic behawiomany reputation
systems makes the use of the complete history ineffectiveystems with a high pop-
ulation turnover such as P2P networks, only a few nodes refaaa long period in the
system while the majority of nodes enters the system peifgrgsome interactions and
then leaves it. Also a node behaving properly for a long tiarelild a good reputation
and become a traitor [16] by exploiting other nodes. Présgrnly short-term history
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forces all nodes in the system to behave continuously aoaptd the protocol. For
these reasons, several widely used reputation mecharssiets as those of eBay and
eLance, allow the use of historical information of a 1 or 6atiowindow. Although
using a time window is useful for such feedback-based réijputaystems, it is not ef-
fective in interaction-based reputation systems sinceoiat information of highly
reputed nodes is deleted.

We model the interactions of a network as a directed weighteghG = (V, E),
where the vertice¥ represent the nodes and the ed@ethe interactions among the
nodes. The weight of an edge represents its importancen&barice, in Bartercast,
the weight of an edge between nodes represents the amouatzofrdnsferred in the
corresponding direction, and in a citation graph, it repnés the number of references
to an author by another. The graph is dynamically growing tiee and allows not only
new nodes to join but also existing nodes to create new edgesyraph represents
thecomplete history (CH) of interactions in the network.

Given the growing graply, our target is to create a subgraphtafdenoted byG’,
which preserves the structural properties, the highe&ednodes inG and keeps the
ranking of the reputations similar to that@ The subgrapld:’ has to be dynamically
maintained as the complete history grows while its size basetalmost fixed. The
graphG’ will be used for the computation of reputations, and represthereduced
history (RH) of interactions in the network.

3 Creating the Reduced History

The basic idea of creating the reduced hist@fyconsists of removing the least impor-
tant elements, either nodes or edges, fl@mNe use a node removal process in con-
junction with edge removal. The ratio of removed nodes v@removed edges depends
on the dynamics of the network. Nevertheless, edge remavaids node removal and
vice versa. More precisely, edge removal can lead to distinmg a node from the
graph and node removal results in deleting the adjacentseaafghe removed node.

The parameters faemoval of a nodeconsist of its age, its activity level, its repu-
tation, and its position in the graph.

Theage of node i is expressed ag = t — t; wheret is the current time and is
the time instance nodgoined the system. In most networks, the age of a naftects
its behavior in a non-linear way (e.g. [1, 14]). Thus, indtedits age, we consider its
aging factorf (7;), wheref is a decreasing function with(0) = 1 (e.g.,f(7) = e,
wherer represents the age of a node dnid a constant). Keeping fresh information
allows the reputations system to capture the dynamic behaf/nodes.

The activity level d; of a node i represents its degree. Nodes with a high activity
level participated in many interactions, and so, they gtevhuch information.

The reputation of node i is denoted byr;. Our aim is to preserve the information
of nodes with high reputations, since these nodes are themgl@ble in the network.
Moreover, allowing nodes with high reputations to conttébto the computation of
reputations longer is a kind of rewarding the most trustediso

For node theimportanceof itspositionin thegraphis expressed by its betweenness
centrality (BC), denoted by’s(i), which measures the sum of the fractions of the
numbers of shortest paths among all pairs of vertices theg rmough node [10].



Removing nodes from the graph can result in destroyingiitetre by creating many
disconnected components and thus, we need to maintain tess tioat keep the graph
connected.

The first three factors represent the behavior of noddile the fourth factor is
added for preserving the structure of the graph during thetida process. Therefore,
in our method, thepriority score P, (i) of deleting node is defined as

