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Abstract. In this paper the kite inclusion function is presented for branch-and-
bound type interval global optimization using at least gradient information. The
basic idea comes from the simultaneous usage of the centered forms and the linear
boundary value forms. We will show that the new technique is not worse and usually
considerably better than these two. The best choice for the center of the kite inclusion
will be given. The isotonicity and at least quadratical convergence hold and there is
a pruning effect of the kite which is derived from the construction of the inclusion,
thus more function evaluations are not needed to use it. A numerical investigation on
large standard multiextremal test functions has been done to show the performance.
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1. Introduction

Interval global optimization algorithms based on branch-and-bound
methods [8, 9, 19] provide guaranteed and reliable solutions for the
problem

min
x∈X

f(x),

where the objective function f : D ⊆ Rn → R is continuously differen-
tiable and X ⊆ D is the search box representing bound constraints for
x. After studying some properties of the interval global optimization
methods [4, 5, 6], the aim of this work is to improve the efficiency
by a tighter interval inclusion function, in particular we deal with
lower bounds of f . The quality of an enclosure method is important in
the implementation of interval global optimization algorithms, because
narrower inclusion of f may provide faster convergence.

In the following we denote real numbers by lower case letters (a, b, . . .)
and real bounded and closed intervals by capital letters (X,Y, . . .). In
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2 A New Inclusion Function for Optimization: Kite

general the lower and the upper bounds of an interval X are denoted
by X and X, respectively. For the sake of simplicity if we deal with
only one interval, say Y , we will denote its bounds by a and b. The
set of compact intervals is denoted by I := {[a, b] | a ≤ b; a, b ∈ R}. If
X ⊆ R, then I(X) := {Y | Y ∈ I, Y ⊆ X}. The width and the midpoint
of an interval X are denoted by w(X) and mid(X), respectively. The
range of the function f on X is denoted by f(X). The restriction of f
to the interval Y is indicated by f |Y .

Definition 1. We call a function F : I(X) → I an inclusion function
of f in X if x ∈ Y implies f(x) ∈ F (Y ) for all Y ∈ I(X).

F ′ denotes an inclusion function of the derivative f ′ of f . L :=
minF ′(X), U := maxF ′(X).

By interval arithmetic [1, 9] inclusion functions can be computed not
only for given expressions but also for almost all functions specified by
a finite algorithm. Applying automatic differentiation [7, 9, 15] we are
able to compute inclusion functions for the derivatives without previous
human interaction. In the following we assume L < 0 < U . If U ≤ 0
or L ≥ 0 then f is monotonic and f(X) = [f(b), f(a)] or f(X) =
[f(a), f(b)].

The framework of the branch-and-bound type algorithms used in
this paper is described in the following.

Algorithm 1 Branch-and-bound interval global optimization algo-
rithm

Step 1. Let X be the starting interval, L the working list and Q
the final list. Compute F (X), set L := {X,F (X)}, Q := {}
and the guaranteed upper bound f̃ = F (c) (c ∈ X) for f∗ :=
minx∈X f(x).

Step 2. While L not empty do the following steps.

Step 3. Select an element {Y, F (Y )} from L and delete it from the
working list. Divide Y into two subsets U1 ∪ U2 = Y such that
int(U1) ∩ int(U2) = ∅, where ’int’ denotes the interior of a set.

Step 4. Compute F (Ui), apply accelerating tools to eliminate Ui or
some part of it and update f̃ if it is possible.

Step 5. If some criteria are fulfilled then Q = Q + {Ui, F (Ui)} else
L = L+ {Ui, F (Ui)}. Go to Step 2.
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It works with two lists of intervals, one for the candidate and another
for the result intervals. In Step 4 some well-known accelerating tools
(midpoint test, monotonicity test, concavity test, interval Newton step,
etc.) are used to discard subintervals in which no minimizer may occur.
A detailed description of these tools can be found in [7, 8, 9, 19]. The
aim of this paper is to give a new inclusion function, better than the
foregoing ones, and to use some new accelerating tools. These investi-
gations yield faster convergence in global optimization algorithms.

