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Abstract. In decentralized interaction-based reputation systems, nodes store in-
formation about the past interactions of other nodes. Basedon this information,
they compute reputations in order to take decisions about future interactions.
Computing the reputations with the complete history of interactions is inefficient
due to its resource requirements. Furthermore, the complete history of interac-
tions accumulates old information, which may impede the nodes from capturing
the dynamic behavior of the system when computing reputations. In this paper,
we propose a scheme for reducing the amount of history maintained in decentral-
ized interaction-based reputation systems based on such elements as the age of
nodes, and we explore its effect on the computed reputationsshowing its effec-
tiveness in both synthetic and real-world graphs.
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1 Introduction

A family of decentralized reputation systems useful in manyInternet applications con-
sists of interaction-based systems (also called content-driven systems [8]). These sys-
tems are based on algorithms analyzing all interactions among users and computing
the reputations without using any explicit feedback from users, such as PageRank [18]
for ranking web pages and Bartercast [17] for computing reputations of users in P2P
systems. In interaction-based systems, the amount of historical information on the inter-
actions maintained by each node affects the performance andthe characteristics of the
reputation mechanism. Networks such as popular online markets and social networks
consist of hundreds of thousands or even millions of active users and thus, using the
complete history for computing the reputation of nodes is prohibitive due to its resource
requirements. Particularly in decentralized systems, such as file-sharing P2P systems,
the available resources at nodes are limited and thus, only scalable solutions can be
applied. Furthermore, a long-term history allows previously well-behaved nodes to ex-
ploit their good reputations by acting maliciously [9, 16, 21]. In this paper, we propose
a scheme for reducing the amount of history maintained in decentralized interaction-
based reputation systems. We experimentally explore its effect on the computed repu-
tations using synthetic and real-world graphs.

In order to reduce the history of interactions, we use only a subset of the complete
history to approximate reputations. We model the interactions of thecomplete history
of a network as a growing graph with the nodes of the network asits vertices and the



interactions between pairs of nodes as its edges, and the correspondingreduced his-
tory as a subgraph of the complete history. The reduced history isderived from the
complete history by deleting the least important edges and nodes. We define the impor-
tance of a node according to its age, its activity level, its reputation, and its position in
the graph, while the importance of an edge is defined according to its age, its weight,
and its position in the graph. Then we evaluate our approach using synthetic random
and scale-free graphs, and two real-world graphs, one derived from the Bartercast rep-
utation system of our BitTorrent-based P2P client Tribler [20] and the other from the
author-to-author Citation network of Physical Review E journal1. The main difference
between the Bartercast and the Citation graphs, besides their structural properties, is that
the former is derived from a deployed distributed system with personalized reputations
while the latter is derived from a centralized system with global reputations.

On these networks, we apply two different computations for reputations, one based
on the max-flow algorithm [6] and the other based on eigenvector centrality [4]. We
evaluate our approach according the following two observations: (i) for the vast ma-
jority of reputation systems, the rank of reputations is more important than the actual
reputation values themselves; and (ii) in most cases the identification of the highest
ranked nodes is enough. We demonstrate that the performanceof the reduced history
depends on the topology of the complete history. Furthermore, we show that the perfor-
mance of the reduced history depends on the reputation algorithm. Finally, we conclude
that reduced history can be applied in a large range of networks.

2 Motivation and Problem Statement

Our main motivation for reducing the history of interactions in a network is the compu-
tational cost and the storage requirements of decentralized reputation algorithms. Repu-
tation systems, such as those of eBay or Google, cover hundreds of thousands of active
nodes while reputation algorithms (e.g., Eigentrust [15],PageRank [18] and max-flow
based ones [6]) have a high computational complexity. In decentralized systems, like
BarterCast, where each node stores and analyzes data locally using, e.g., the max-flow
algorithm (with complexityO(nm2) wheren is the number of nodes andm and the
number of edges), even much smaller graphs of106 nodes make the computation of
reputations prohibitive. Taking into account that the contributions of nodes in the com-
putation of reputations are not equal in quality and quantity [8], we aim to delete the
least important contributions and compute reputations using only a subset of the com-
plete history. In this way, we can reduce the computational cost significantly without
decreasing the accuracy very much.