P, (i) = aPa(d;, i, 1) + (1 — a)Pe(Cp(1)), Q)

whereP4(d;, i, 7;) expresses the priority score of deleting nédased on its activity
level, aging factor and reputation, afg (C's (z)) represents the priority score of delet-
ing nodei according to its position in the graph. The parametéakes values if0, 1]
and can be chosen according to the graph properties. We dedipeiority scoreP, as

n —diri f(7i)
n? =32 dir; f(75)
wheren is the number of nodes in the graph, and the denominator acisnarmal-
ization so that the sum of the priority scores sum to 1. Cyearinode with a higher
age, a lower activity level, or a lower reputation will be @red. Although the max-
imum value ofd;r; f(7;) is equal ton — 1 (corresponding tal; = n — 1,7, = 1
and f(r;) = 1), for simplicity, we approximate it ta. Similarly, Py is expressed as
Pp(Cp(i)) = (n* — Cp(i))/(n® = 3, Cp(j))- Again, even though the maximum
value of C(i) is equal to(n — 1)(n — 2), we approximate it by:%. When consider-
ing a single parameter for node removal, Eq.2 can be adapgedtraightforward way
(similarly asPg for paramete'z(4)).

Theremoval of an edges determined by its age, its weight, and its position in the
graph.

The age of edge e;; connecting nodesandj, is defined similarly to the age of a
node, and is denoted by; = t — t;;, wheret is the current time and; is the time of
its creation. The aging factor of edgg is a decaying functiorf(r;;) and can be, e.g.,
an exponential function.

Theweight of edge e;;, denoted byw;;, is one of the parameters for edge removal,
since interactions with a high cost are more important fercbmputation of reputa-
tions, edges with high weights have to be preserved in thehgra

The importance of the position of edge e;; in the graph is expressed by its edge
betweenness centrality (BC), denoted®y(e;; ), which is defined as the sum of the
ratios of shortest paths between all pairs of nodes comigitiiis edge [10]. The ag-
ing factor and the weight of an edge represent its contobutid the computation of
reputations, while it€'z helps in preserving the structure of the graph.

Similarly to node removal, we express the priority scoresmfioving an edge;; as

Pa(d;,ri, 1) =

()

Pe(eij) = aPs(wij, 7ij) + (1 — a) Pr(Cp(ey)), ©)
where« is the parameter used in the definition Bf to control the topology of the
derived graph. The scorég; and Pr are defined similarly td®4 and Pg, respectively.

Therefore, edges with lower age, lower weight, and lowewbehness centrality will
be removed.



The basic computational components of reducing the histonsist in the com-
putation of BC (we do not distinguish between node and edgé8tause the algo-
rithm is the same). Computing the degree, the aging factoiodes, the weight, and
the aging factor of edges has a linear cost on the number dfshadd edges respec-
tively and can be computed incrementally. However, the agatjpnal cost of BC is
high (for unweighted networks it i©®(mn) wheren is the number of nodes in the
network andm the number of edges). The cost can be significantly reducacsing
approximations [11] and exploiting the structure of thenark. In particular in scale-
free networks, the BC values do not have to be updated veey ofith the network
growth [12] and in networks without community structureg BBC of a node shows a
strong correlation with its degree. Note that the reputetiof nodes are computed by
the core reputation mechanism.

4 Datasets

In order to assess our method for creating the completeriiste consider both syn-
thetic graphs and graphs derived from real networks. In pothgtic complete history
graphs we consider two processes occur simultaneouslyrfew nodes enter the sys-
tem, and secondly, the already existing nodes interacs,dteating new links. Thus, we
define the probability. which represents the probability of adding a new node at each
time step to the graph, and the probability- p. which represents the probability of
adding new links between existing nodes. In highly dynarmggtesms, the appearance
of new nodes is dominant, and so the valug@ofs high. In our models for synthetic
graphs, we allow the occurrence of multiple edges betweeairaop nodes and we
consider the number of multiple edges as the weight of thge.ed

For our experiments, we create the complete hist@érgnd the corresponding re-
duced history’ in parallel. In the complete history, we store all the nevoiniation.
For the construction of the reduced history we keep its siltadgst) constant to a maxi-
mum number of nodes,, ..., which represents the computational or memory limitation
of the system. We control the size of the reduced history byoréng nodes or edges
from the graph as new information is stored as describeckiptévious section. Below,
we describe in detail our models for random graphs and $oeéegraphs, the properties
of the Bartercast and Citation graph, and the constructi¢imeocorresponding reduced
histories.