2. Centered forms and their improvements

Centered forms derived from mean-value theorems are used very often
to compute interval enclosures of f [16, 18]. Namely, f(x) = f(c) +
f ′(ξ)(x− c) holds with c, x ∈ Y and ξ ∈ [min{c, x},max{c, x}]. There-
fore

f(x) ∈ FCF (Y, c) := f(c) + F ′(Y )(Y − c). (1)

Here, f is expanded w.r.t. every x ∈ Y , since F ′(Y ) is an interval evalu-
ation of the derivative of f over the entire interval Y . Note that (1) can
also be computed using interval slopes [17, 20] instead of derivatives,
which yields sometimes a better enclosure of f(Y ). Often the center c
in (1) is chosen to be the midpoint of the interval Y . In the following
subsection the optimal c is given.

2.1. Optimal centered forms

Consider the lower bound of FCF (Y, c) given by (1). In Figure 1 it
can be seen that for any c ∈ [a, b] the two lines defined by the point
P (c, f(c)) and the slopes L and U , respectively, give a lower bound for
f on Y :

min{yM (c), yN (c)} ≤ inf
x∈Y

f(x),

where

yM (c) := f(c) + U(a− c) and yN (c) := f(c) + L(b− c).
From this we can compute the optimal c for the lower bound. In [2]
it has been proved that the best choice for c is when yM (c) = yN (c),
i.e. the point c− ∈ Y = [a, b] which maximizes min{yM (c), yN (c)}. The
following lemma gives the formulae for this optimal case.

LEMMA 1 (Baumann). The optimal choice of c and the corresponding
value for the lower bound is

c− =
aU − bL
U − L

kite.tex; 13/01/2005; 11:38; p.3
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Figure 1. Centered form with the midpoint as centerpoint and with the optimal
center.

and

FCF (Y, c−) = f(c−) + (b− a)
LU

U − L. (2)

Note that c− is independent of the values of f and in global op-
timization algorithms the values L and U are usually available since
they are computed for the monotonicity test. Hence the usage of Bau-
mann centered form does not need extra function or gradient calls. A
numerical investigation can be found in [21] for the one dimensional
case.

With similar arguments one can easily obtain the corresponding
formulae for the upper bound c+ (it is the symmetric point of c− with
respect to mid(Y )). Thus if one is interested in the best inclusion given
by centered forms then both formulae have to be computed, and this
increases the total computational effort for an optimization problem.
However, in the interval global optimization algorithms the lower bound
of the enclosure function F has a special role.

The usage of the Baumann centered form in the multidimensional
case is also discussed in [2]. Note that this generalization can be done
easily.

2.2. Linear boundary value forms

When a centered form is applied to both lower and upper bounds a
and b of the interval Y it is called a linear boundary value form [17].
This case is presented in Figure 2. The straightforward calculation of
the intersection S = (xs, ys) of the two lines y = f(a) + L(x − a) and
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y = f(b) + U(x − b) provides the formulae for the computation of a
lower bound of F (Y ). This is claimed in the following lemma.

LEMMA 2 (Neumaier). The two lines defined by the points A(a, f(a))
and B(b, f(b)) and the slopes L and U, respectively, provide a lower
bound for f :

xs =
f(a)− f(b)

U − L +
bU − aL
U − L , (3)

FLBV F (Y ) = ys =
Uf(a)− Lf(b)

U − L + (b− a)
LU

U − L, (4)

which is called the lower bound of the linear boundary value form.

It is clear that the inequality FLBV F (Y ) ≤ f(Y ) always holds be-
cause the two lines y = f(a) + L(x − a) and y = f(b) + U(x − b) are
under the curve of the function f and they never cross.