In addition to the computational cost, the dynamic behaviorof many reputation
systems makes the use of the complete history ineffective. In systems with a high pop-
ulation turnover such as P2P networks, only a few nodes remain for a long period in the
system while the majority of nodes enters the system performing some interactions and
then leaves it. Also a node behaving properly for a long time can build a good reputation
and become a traitor [16] by exploiting other nodes. Preserving only short-term history

1 Data available to us after request to American Physical Society



forces all nodes in the system to behave continuously according to the protocol. For
these reasons, several widely used reputation mechanisms,such as those of eBay and
eLance, allow the use of historical information of a 1 or 6-month window. Although
using a time window is useful for such feedback-based reputation systems, it is not ef-
fective in interaction-based reputation systems since important information of highly
reputed nodes is deleted.

We model the interactions of a network as a directed weightedgraphG = (V,E),
where the verticesV represent the nodes and the edgesE the interactions among the
nodes. The weight of an edge represents its importance; for instance, in Bartercast,
the weight of an edge between nodes represents the amount of data transferred in the
corresponding direction, and in a citation graph, it represents the number of references
to an author by another. The graph is dynamically growing over time and allows not only
new nodes to join but also existing nodes to create new edges.The graphG represents
thecomplete history (CH) of interactions in the network.

Given the growing graphG, our target is to create a subgraph ofG, denoted byG′,
which preserves the structural properties, the highest ranked nodes inG and keeps the
ranking of the reputations similar to that inG. The subgraphG′ has to be dynamically
maintained as the complete history grows while its size has to be almost fixed. The
graphG′ will be used for the computation of reputations, and represents thereduced
history (RH) of interactions in the network.

3 Creating the Reduced History

The basic idea of creating the reduced historyG′ consists of removing the least impor-
tant elements, either nodes or edges, fromG. We use a node removal process in con-
junction with edge removal. The ratio of removed nodes versus removed edges depends
on the dynamics of the network. Nevertheless, edge removal implies node removal and
vice versa. More precisely, edge removal can lead to disconnecting a node from the
graph and node removal results in deleting the adjacent edges of the removed node.

The parameters forremoval of a nodeconsist of its age, its activity level, its repu-
tation, and its position in the graph.

Theage of node i is expressed asτi = t − ti wheret is the current time andti is
the time instance nodei joined the system. In most networks, the age of a nodei affects
its behavior in a non-linear way (e.g. [1, 14]). Thus, instead of its age, we consider its
aging factorf(τi), wheref is a decreasing function withf(0) = 1 (e.g.,f(τ) = e−bτ ,
whereτ represents the age of a node andb is a constant). Keeping fresh information
allows the reputations system to capture the dynamic behavior of nodes.

The activity level di of a node i represents its degree. Nodes with a high activity
level participated in many interactions, and so, they provide much information.

The reputation of node i is denoted byri. Our aim is to preserve the information
of nodes with high reputations, since these nodes are the most reliable in the network.
Moreover, allowing nodes with high reputations to contribute to the computation of
reputations longer is a kind of rewarding the most trusted nodes.

For nodei theimportance of its position in the graph is expressed by its betweenness
centrality (BC), denoted byCB(i), which measures the sum of the fractions of the
numbers of shortest paths among all pairs of vertices that pass through nodei [10].



Removing nodes from the graph can result in destroying its structure by creating many
disconnected components and thus, we need to maintain the nodes that keep the graph
connected.