A random graph, denoted byR(n, p,-), is composed of. nodes, and each poten-
tial edge connecting two nodes occurs independently witihability p,.. Based on
this model, we generate a growing directed random giaph, p,) representing the
complete history of interactions.

To create the grapR(n., p,-) with n, nodes at time, starting from a single node,
we perform the following two operations at each time step:

— With probability p. we add a new node with each of its potential directed edges
existing with probabilityp, for some value op.
— With probabilityl — p. we addpn; new directed edges adjacent to chosen existing
nodes uniformly at random.
For the proof op,. ~ p/2p. the reader is referred to Appendix A. In accordance iith
we create the reduced history gragh The reduced historf®’ is equal toR up to the



maximum number of nodes,, ... After having reached,,,,,, nodes,R’ is maintained
by performing the following operations at each time step:

— When a new node is added i we also add this node B’ along with its edges,
and then we remove one node together with its edges with ¢kt priority score
(Eq. (2)).

— When new edges are addedRp we add the same edges®. Then we remove
from R’ the same number of edges with the highest priority score(@}.

Note that some edges i may be adjacent to nodes that have been removed igm
in this case, these edges are not addef@d'to

Scale-free graphsare characterized by their degree distribution followingpaver
law. We create a growing directed scale-free graph baseuegpreferential attachment
model [3]. Similarly to the procedure for random graphs, vemeyate two directed
graphsS andS’ corresponding to the complete history and the reducea+lyist

We createS(n;) by starting with a small seeding graph withy nodes connected
by my — 1 edges and then performing the following steps:

— With probabilityp. we add a new node withe directed edges, withh < mg. Each
edge is adjacent to an already existing noaéth probability I1(i) = d;/ >, d;,
whered; is the degree of node

— With probability 1 — p. we addm new directed edges. Each of these edges are
adjacent to an existent nodevith probability I7 (7).

One can show th&f is scale-free with power-law exponent equaite- 1+2/(2 —p,)
(see Appendix B for the proof). In line witH, we build the reduced histor§’ using
the same procedure as for random graphs.

The Bartercast graph is derived from Bartercast [17], the distributed reputatio
mechanism used in our BitTorrent-based client Tribler [20Bartercast, when a peer
exchanges content with another peer, they both stoeecad with the amount of data
transferred and the identity of the corresponding peeruRely, peers contact another
peer to exchange records using a gossip-like protocol. Rhmrecords it receives,
every peer dynamically creates a weighted, directmdbjective graph, the nodes of
which represent the peers about whose activligs heard through Bartercast records,
and the edges of which represent the total amounts of dataféraed between two
nodes in the corresponding directions.

We have crawled the Tribler system from September 1, 201@riaaly 31, 2011,
collecting information from 29,716 nodes. In our experitaanalysis, we will assume
full-gossip in which peers forward the records they receive from othergeand so
all peers eventually receive all the propagated recordss;Tthe graph derived from
Bartercast, denoted by, can be considered as the subjective graph of all nodes which
corresponds to the complete history. The grapis not connected and so, we proceed
in the analysis using its largest weakly connected compoBamtercast presents high
population turnover and thus, the derived graph consistsdanse core with very few
long living and active nodes and a periphery with many lopseinnected nodes of
low activity (small average path length and small clus@goefficient, see Table 1).
The addition of new nodes/edgesihis based on the actual timestamps of the crawled
database of Bartercast. Similarly to the procedure forsamdnd scale-free graphs, we
maintain the reduced histofy’ by removing nodes and edges using Egs. (1) and (3) as
new nodes and edges are added according to the timestamps.



Table 1: The average path length)(and the clustering coefficientd) of the largest
connected component of the Bartercast and Citation graghp&the corresponding
random graphs with similar average path length.