From these results the question arises: What is the better evaluation
of the lower bound of F , the Baumann centered form or the linear
boundary value form? The simple observation that the computation
of (2) and (4) differs only by the expressions f(c−) and (Uf(a) −
Lf(b))/(U − L), provides the following statement.

PROPOSITION 1. FCF (Y, c−) ≤ FLBV F (Y ) if and only if f(c−) ≤
Uf(a)−Lf(b)

U−L .

As we can see, in some cases the linear boundary value form gives
a better result than the Baumann centered form. Proposition 1 claims
that it is the case e.g. when the objective function f is convex.

F

a

f(a)

L

U

f(x)

f(b)

b

LBVF
=y

sx

− s

Figure 2. Linear boundary value form for the function f |[a, b].
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6 A New Inclusion Function for Optimization: Kite

Note that all of the values in the formulae (3) and (4) are fixed, there
is no possibility to optimize the inclusion. The computation of F LBV F

needs more information since f(a) and f(b) have to be computed, thus
in a global optimization algorithm it may lead to a higher computa-
tional effort. However, when the function values have been computed
at the extremal points of the current interval Y then these values can
be used later, when subintervals of Y are considered. In Section 5 we
use such a technique to reduce the computations. The formula for
the upper bound of f(x) is similar to (4) and it uses the previously
computed values (L,U, f(a) and f(b)). For the multidimensional case
some investigations can be found in [13, 14].

3. The kite inclusion function

3.1. Simultaneous usage of centered forms and linear
boundary value forms

Is there any advantage to use the two formulae simultaneously [12]? The
answer is given in Figure 3 (here the centered form is not necessarily
according to Baumann’s suggestion, in this figure the midpoint of the
current interval is used as the center), where the graph of f is within
the convex inclusion cone determined by the points (a, f(a)), S and
(b, f(b)) and outside the concave exclusion cone MPN . This leads
to the following assertion, which claims that the simultaneous usage
provides a not worse (and usually considerably better) inclusion of the
objective function.

PROPOSITION 2. Let FK(Y, c) := min{yR(c), yT (c)}, where

yR(c) :=
Uf(a)− Lf(c) + LU(c− a)

U − L , (5)

(6)

and

yT (c) :=
Uf(c)− Lf(b) + LU(b− c)

U − L . (7)

Then the inequalities

max{FLBV F (Y ), FCF (Y, c)} ≤ FK(Y, c) ≤ f(Y )

hold.
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Figure 3. Simultaneous usage of the centered form (based on the midpoint of the
current interval) and the linear boundary value form.

Proof. The point R is the intersection of the lines y = f(a)+L(x−a)
and y = f(c) + U(x− c):

xR(c) =
f(a)− f(c) + Uc− La

U − L (8)

and yR(c) is defined above in (6). The point T is the intersection of the
lines y = f(b) + U(x− b) and y = f(c) + L(x− c):

xT (c) =
f(c)− f(b) + Ub− Lc

U − L (9)

and yT (c) is defined above in (7).
In the following we have to consider four cases.
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8 A New Inclusion Function for Optimization: Kite

(i) Suppose that FCF (Y, c) ≤ FLBV F (Y ). We have to prove that
FLBV F (Y ) ≤ yR(c), i.e.

Uf(a)− Lf(b) + LU(b− a)

U − L ≤? Uf(a)− Lf(c) + LU(c− a)

U − L
−Lf(b) + LUb ≤? −Lf(c) + LUc

L(f(c)− f(b)) ≤? −LU(b− c)
f(c)− f(b) ≥? U(c− b)
f(c)− f(b)

c− b ≤ U.

The last inequality is always true, because its left hand side is the
steepness of the line determined by the points (c, f(c)) and (b, f(b)),
while U is an upper bound of f ′(x) on [a, b].

(ii) Now we prove that if FCF (Y, c) ≤ FLBV F (Y ) then FLBV F (Y ) ≤
yT :

Uf(a)− Lf(b) + LU(b− a)

U − L ≤? Uf(c)− Lf(b) + LU(b− c)
U − L

Uf(a)− LUa ≤? Uf(c)− LUc
f(a)− f(c) ≤? L(a− c)
f(c)− f(a)

c− a ≥ L.