The first three factors represent the behavior of nodei while the fourth factor is
added for preserving the structure of the graph during the deletion process. Therefore,
in our method, thepriority score Pn(i) of deleting nodei is defined as

Pn(i) = αPA(di, ri, τi) + (1− α)PB(CB(i)), (1)

wherePA(di, ri, τi) expresses the priority score of deleting nodei based on its activity
level, aging factor and reputation, andPB(CB(i)) represents the priority score of delet-
ing nodei according to its position in the graph. The parameterα takes values in[0, 1]
and can be chosen according to the graph properties. We definethe priority scorePA as

PA(di, ri, τi) =
n− dirif(τi)

n2 −
∑

j djrjf(τj)
, (2)

wheren is the number of nodes in the graph, and the denominator acts as a normal-
ization so that the sum of the priority scores sum to 1. Clearly, a node with a higher
age, a lower activity level, or a lower reputation will be removed. Although the max-
imum value ofdirif(τi) is equal ton − 1 (corresponding todi = n − 1, ri = 1
andf(τi) = 1), for simplicity, we approximate it ton. Similarly, PB is expressed as
PB(CB(i)) = (n2 − CB(i))/(n

3 −
∑

j CB(j)). Again, even though the maximum
value ofCB(i) is equal to(n − 1)(n − 2), we approximate it byn2. When consider-
ing a single parameter for node removal, Eq.2 can be adapted in a straightforward way
(similarly asPB for parameterCB(i)).

Theremoval of an edgeis determined by its age, its weight, and its position in the
graph.

The age of edge eij connecting nodesi andj, is defined similarly to the age of a
node, and is denoted byτij = t− tij , wheret is the current time andtij is the time of
its creation. The aging factor of edgeeij is a decaying functionf(τij) and can be, e.g.,
an exponential function.

Theweight of edge eij , denoted bywij , is one of the parameters for edge removal,
since interactions with a high cost are more important for the computation of reputa-
tions, edges with high weights have to be preserved in the graph.

The importance of the position of edge eij in the graph is expressed by its edge
betweenness centrality (BC), denoted byCE(eij), which is defined as the sum of the
ratios of shortest paths between all pairs of nodes containing this edge [10]. The ag-
ing factor and the weight of an edge represent its contribution to the computation of
reputations, while itsCE helps in preserving the structure of the graph.

Similarly to node removal, we express the priority score of removing an edgeeij as

Pe(eij) = αPS(wij , τij) + (1− α)PF (CE(eij)), (3)

whereα is the parameter used in the definition ofPn to control the topology of the
derived graph. The scoresPS andPF are defined similarly toPA andPB , respectively.
Therefore, edges with lower age, lower weight, and lower betweenness centrality will
be removed.



The basic computational components of reducing the historyconsist in the com-
putation of BC (we do not distinguish between node and edge BCbecause the algo-
rithm is the same). Computing the degree, the aging factor ofnodes, the weight, and
the aging factor of edges has a linear cost on the number of nodes and edges respec-
tively and can be computed incrementally. However, the computational cost of BC is
high (for unweighted networks it isO(mn) wheren is the number of nodes in the
network andm the number of edges). The cost can be significantly reduced byusing
approximations [11] and exploiting the structure of the network. In particular in scale-
free networks, the BC values do not have to be updated very often with the network
growth [12] and in networks without community structure, the BC of a node shows a
strong correlation with its degree. Note that the reputations of nodes are computed by
the core reputation mechanism.

4 Datasets

In order to assess our method for creating the complete history, we consider both syn-
thetic graphs and graphs derived from real networks. In our synthetic complete history
graphs we consider two processes occur simultaneously: first, new nodes enter the sys-
tem, and secondly, the already existing nodes interact, thus creating new links. Thus, we
define the probabilitypc which represents the probability of adding a new node at each
time step to the graph, and the probability1 − pc which represents the probability of
adding new links between existing nodes. In highly dynamic systems, the appearance
of new nodes is dominant, and so the value ofpc is high. In our models for synthetic
graphs, we allow the occurrence of multiple edges between a pair of nodes and we
consider the number of multiple edges as the weight of that edge.

For our experiments, we create the complete historyG and the corresponding re-
duced historyG′ in parallel. In the complete history, we store all the new information.
For the construction of the reduced history we keep its size (almost) constant to a maxi-
mum number of nodesnmax, which represents the computational or memory limitation
of the system. We control the size of the reduced history by removing nodes or edges
from the graph as new information is stored as described in the previous section. Below,
we describe in detail our models for random graphs and scale-free graphs, the properties
of the Bartercast and Citation graph, and the construction of the corresponding reduced
histories.