Graph  #Nodes #Edges L cc Liand  CCrand

Bartercast 10,634 31,624 2.64 0.00074  2.63  0.0032
Citation 15,360 365,319 3.29 0.1098 3.31  0.0012

The author-to-authoCitation graph, denoted byC, is derived from the citation
network of 21,858 papers published in Physical Review E flamuary 2001 to Novem-
ber 2011. Its vertices represent the authors of papers agebeadpresent the citation
relationship between two authors (or coauthors). The wi@ifjan edge indicates multi-
ple citations from one author to another. Unlike BarterdhstgraphC is derived from a
centralized system with global reputations. In Table 1, s see that grapfi exhibits
small-world behavior with small average path length anddatlustering coefficient.
Its degree distribution has a power-law tail with exponent 2.55. As described for
the Bartercast graph, we create the complete histoand the corresponding reduced
history C’ based on the actual timestamps in the database of the Gitatph.

5 Computation of Reputations and Evaluation Metrics

We consider two methods for computing reputations: the ftax-algorithm and the
eigenvector centrality. However, our approach can be gdined to other methods for
computing reputations as well.

The max-flow algorithm [6] computes the maximum flow passing between two
nodes and is the core of many reputation systems (such aaigag4, Bartercast [17],
and the system proposed by Feldman et al. [9]) because ild@®vesilience to misre-
porting by nodes who may exaggerate their contributionadoeiase their reputations.
In our study, we use the definition of reputation of Bartereaschanism [12] since
we use a graph derived from it for the evaluation of our apgimo@he reputation of
a nodej is computed asrctan(f;; — fi;)/(7/2), where node represents the node
with the maximum betweenness centraljty, represents the maximum flow from node
j to nodei in the network andf;; is the maximum flow in the reverse direction. The
functionarctan in the computation of reputations emphasizes the differernd flows
close to0 (neutral reputation), so that newcomers with only a smatitigoution can
achieve a good reputation value and participate in the sydt@ery reputation value is
normalized with the factor /2 so thatitis in(—1, 1).

Eigenvector centrality is a well-studied metric for the importance of a node in a
network and its variants constitute the core of many reprtaind recommendation
mechanisms (such as EigenTrust [15], PageRank [18], Tamkt[RL3] and many oth-
ers). The basic idea of eigenvector centrality is that adgons with highly reputed
nodes contribute more to the reputation of a node. In ouryaizgalwe use PageRank
computed using the power iterationy; = dAr, + [(1 — d)/N]1, whereA represents
the normalized adjacency matrix of the netwarkthe ranking vector at time step
d the damping factor (we set it equal to its typical valug5 [18]), N the number of



nodes, and the vector of lengthiV containing only ones. In some networks like Barter-
cast, an incoming edge of a node has a negative meaning fargihtation of that node
(because a weighted edge represents the amount of traatstiata and so, adds to the
reputation of the donator of the data). Therefore, in these/orks, first we reverse the
direction of links before we apply PageRank (reverse Pagk ).

The evaluation of our method is based on the observation$ahthe vast major-
ity of reputation systems, the ranking of nodes accordinthéir reputations is more
important than the actual reputation values themselvabttzat in many systems the
identification of the highest ranked nodes is more importhah of the rest of the
nodes. Therefore, we define thanking error as the difference between the rankings of
the nodes according to their reputations in the reducedryiaind the complete history.
More precisely, we consider the sequences of the Uniqudifidea (UIDs) of the nodes
in the reduced and the corresponding complete history ofjmaphs, and we compute
the minimum number of inversions of consecutive elementslad in the sequence of
the reduced history to get all the common nodes in their cooeler in the complete
history. This minimum number of inversions is then normadiover the worst case,
which would occur if the ranking would be completely revetseurthermore, to ex-
plore the ability of the reduced history to identify the highranked nodes, we define a
second metric called thmanking overlap which is defined as the fraction of nodes the
sequences of the top-5%, 10% and 20% ranked nodes in theecbthistory and the
corresponding sequences in the complete history have immmmMore precisely, we
compute the ranking overlap 8N V|/|U|, wherel{ is the set of the top-5%, 10% and
20% ranked nodes in the reduced history &d the set of the top ranked nodes in the
complete history of siz&/| = |U|.