The last inequality is always true, because its left hand side is the
steepness of the line given by the points (c, f(c)) and (a, f(a)), while
L is a lower bound of f ′(x) on [a, b].

(iii) Suppose now that FLBV F (Y ) ≤ FCF (Y, c). First FCF (Y, c) ≤ yR
is checked. The proof of this case is similar to that of (i), one can show
that f(c)+U(a−c) ≤ yR(c) is satisfied for the same reason as in case (i).

(iv) Finally let us see the case: if FLBV F (Y ) ≤ FCF (Y, c) then FCF (Y, c) ≤
yT (c). The proof of this case is similar to that of (ii), one can show that
f(c) + L(b− c) ≤ yT (c) is satisfied for the same reason as for the case
(ii).

With these four considerations the inequality max{F LBV F , FCF } ≤
yK has been proved.

Now we show that yK ≤ f(Y ) also holds. Consider the intervals
Y1 = [a, c] and Y2 = [c, b], where c ∈ [a, b]. The values yR and yT are
the lower bounds of the linear boundary value form for the function
f on the intervals Y1 and Y2, respectively. From Lemma 2 it is known
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T. Vinkó, J.-L. Lagouanelle, and T. Csendes 9

that yR ≤ f(Y1) and yT ≤ f(Y2) hold. Consequently, the inequality
yK = min{yR, yT } ≤ f(X) also holds. 2

Notice that FCF (Y, c1) ≤ FK(Y, c2) does not necessary hold if c1 6=
c2: for instance if c2 = a or c2 = b then FK(Y, c2) = FLBV F (Y ) and
if c1 = c− then by Proposition 1 FCF (Y, c−) could be better than
FLBV F (Y ).

3.2. Optimal center of the kite

From the above results it can be seen that the simultaneous usage of
the Baumann centered form and the linear boundary value form gives
an at least as good lower bound for the inclusion function as the better
of them. Now – as for centered forms – we are interested in the best
choice for the center c, that is a point c∗ such that

FK(Y, c∗) = max
c∈[a,b]

FK(Y, c) = max
c∈[a,b]

min{yR(c), yT (c)}. (10)

In the following theorem we consider this optimal choice for the center
of the kite.

THEOREM 1. The following statements hold.

1. There is a unique c∗ ∈ [a, b] such that yR(c∗) = yT (c∗),

2. c∗ is a maximizer of FK(Y, c).
Proof. 1. We consider the difference ∆ := yT − yR. Applying deriva-

tion we obtain y′R(c) = −Lf ′(c)
U−L + LU

U−L ≤ 0 and y′T (c) = Uf ′(c)
U−L − LU

U−L ≥ 0
for all c ∈ [a, b], which means that yR monotonically decreasing and
yT monotonically increasing. Together with L < 0 < U this implies
∆′(c) > 0 for all c ∈ [a, b]. Hence ∆ is strictly increasing. But since
obviously ∆(a) ≤ 0 and ∆(b) ≥ 0, ∆ has exactly one zero c∗ in [a, b],
i.e.

Uf(a)− Lf(c∗) + (c∗ − a)LU

U − L =
Uf(c∗)− Lf(b) + (b− c∗)LU

U − L . (11)

From equation (11) we obtain

c∗ =
f(c∗)− f(a)

2L
+
f(c∗)− f(b)

2U
+
a+ b

2
,

which means that c∗ is the unique fixed point of the function

ϕ := αf + β, (12)
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10 A New Inclusion Function for Optimization: Kite

where

α =
L+ U

2LU
, β =

LU(a+ b)− Uf(a)− Lf(b)

2LU
.