A random graph, denoted byR(n, pr), is composed ofn nodes, and each poten-
tial edge connecting two nodes occurs independently with probability pr. Based on
this model, we generate a growing directed random graphR(nt, pr) representing the
complete history of interactions.

To create the graphR(nt, pr) with nt nodes at timet, starting from a single node,
we perform the following two operations at each time step:

– With probabilitypc we add a new node with each of its potential directed edges
existing with probabilityp, for some value ofp.

– With probability1− pc we addpnt new directed edges adjacent to chosen existing
nodes uniformly at random.

For the proof ofpr ∼ p/2pc the reader is referred to Appendix A. In accordance withR,
we create the reduced history graphR′. The reduced historyR′ is equal toR up to the



maximum number of nodesnmax. After having reachednmax nodes,R′ is maintained
by performing the following operations at each time step:

– When a new node is added toR, we also add this node toR′ along with its edges,
and then we remove one node together with its edges with the highest priority score
(Eq. (1)).

– When new edges are added toR, we add the same edges toR′. Then we remove
fromR′ the same number of edges with the highest priority score (Eq.(3)).

Note that some edges inR may be adjacent to nodes that have been removed fromR′;
in this case, these edges are not added toR′.

Scale-free graphsare characterized by their degree distribution following apower
law. We create a growing directed scale-free graph based on the preferential attachment
model [3]. Similarly to the procedure for random graphs, we generate two directed
graphsS andS′ corresponding to the complete history and the reduced-history.

We createS(nt) by starting with a small seeding graph withm0 nodes connected
bym0 − 1 edges and then performing the following steps:

– With probabilitypc we add a new node withm directed edges, withm 6 m0. Each
edge is adjacent to an already existing nodei with probabilityΠ(i) = di/

∑

j dj ,
wheredi is the degree of nodei.

– With probability 1 − pc we addm new directed edges. Each of these edges are
adjacent to an existent nodei with probabilityΠ(i).

One can show thatS is scale-free with power-law exponent equal toγ = 1+2/(2−pc)
(see Appendix B for the proof). In line withS, we build the reduced historyS′ using
the same procedure as for random graphs.

The Bartercast graph is derived from Bartercast [17], the distributed reputation
mechanism used in our BitTorrent-based client Tribler [20]. In Bartercast, when a peer
exchanges content with another peer, they both store arecord with the amount of data
transferred and the identity of the corresponding peer. Regularly, peers contact another
peer to exchange records using a gossip-like protocol. Fromthe records it receives,
every peeri dynamically creates a weighted, directedsubjective graph, the nodes of
which represent the peers about whose activityi has heard through Bartercast records,
and the edges of which represent the total amounts of data transferred between two
nodes in the corresponding directions.

We have crawled the Tribler system from September 1, 2010 to January 31, 2011,
collecting information from 29,716 nodes. In our experimental analysis, we will assume
full-gossip in which peers forward the records they receive from other peers, and so
all peers eventually receive all the propagated records. Thus, the graph derived from
Bartercast, denoted byB, can be considered as the subjective graph of all nodes which
corresponds to the complete history. The graphB is not connected and so, we proceed
in the analysis using its largest weakly connected component. Bartercast presents high
population turnover and thus, the derived graph consists ina dense core with very few
long living and active nodes and a periphery with many loosely connected nodes of
low activity (small average path length and small clustering coefficient, see Table 1).
The addition of new nodes/edges inB is based on the actual timestamps of the crawled
database of Bartercast. Similarly to the procedure for random and scale-free graphs, we
maintain the reduced historyB′ by removing nodes and edges using Eqs. (1) and (3) as
new nodes and edges are added according to the timestamps.



Table 1: The average path length (L) and the clustering coefficient (cc) of the largest
connected component of the Bartercast and Citation graph, and of the corresponding
random graphs with similar average path length.