6 Evaluation

In this section, we present our experimental evaluatiorstFRive explore the effect of
each of the parameters for node and edge removal sepanateily eombination. Next,
we study the effect of the size of the reduced history re¢dtihe size of the complete
history. Finally, we evaluate the effect of the growth of twemplete history while the
size of the reduced history is constant. In our experimemsuse the synthetic and
real-world graphs introduced in Section 4. Our synthetaps consist of, 000 nodes
with o andp. neutral (both equal t6.5), unless other initializations are mentioned.
We choose the other parameters for the random grapk=(0.02) and the scale-free
graph (n = 3 andvy = 2.2) so that they roughly correspond to the Bartercast graph.
For the synthetic graphs, our results presented in eaclaptdhe average &b inde-
pendent experiments, while for the Bartercast and Citagraphs, we conduct only one
experiment since we have only one instance of these redthgoaphs.

Experiments and Results We first explore the effect of the parameters for node and
edge removal defined in Section 3 on the ranking error.Tocegphe effect of the
parametery, we removes0% of the nodes and edges of the complete history according
to Egs. (1) and (3) for different values af Due to space limitations we omit the corre-
sponding figure. We find that does not affect the performance of the reduced history
much. In particular, for random graphs using max-flow (oré?agk), the ranking error
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Fig. 1: The effect of the parameters for node and edge remdwvah removing a frac-
tion of the nodes and edges of CH for random and scale-fredngrahen the reputation
algorithm is max-flow (left) and Pagerank (right). The iration ER in the legend de-
notes parameters for edge removal and NR parameters foreoutal.

starts at).33 (or 0.21) for « equal to0, and it slightly decreases ty02 (or 0.01) until

a is equal ta0.8. As « increases further, the ranking error increase8.6¥ (or 0.06).

A similar stable behavior for the ranking error is observedthe scale-free and real-
world graphs. Since: doesn't affect the performance of the reduced history mueh w
take it as neutral, equal t5, for all the following experiments.

Next, we explore the effect of the parameters for node and eztgoval separately,
and their combination as defined by Eqgs. (1) and (3). For thenpeters for node or
edge removal, we remove fractions nodes or edges of the etenlpistory using only
one parameter at a time. The effect of these parameters aartking error is plotted
in Fig. 1 for the random and scale-free networks.We obséraedreating the reduced
history using only node removal results in similar perfonte as edge removal for
the corresponding parameters. This is to be expected asitharcorrelation between
these parameters: in general, an edge with high BC is adjszeodes with high BC,
an old edge is attached to old nodes, and an edge with a laigatvi® adjacent to a
node with high reputation. Furthermore, the combinatioalbparameters in Egs. (1)
and (3) results in the smallest ranking error. The largesktire error occurs when we
remove nodes based on their age. The reputation of a nodadtepe the period it par-
ticipates in the system and thus, when only new nodes witlrégutations participate
in the reduced history, the ranking error is high. All theestparameters cause quite
similar ranking errors because they exhibit correlationgriaphs without strong com-
munity structure, such as the random and scale-free graplise real-world graphs,
the parameters for node and edge removal and their comtrin@xhibit similar rela-
tive performance as in the scale-free graphs. We omit thiggiohe real-world graphs
due to space limitations. Since the combination of the patara for node and edge
removal achieves the lowest ranking error, we use it to eréegt reduced history for all
the following experiments.