2. We have seen that the function yR monotonically decreasing while
the function yT monotonically increasing. Take a point d where d 6= c∗.
If d < c∗ then

yR(d) ≥ yR(c∗) = yT (c∗) ≥ yT (d),

where one of the inequalities is strict because d 6= c∗. Thus,

FK(Y, d) = min{yR(d), yT (d)} = yT (d) ≤ yT (c∗) = yR(c∗) = FK(Y, c∗)

holds. If d > c∗ then

yR(d) ≤ yR(c∗) = yT (c∗) ≤ yT (d),

where one of the inequalities is strict because d 6= c∗. Hence

FK(Y, d) = min{yR(d), yT (d)} = yR(d) ≤ yT (c∗) = yR(c∗) = FK(Y, c∗)

holds. Now since for all d 6= c∗ the inequality FK(Y, d) ≤ FK(Y, c∗)
holds, the maximum value of FK is attained in c∗.

An illustrative example can be seen in Figure 4.
2

It may happen that FK(Y, ·) has more than one maximizer. If either
f ′(c∗) = L or f ′(c∗) = U and f ′(d) = L or f ′(d) = U holds for all of
the values d ∈ [c∗ − ε, c∗ + δ], (ε, δ > 0) then there can be infinitely
many maximizers of the function FK(Y, ·) in the interval [c∗−ε, c∗+δ].
A simple example for this case can be seen in the Figure 5, where the
function FK(Y, ·) has an infinite number of maximizer points in the
interval [c∗ − ε, c∗].

On the other hand if f ′(Y ) lies in the open set (L,U), then there
is one and only one optimal point. This is satisfied usually if L,U are
computed by outward rounded interval arithmetic on a computer. Also,
it is always possible to take [L− ε, U + ε] with ε > 0 for enclosing the
derivative.

COROLLARY 1. The kite inclusion function with its optimal center
always yields an at least as good lower bound as the Baumann centered
form, i.e. the inequality

FCF (Y, c−) ≤ FK(Y, c∗)

always holds.
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Figure 4. The optimal position c∗ of c to obtain the best lower bound of f |[a, b].

Proof. By Proposition 2 the inequality FCF (Y, c−) ≤ FK(Y, c−)
holds. We have seen that FK(Y, c) ≤ FK(Y, c∗) always holds, especially
for c = c−. 2

The information available in the current step can be used to obtain
c∗ by fixed point iterations in the interval given by the points xs and
xs′ , where xs is given in (3) and

xs′ =





U(Ua−Lb)−L(f(a)−f(b))
U(U−L) if f(a) ≤ f(b), and

L(Lb−Ua)−U(f(b)−f(a))
L(L−U) if f(a) ≥ f(b).

It is clear that c∗ is included in the interval defined by xs and xs′ ,
because the point (c∗, f(c∗)) is the crossing point of the graph of f |[a, b]
and the line determined by the points (xs, f(xs)) and (xs′ , f(xs′)).

For faster convergence an interval Newton type method on the equa-
tion

Φ(c) = αf(c) + β − c = 0 (13)

could be used. In this case the interval evaluation of f ′(c) has to be
computed too. Moreover, one can apply a quasi Newton-method on
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Figure 5. There can be many maximizers of the function FK(Y, ·).

the equation (13) with the usage of the previously computed inclusion
function of the derivative as a constant. In both methods usually one
step is enough to provide a sufficiently good approximation of c∗. How-
ever, from Proposition 2 we know that the kite algorithm always yields
an at least as good lower bound as the other two methods, thus for the
application of this new method in global optimization algorithms the
computation of c∗ is not necessary with high precision, i.e. any c ∈ Y
could do, especially one from the interval determined by xs and xs′ .

We call the procedure that computes an approximation c of c∗ and
an inclusion of FK(Y, c) the kite algorithm. As we will see later, this
procedure can be adopted into a global optimization algorithm and also
used as an accelerating tool. We call this extension the extended kite
algorithm. It is described in subsection 3.5.