Graph # Nodes # Edges L cc Lrand ccrand

Bartercast 10, 634 31, 624 2.64 0.00074 2.63 0.0032

Citation 15, 360 365, 319 3.29 0.1098 3.31 0.0012

The author-to-authorCitation graph , denoted byC, is derived from the citation
network of 21,858 papers published in Physical Review E fromJanuary 2001 to Novem-
ber 2011. Its vertices represent the authors of papers and edges represent the citation
relationship between two authors (or coauthors). The weight of an edge indicates multi-
ple citations from one author to another. Unlike Bartercast, the graphC is derived from a
centralized system with global reputations. In Table 1, we can see that graphC exhibits
small-world behavior with small average path length and large clustering coefficient.
Its degree distribution has a power-law tail with exponentγ = 2.55. As described for
the Bartercast graph, we create the complete historyC and the corresponding reduced
historyC′ based on the actual timestamps in the database of the Citation graph.

5 Computation of Reputations and Evaluation Metrics

We consider two methods for computing reputations: the max-flow algorithm and the
eigenvector centrality. However, our approach can be generalized to other methods for
computing reputations as well.

The max-flow algorithm [6] computes the maximum flow passing between two
nodes and is the core of many reputation systems (such as Bazaar [19], Bartercast [17],
and the system proposed by Feldman et al. [9]) because it provides resilience to misre-
porting by nodes who may exaggerate their contributions to increase their reputations.
In our study, we use the definition of reputation of Bartercast mechanism [12] since
we use a graph derived from it for the evaluation of our approach. The reputation of
a nodej is computed asarctan(fji − fij)/(π/2), where nodei represents the node
with the maximum betweenness centrality,fji represents the maximum flow from node
j to nodei in the network andfij is the maximum flow in the reverse direction. The
functionarctan in the computation of reputations emphasizes the differences of flows
close to0 (neutral reputation), so that newcomers with only a small contribution can
achieve a good reputation value and participate in the system. Every reputation value is
normalized with the factorπ/2 so that it is in(−1, 1).

Eigenvector centrality is a well-studied metric for the importance of a node in a
network and its variants constitute the core of many reputation and recommendation
mechanisms (such as EigenTrust [15], PageRank [18], TrustRank [13] and many oth-
ers). The basic idea of eigenvector centrality is that interactions with highly reputed
nodes contribute more to the reputation of a node. In our analysis, we use PageRank
computed using the power iteration:rt+1 = dArt + [(1− d)/N ]1, whereA represents
the normalized adjacency matrix of the network,rt the ranking vector at time stept,
d the damping factor (we set it equal to its typical value0.85 [18]), N the number of



nodes, and1 the vector of lengthN containing only ones. In some networks like Barter-
cast, an incoming edge of a node has a negative meaning for thereputation of that node
(because a weighted edge represents the amount of transferred data and so, adds to the
reputation of the donator of the data). Therefore, in these networks, first we reverse the
direction of links before we apply PageRank (reverse PageRank [2]).

The evaluation of our method is based on the observations that for the vast major-
ity of reputation systems, the ranking of nodes according totheir reputations is more
important than the actual reputation values themselves, and that in many systems the
identification of the highest ranked nodes is more importantthan of the rest of the
nodes. Therefore, we define theranking error as the difference between the rankings of
the nodes according to their reputations in the reduced history and the complete history.
More precisely, we consider the sequences of the Unique Identifiers (UIDs) of the nodes
in the reduced and the corresponding complete history of ourgraphs, and we compute
the minimum number of inversions of consecutive elements needed in the sequence of
the reduced history to get all the common nodes in their correct order in the complete
history. This minimum number of inversions is then normalized over the worst case,
which would occur if the ranking would be completely reversed. Furthermore, to ex-
plore the ability of the reduced history to identify the highest ranked nodes, we define a
second metric called theranking overlap which is defined as the fraction of nodes the
sequences of the top-5%, 10% and 20% ranked nodes in the reduced history and the
corresponding sequences in the complete history have in common. More precisely, we
compute the ranking overlap as|U ∩V|/|U|, whereU is the set of the top-5%, 10% and
20% ranked nodes in the reduced history andV is the set of the top ranked nodes in the
complete history of size|V| = |U|.