We next evaluate the effect of the size of the reduced hig&lative to the size
of the complete history on the ranking error and the rankiveylap. For this purpose,
we construct reduced histories of different sizes for a detefhistory of fixed size as
described in Section 4. Fig. 2 (left) plots the ranking efaordifferent relative sizes
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of the reduced history. We observe that when using max-flemstale-free, Bartercast
and Citation graphs exhibit much smaller ranking error ttheenrandom graphs. For all
the graphs using Pagerank, the reduced history exhibitesmanking error than using
max-flow. Fig. 3 plots the ranking overlap for different tala sizes of the reduced his-
tory. The scale-free and Bartercast graphs exhibit mudhenicanking overlap than the
random and Citation graphs when using the max-flow baseditiigo Particularly, in
these networks the ranking overlap decreases quite sloittytiae decrease of the size
of the reduced history, until the size of the reduced histbgbout).4 of the complete
history. The reason is that these networks have a large ambredundant information
for approximating the highest ranked nodes when using theftoa algorithm. When
the size of the reduced history is smaller tiiah of the complete history, the ranking
overlap degrades quickly. With Pagerank, the reducedryistcibits very low ranking
overlap for all the graphs.

Finally, we evaluate the effect of the growth of the complatgory while the re-
duced history is of constant size on the ranking error andahking overlap. For the
synthetic graphs, we let the complete history grow fraifl to 5,000 nodes while we
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Fig. 4: The effect of the growth of CH relative to the size of Rit max-flow (top) and
Pagerank (bottom).

keep the size of the reduced history constafibamnodes. For the real-world graphs, us-
ing the available temporal information, we have the Bagesrgraph grow fron, 063

to 10,634 nodes with the reduced history constantlafi63, and the Citation graph
from 1,536 to 15,360 nodes with the reduced history &t536. Fig. 2 (right) plots
the ranking error and Fig. 4 plots the ranking overlap fofedé@nt relative growths of
the complete history. We observe again that Pagerank ah@&smaller ranking error
while the max-flow based algorithm achieves a better rantirgglap, specially for the
scale-free and real-world graphs.

Discussion The observations arising from our experiments indicaté tha reduced
history can give a good approximation of the ranking of naat@ording to their repu-
tations when the complete history exhibits a particulardtrre. In this subsection, we
explain and discuss our main observations in Section 6.

First, we observe that constructing the reduced historygusie combination of all
the parameters for node and edge removal results in the ioagsng error. Consid-
ering only parameters such as degree and reputation gii@#ypfor removal to the
newest nodes and so, new nodes will not participate in thecestihistory. On the other
hand, considering only the age as parameter for removaltsaathigh ranking error
because then, only new nodes patrticipate in the reducezhhisbd information of old
important nodes has been removed. Therefore, for good npeaftce of the reduced
history, it is required to use a combination of these pararseis defined by Egs. (1)
and (3).

Secondly, the performance of the reduced history dependkeotopology of the
graph, and is better in the scale-free, Bartercast andi@itgtaphs than in the random
graphs. The scale-free and our real-world graphs have dely avell connected nodes
accumulating the majority of links, while the vast majofynodes has a very low con-
nectivity. In the reduced history, the highly connectedewdre preserved keeping their



good ranking position, while most of the loosely connectedas have been removed.
In contrast, in random graphs all nodes have stochastisatiilar connectivity prop-
erties. Since most real networks exhibit heterogeneithénconnectivity properties of
their nodes [1], we can conclude that the reduced historyeaapplied in a large range
of networks.

Finally, the performance of the reduced history dependshenré¢putation algo-
rithm used. In particular, it causes a lower ranking erroewhising Pagerank, while
it achieves a higher ranking overlap when using max-flowelPagk computes the rep-
utation of a node by aggregating the interactions of all squticipating in a graph.
The aggregative computation of centrality by Pagerankea®s lower ranking error
even if the reduced history has a relatively small size. kéinRagerank, the max-flow
based algorithm computes the reputation of a node takimgaotount only the inter-
actions between that node and the most central node. Sirtheh®omost central and
the highest ranked nodes are considered as important, th@yeserved in the reduced
history. Therefore, we achieve a high ranking overlap whe&ngithe max-flow based
algorithm.

In conclusion, our observations demonstrate the effentigs of the reduced history
in approximating the ranking of nodes with Pagerank and éniiflying the highest
ranked nodes with the max-flow based algorithm. This imghes the reduced history
can approximate with reasonably accuracy the completerkigt real world graphs,
while it has much smaller resource requirements. As wedsiat&ection 2, this result
is valuable especially for decentralized systems, suchribkel, because of the limited
resources available at each node.