For an upper bound the corresponding center c′ of the kite can be
calculated from yR′ = yT ′ , where R′ is the crossing point of the lines
y = f(a) + U(x − a) and y = f(c) + L(x − c), and T ′ is the crossing
point of the lines y = f(c) +U(x− c) and y = f(b) +L(x− b). One can
obtain the corresponding formulae:

xR′ =
f(c)− f(a) + Ua− Lc

U − L , yR′ =
Uf(c)− Lf(a) + (a− c)LU

U − L ,

xT ′ =
f(b)− f(c)− Lb+ Uc

U − L , yT ′ =
Uf(b)− Lf(c) + (c− b)LU

U − L .
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These formulae together with (6), (7), (8) and (9) give the lower and
upper bounds of the inclusion function of f(Y ), respectively. Proposi-
tion 2 claims that the kite method provides an at least as good lower
bound as the linear boundary value form and the Baumann centered
form. A similar statement holds for the upper bound FK(Y, c′). Also
Theorem 1 could be adapted to this case.

3.3. Properties of the kite inclusion function

In this subsection some properties of the kite inclusion function are
considered.

Definition 2. We call F an inclusion isotone function over X, if for
all Y,Z ∈ I(X) Y ⊆ Z implies F (Y ) ⊆ F (Z).

THEOREM 2. Let us suppose that F ′ is an isotone function and let
the inclusion function F of f be given by the kite algorithm, i.e. F (Y ) =
[FK(Y, c∗), FK(Y, c′)] for all Y ∈ I(X). Then F is an isotone function.

Proof. Let Y ⊂ Z = [a, b] and c∗Z be a maximizer of the kite on Z.
First, we have to prove that FK(Y, c) ≥ FK(Z, c∗Z) holds for any c ∈ Y .
Let F ′(Z) = [L,U ] and F ′(Y ) = [L′, U ′]. If L′ ≥ 0 then let FK(Y, c) :=
[f(Y ), f(Y )] for all c ∈ Y or if U ′ ≤ 0 then let FK(Y, c) := [f(Y ), f(Y )]
for all c ∈ Y . In both cases FK(Y, c) ≥ FK(Z, c∗Z) holds because the
values f(Y ) and f(Y ) cannot be under the lines y = f(a) + L(x − a)
and y = f(b) + U(x− b).

For the case L′ < 0 < U ′ an indirect proof is given. The idea comes
from Figure 6, let the values L and U be given, i.e. the lines y =
f(a) +L(x− a) and y = f(b) +U(x− b) are fixed. We try to construct
such a function f which contradicts the isotonicity. In Figure 6 the

c*
S

R

P

T

_

F(Z, c*)_

c

F(Y, c )
Z

Y Z

Y

Figure 6. In this picture we try to construct such a function f which does not allow
the isotonicity property of the kite.
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14 A New Inclusion Function for Optimization: Kite

dashed line signed by F (Z, c∗Z) is the lower bound of the inclusion
function given by the maximizer c∗Z of the kite on Z. We try to construct
an interval Y ⊂ Z where the center of the kite cY is such a point
(cY , f(cY )) which results in an inclusion function that contradicts the
isotonicity. It is clear, that such a point should exist only in the quad
PTSR, since only such points can produce a lower F value. However,
it is a contradiction, because the slope of the line that passes through
the points (cY , f(cY )) and (c∗Z , f(c∗Z)) is not in [L,U ]. Consequently,
there is no such a point cY which satisfies FK(cY ) < FK(c∗Z).

The inequality FK(cY ) ≤ FK(c′Z) can be proved with a similar
argument, where c′Z is a maximizer of the kite for upper bounds on Z
and cY ∈ Y . 2

Definition 3. We call the inclusion function F an α-convergent inclu-
sion function over X if for all Y ∈ I(X) w(F (Y ))−w(f(Y )) ≤ Cwα(Y )
holds, where α and C are positive constants.

LEMMA 3. If the inclusion function of the derivative satisfies a Lip-
schitz condition, then the inclusion function given by the kite algorithm
is α-convergent for at least α = 2.