6 Evaluation

In this section, we present our experimental evaluation. First, we explore the effect of
each of the parameters for node and edge removal separately and in combination. Next,
we study the effect of the size of the reduced history relative to the size of the complete
history. Finally, we evaluate the effect of the growth of thecomplete history while the
size of the reduced history is constant. In our experiments,we use the synthetic and
real-world graphs introduced in Section 4. Our synthetic graphs consist of5, 000 nodes
with α andpc neutral (both equal to0.5), unless other initializations are mentioned.
We choose the other parameters for the random graph (pr = 0.02) and the scale-free
graph (m = 3 andγ = 2.2) so that they roughly correspond to the Bartercast graph.
For the synthetic graphs, our results presented in each plotare the average of25 inde-
pendent experiments, while for the Bartercast and Citationgraphs, we conduct only one
experiment since we have only one instance of these real-world graphs.

Experiments and Results We first explore the effect of the parameters for node and
edge removal defined in Section 3 on the ranking error.To explore the effect of the
parameterα, we remove50% of the nodes and edges of the complete history according
to Eqs. (1) and (3) for different values ofα. Due to space limitations we omit the corre-
sponding figure. We find thatα does not affect the performance of the reduced history
much. In particular, for random graphs using max-flow (or Pagerank), the ranking error
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Fig. 1: The effect of the parameters for node and edge removalwhen removing a frac-
tion of the nodes and edges of CH for random and scale-free graphs when the reputation
algorithm is max-flow (left) and Pagerank (right). The indication ER in the legend de-
notes parameters for edge removal and NR parameters for noderemoval.

starts at0.33 (or 0.21) for α equal to0, and it slightly decreases by0.02 (or 0.01) until
α is equal to0.8. As α increases further, the ranking error increases by0.07 (or 0.06).
A similar stable behavior for the ranking error is observed for the scale-free and real-
world graphs. Sinceα doesn’t affect the performance of the reduced history much we
take it as neutral, equal to0.5, for all the following experiments.

Next, we explore the effect of the parameters for node and edge removal separately,
and their combination as defined by Eqs. (1) and (3). For the parameters for node or
edge removal, we remove fractions nodes or edges of the complete history using only
one parameter at a time. The effect of these parameters on theranking error is plotted
in Fig. 1 for the random and scale-free networks.We observe that creating the reduced
history using only node removal results in similar performance as edge removal for
the corresponding parameters. This is to be expected as there is a correlation between
these parameters: in general, an edge with high BC is adjacent to nodes with high BC,
an old edge is attached to old nodes, and an edge with a large weight is adjacent to a
node with high reputation. Furthermore, the combination ofall parameters in Eqs. (1)
and (3) results in the smallest ranking error. The largest ranking error occurs when we
remove nodes based on their age. The reputation of a node depends on the period it par-
ticipates in the system and thus, when only new nodes with lowreputations participate
in the reduced history, the ranking error is high. All the other parameters cause quite
similar ranking errors because they exhibit correlations in graphs without strong com-
munity structure, such as the random and scale-free graphs.In the real-world graphs,
the parameters for node and edge removal and their combination exhibit similar rela-
tive performance as in the scale-free graphs. We omit the plot for the real-world graphs
due to space limitations. Since the combination of the parameters for node and edge
removal achieves the lowest ranking error, we use it to create the reduced history for all
the following experiments.

We next evaluate the effect of the size of the reduced historyrelative to the size
of the complete history on the ranking error and the ranking overlap. For this purpose,
we construct reduced histories of different sizes for a complete history of fixed size as
described in Section 4. Fig. 2 (left) plots the ranking errorfor different relative sizes
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Fig. 3: The effect of the size of RH relative to the size of CH for max-flow (top) and
Pagerank (bottom).

of the reduced history. We observe that when using max-flow, the scale-free, Bartercast
and Citation graphs exhibit much smaller ranking error thanthe random graphs. For all
the graphs using Pagerank, the reduced history exhibits smaller ranking error than using
max-flow. Fig. 3 plots the ranking overlap for different relative sizes of the reduced his-
tory. The scale-free and Bartercast graphs exhibit much higher ranking overlap than the
random and Citation graphs when using the max-flow based algorithm. Particularly, in
these networks the ranking overlap decreases quite slowly with the decrease of the size
of the reduced history, until the size of the reduced historyis about0.4 of the complete
history. The reason is that these networks have a large amount of redundant information
for approximating the highest ranked nodes when using the max-flow algorithm. When
the size of the reduced history is smaller than0.3 of the complete history, the ranking
overlap degrades quickly. With Pagerank, the reduced history exhibits very low ranking
overlap for all the graphs.