7 Related work

The observations of our experiments are consistent witfirtdengs of prior published

research for the robustness of centrality measures undwglisgy or missing data. In

particular, our finding that node and edge removal causdasimanking errors has

been discussed in the context of the robustness of ceptraéiisures under missing
data [5]. In the context of network sampling, it has been olexbthat ranking nodes
with eigenvector centrality is highly robust [7]. Moreoyéhe result that the use of
BC for node and edge removal does not affect the ranking entah, has been also
observed under the context of edge removal for securityoreaf22]. However, our

approach is different from sampling techniques, since d#ampechniques focus on
creating a static subgraph with similar properties as tigéral graph. In our case, we
need to maintain the reduced history dynamically with thengh of the original graph,

and we are interested in producing a reduced history thaepres the reputations of
nodes and not necessarily the general properties of thmaligraph.

8 Conclusion

Using the complete history of interactions in a reputatigstam is not efficient due
to its high computational cost and high memory requirememntd to the high popula-
tion turnover. We have proposed the use of the reduced histstead of the complete
history defining the main parameters for choosing the nodecppating in it. Next,



we have evaluated our approach experimentally explorirly theeoretical graph mod-

els and real-world graphs using two reputation algoritremeax-flow based algorithm

and Pagerank. We conclude that for scale-free and reatwgoaphs, the reduced his-
tory is reasonably accurate while for random graphs, dulkdiv structural properties,

the reduced history causes high error. Furthermore, we @iewvenstrated that using
the max-flow based algorithm results in better identificatibthe highest ranked nodes
while using Pagerank results in better ranking error.
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A Proof for Probability of Connectivity for Random Graphs

We start with one initial node with no edges. Then, we staildmg our graph as
described in Section 4, and at time- 0, the expected number of nodesiis= 1+ p.t.
Since the probability of connection jg the expected number of edges at timis:
E(t) = ,pne = >, p(1 4+ pet) = p(t + pet(t — 1)/2). Thus, the probability of
connection in the random graph is equal¢t)/(n;(n; — 1)) ~ (pp.t?/2)/(p*t?) =
p/2p. for larget, which proves that our procedure described in Section 4tesea
random graptR(n., p/2p.).

B Proof for the Exponent of our Scale-free Graphs

The proof of S being a scale-free graph is based on the mean-field theopoged
by Barabasi and Albert [3]. Witlh., = 1 we have the classic Barabasi-Albert model,
where only a new node is added and the exponent of power-law=i8. We start with
one initial node and then, to construct our scale-free gragtfollow the constructive
process described in Section 4. With probabilitywe add a new node with: edges,
and so the degree of nodedenoted byi;, changes with ratedd; /0t = md,;/ Zj d;.
With probabilityl — p. we addm new directed edges and the degree of notlganges

with rate: % = 2md;/ 3 d;. Therefore, in total:
- = pPcM—=— + (1 _pc)2m— = (2 - pc)m—' (4)
ot Zj d; Zj d; Zj d;

Moreover,y ., d; = 2E(t) = 2mt, whereE(t) is the number of edges in the graph
at timet, so we can solve Eq. (4) fat; and find:

t )(2_170)/2

d; = m(—

. , ©)

wheret; represents the time that nod@ined the network. Using Eq. (5), the proba-
bility P[d;(t) < d], that a node has a connectivity, smaller than, can be written as

Pldi(t) < d] = P(ti > (m/d)Q/(Q*PC)t).
We assume that each operation of either adding a new nodespvioaedges takes
one unit of time, and so the probability densitytofs P;(t;) = 1/(mg + t;). Thus,

Plo= () ) = p(es ()T - ()T T

The degree distribution is the probability density fofd), thus we obtain:

OP[d;(t) < d]  2m2/ (=P 1 t
d (2—p.) @I (my+8)’

P(d) =

and as a consequence, for latg€(d) ~ d=7 with v = (2/(2 — p) + 1).