Proof. From Proposition 2 we know that the kite algorithm always
yields an at least as good lower bound for the inclusion function as the
Baumann centered form. The same is true for the upper bound. It is
also known that the centered forms are quadratically convergent in the
case when F ′(X) satisfies a Lipschitz condition [11]. Consequently, the
inclusion function given by the kite algorithm is at least quadratically
convergent too. At least the same C and α values can be used for FK
as for FCF . 2

3.4. Pruning effects of the kite

In branch and bound based interval global optimization methods there
are several well-known accelerating tools – for example the midpoint
test and the monotonicity test. The aim of these tests is to delete an
as large as possible part of the search space which does not contain a
global optimizer point. In [20] a pruning technique based on slopes and
in [21] – in geometrical sense a similar one – for derivatives have been
developed. In this subsection we show a pruning technique based on
the new kite inclusion function.

LEMMA 4. Let Y = [a, b] ⊆ X be the current considered subinterval,
c∗ ∈ [a, b] be a maximizer of FK(Y, ·), and f̃ be the current guaranteed
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T. Vinkó, J.-L. Lagouanelle, and T. Csendes 15

upper bound for the global minimum value of f |[a, b]. Let us define the
following values:

p = a+
f̃ − f(a)

L
, q = c∗ +

f̃ − f(c∗)
U

,

r = c∗ +
f̃ − f(c∗)

L
, s = b+

f̃ − f(b)

U
.

If L < 0 < U , then a pruning technique based on the kite algorithm can
be used in the sense that

(a) If f̃ < min{f(a), f(b), f(c∗)} then all the global minimizer points
of Y are contained in the intervals [p, q] and [r, s].

(b) If f(b) ≤ f̃ < min{f(a), f(c∗)} then all the global minimizer
points of Y are contained in the intervals [p, q] and [r, b].

(c) If f(a) ≤ f̃ < min{f(b), f(c∗)} then all the global minimizer
points of Y are contained in the intervals [a, q] and [r, s].

(d) If f(c∗) ≤ f̃ < min{f(a), f(b)} then all the global minimizer
points of Y are contained in the interval [p, s].

(e) If max{f(b), f(c∗)} ≤ f̃ < f(a) then all the global minimizer
points of Y are contained in the interval [p, b].

(f) If max{f(a), f(c∗)} ≤ f̃ < f(b) then all the global minimizer
points of Y are contained in the interval [a, s].

_FK

f
~

a

f(x)

b
q sp r

Figure 7. Pruning effect of the kite: the deletion of the intervals [a, p), (q, r) and
(s, b] is possible (case (a) in Lemma 4).
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16 A New Inclusion Function for Optimization: Kite

(g) If max{f(a), f(b)} ≤ f̃ < f(c∗) then all the global minimizer
points of Y are contained in the intervals [a, q] and [r, b].

Proof. (a) Let z ∈ [a, b] such that f(z) = minx∈[a,b] f(x) and f̃ ≥
f(z). We have to prove that

a+
f̃ − f(a)

L
≤ z. (14)

We know that for all x ∈ [a, b] the inequality f(a) + L(x − a) ≤ f(x)
holds. If x = z, then L(z − a) ≤ f(z)− f(a) which is equivalent to

L ≤ f(z)− f(a)

z − a ≤ f̃ − f(a)

z − a , (15)

if z 6= a. If z = a then (14) is true since f̃ < f(a). From (15) since
z > a we obtain

Lz ≤ La+ f̃ − f(a)

which proves (14) because L < 0. To prove that

z ≤ c∗ +
f̃ − f(c∗)

U
(16)

we use the inequality f(c∗) + U(x − c∗) ≤ f(x) which holds for all
x ∈ [a, c∗], c∗ ∈ [a, b]. If x = z then

U ≤ f(z)− f(c∗)
z − c∗ ≤ f̃ − f(c∗)

z − c∗ ,

in the case when z 6= c∗. From this inequalty we have

Uz ≤ Uc∗ + f̃ − f(c∗),

which proves (16) because U > 0. The case z = c∗ is not possible
because f̃ < f(c∗) was supposed and f(z) ≤ f̃ .
The proof of the case x∗ ∈ [r, s] can be given with similar arguments.