Finally, we evaluate the effect of the growth of the completehistory while the re-
duced history is of constant size on the ranking error and theranking overlap. For the
synthetic graphs, we let the complete history grow from500 to 5, 000 nodes while we
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Fig. 4: The effect of the growth of CH relative to the size of RHfor max-flow (top) and
Pagerank (bottom).

keep the size of the reduced history constant at500 nodes. For the real-world graphs, us-
ing the available temporal information, we have the Bartercast graph grow from1, 063
to 10, 634 nodes with the reduced history constant at1, 063, and the Citation graph
from 1, 536 to 15, 360 nodes with the reduced history at1, 536. Fig. 2 (right) plots
the ranking error and Fig. 4 plots the ranking overlap for different relative growths of
the complete history. We observe again that Pagerank achieves a smaller ranking error
while the max-flow based algorithm achieves a better rankingoverlap, specially for the
scale-free and real-world graphs.

Discussion The observations arising from our experiments indicate that the reduced
history can give a good approximation of the ranking of nodesaccording to their repu-
tations when the complete history exhibits a particular structure. In this subsection, we
explain and discuss our main observations in Section 6.

First, we observe that constructing the reduced history using the combination of all
the parameters for node and edge removal results in the lowest ranking error. Consid-
ering only parameters such as degree and reputation gives priority for removal to the
newest nodes and so, new nodes will not participate in the reduced history. On the other
hand, considering only the age as parameter for removal results in high ranking error
because then, only new nodes participate in the reduced history and information of old
important nodes has been removed. Therefore, for good performance of the reduced
history, it is required to use a combination of these parameters as defined by Eqs. (1)
and (3).

Secondly, the performance of the reduced history depends onthe topology of the
graph, and is better in the scale-free, Bartercast and Citation graphs than in the random
graphs. The scale-free and our real-world graphs have only afew well connected nodes
accumulating the majority of links, while the vast majorityof nodes has a very low con-
nectivity. In the reduced history, the highly connected nodes are preserved keeping their



good ranking position, while most of the loosely connected nodes have been removed.
In contrast, in random graphs all nodes have stochasticallysimilar connectivity prop-
erties. Since most real networks exhibit heterogeneity in the connectivity properties of
their nodes [1], we can conclude that the reduced history canbe applied in a large range
of networks.

Finally, the performance of the reduced history depends on the reputation algo-
rithm used. In particular, it causes a lower ranking error when using Pagerank, while
it achieves a higher ranking overlap when using max-flow. Pagerank computes the rep-
utation of a node by aggregating the interactions of all nodes participating in a graph.
The aggregative computation of centrality by Pagerank achieves lower ranking error
even if the reduced history has a relatively small size. Unlike Pagerank, the max-flow
based algorithm computes the reputation of a node taking into account only the inter-
actions between that node and the most central node. Since both the most central and
the highest ranked nodes are considered as important, they are preserved in the reduced
history. Therefore, we achieve a high ranking overlap when using the max-flow based
algorithm.

In conclusion, our observations demonstrate the effectiveness of the reduced history
in approximating the ranking of nodes with Pagerank and in identifying the highest
ranked nodes with the max-flow based algorithm. This impliesthat the reduced history
can approximate with reasonably accuracy the complete history in real world graphs,
while it has much smaller resource requirements. As we stated in Section 2, this result
is valuable especially for decentralized systems, such as Tribler, because of the limited
resources available at each node.

7 Related work

The observations of our experiments are consistent with thefindings of prior published
research for the robustness of centrality measures under sampling or missing data. In
particular, our finding that node and edge removal cause similar ranking errors has
been discussed in the context of the robustness of centrality measures under missing
data [5]. In the context of network sampling, it has been observed that ranking nodes
with eigenvector centrality is highly robust [7]. Moreover, the result that the use of
BC for node and edge removal does not affect the ranking errormuch, has been also
observed under the context of edge removal for security reasons [22]. However, our
approach is different from sampling techniques, since sampling techniques focus on
creating a static subgraph with similar properties as the original graph. In our case, we
need to maintain the reduced history dynamically with the growth of the original graph,
and we are interested in producing a reduced history that preserves the reputations of
nodes and not necessarily the general properties of the original graph.

8 Conclusion

Using the complete history of interactions in a reputation system is not efficient due
to its high computational cost and high memory requirements, and to the high popula-
tion turnover. We have proposed the use of the reduced history instead of the complete
history defining the main parameters for choosing the nodes participating in it. Next,



we have evaluated our approach experimentally exploring both theoretical graph mod-
els and real-world graphs using two reputation algorithms,a max-flow based algorithm
and Pagerank. We conclude that for scale-free and real-world graphs, the reduced his-
tory is reasonably accurate while for random graphs, due to their structural properties,
the reduced history causes high error. Furthermore, we havedemonstrated that using
the max-flow based algorithm results in better identification of the highest ranked nodes
while using Pagerank results in better ranking error.
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A Proof for Probability of Connectivity for Random Graphs

We start with one initial node with no edges. Then, we start building our graph as
described in Section 4, and at timet > 0, the expected number of nodes isnt = 1+pct.
Since the probability of connection isp, the expected number of edges at timet is:
E(t) =

∑

t pnt =
∑

t p(1 + pct) = p(t + pct(t − 1)/2). Thus, the probability of
connection in the random graph is equal toE(t)/(nt(nt − 1)) ≈ (ppct

2/2)/(p2ct
2) =

p/2pc for large t, which proves that our procedure described in Section 4 creates a
random graphR(nt, p/2pc).

B Proof for the Exponent of our Scale-free Graphs

The proof ofS being a scale-free graph is based on the mean-field theory proposed
by Barabási and Albert [3]. Withpc = 1 we have the classic Barabási-Albert model,
where only a new node is added and the exponent of power-law isγ = 3. We start with
one initial node and then, to construct our scale-free graph, we follow the constructive
process described in Section 4. With probabilitypc we add a new node withm edges,
and so the degree of nodei, denoted bydi, changes with rate:∂di/∂t = mdi/

∑

j dj .
With probability1− pc we addm new directed edges and the degree of nodei changes
with rate: ∂di

∂t = 2mdi/
∑

j dj . Therefore, in total:

∂di
∂t

= pcm
di

∑

j dj
+ (1− pc)2m

di
∑

j dj
= (2− pc)m

di
∑

j dj
. (4)

Moreover,
∑

j dj = 2E(t) = 2mt, whereE(t) is the number of edges in the graph
at timet, so we can solve Eq. (4) fordi and find:

di = m
( t

ti

)(2−pc)/2

, (5)

whereti represents the time that nodei joined the network. Using Eq. (5), the proba-
bility P [di(t) < d], that a nodei has a connectivitydi smaller thand, can be written as

P [di(t) < d] = P
(

ti > (m/d)2/(2−pc)t
)

.

We assume that each operation of either adding a new node or a set of edges takes
one unit of time, and so the probability density ofti is Pi(ti) = 1/(m0 + ti). Thus,

P
(

ti >
(m

d

)2/(2−pc)

t
)

= 1− P
(

ti ≤
(m

d

)2/(2−pc)

t
)

= 1−
(m

d

)2/(2−pc) t

m0 + t
.

The degree distribution is the probability density forP (d), thus we obtain:

P (d) =
∂P [di(t) < d]

∂d
=

2m2/(2−pc)

(2− pc)

1

d2/(2−pc)+1

t

(m0 + t)
,

and as a consequence, for larget, P (d) ∼ d−γ with γ = (2/(2− pc) + 1).