(b) – (g) These cases can be proven in a similar way. 2

Note that the usage of the pruning does not need extra information,
all the values applied in the formulae of Lemma 4 have been com-
puted previously. In Section 4 the efficiency of this pruning technique
is demonstrated by several numerical tests.

Example. We demonstrate the above considerations on a simple
function. Let f(x) = x2 − x,X = [0, 0.75]. Then the global minimum
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T. Vinkó, J.-L. Lagouanelle, and T. Csendes 17

is f∗ = −0.25 for x∗ = 0.5. By automatic differentiation (but also by
hand calculation) one can obtain F ′(X) = [−1, 0.5]. Using the formulae
above we get the following lower bounds for F (X):

FCF (c−) = −0.5

FLBV F = −0.375

FK(c∗) = −0.31066,

where c∗ is approximately 0.43934. Thus the kite algorithm with the
optimal c∗ provides the best lower bound for F (X).

Using the pruning effect of the kite, the subintervals X1 = [0, 0.25)
and X2 = (0.63, 0.75] can be eliminated, only the subinterval X ′ =
[0.25, 0.63] have to be considered further.

3.5. Extended kite algorithm

This subsection describes the extended kite algorithm in detail, which
can easily be built into an interval branch-and-bound optimization al-
gorithm using at least first order information of the objective function
f . In our implementation the algorithm described in Section 1 was used.

Algorithm 2 Extended kite algorithm

Step i. Compute f(a), f(b), and F ′(X) = [L,U ].

Step ii. If L < 0 < U then using the computed values determine
c∗ (usually approximately). Then evaluate f(c∗) and compute
FK(c∗).

Step iii. If f̃ > min{F (c∗), F (a), F (b)} then update f̃ . Apply the
midpoint test with F (c∗).

Step iv. Use the kite pruning technique with the intervals to be
deleted in Lemma 4.

The extended kite algorithm can be used not only to get a better
lower bound for F , but – as we could see in the previous subsection –
for pruning and also in the midpoint test. Thus Algorithm 2 should be
inserted at Step 4 into Algorithm 1.

In this detailed algorithm Step ii may have large computational
complexity – depending on what kind of method is used for determining
c∗. For the implementation of this algorithm in a global optimization
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18 A New Inclusion Function for Optimization: Kite

method the optimal center of the kite is approximated by the mean
value of the interval given by xs′ and xs.

4. Numerical tests

This section presents numerical tests based on the above results. The
test problems are given in [3], the computations were carried out on
a dual processor Pentium-II computer (233 MHz, 256 Mbyte) under
Linux operating system. The C++ Toolbox for Verified Computing [7]
and C-XSC [10] was used as a computational environment.

In the implementation it was an important aspect that the construc-
tion of the optimal kite needs much information, thus we should not
do computations redundantly. Our considerations were the following:

− The optimal center c∗ can be well approximated as the mean value
of xs and xs′ instead of applying the interval Newton method to
compute the root of the equation (13). By this technique the com-
putational effort decreases because the intervals F (c) and F ′(c) do
not have to be computed. The center given by this method is a
good approximation of the optimal center c∗, especially when the
considered subinterval is narrow.

− The pruning step is applied only at the end of the branching iter-
ation because it moves the endpoint(s) of the current interval and
then the new function value(s) of the new endpoint(s) would have
to be computed again. It remained still to be cleared whether it is
the most efficient way of the implementation.

The next subsections discuss the numerical results for two kinds of
implementations. The first one uses only gradient information of f ,
the other one uses also second derivative information. Both algorithms
were stopped when the width of the interval given by the lower bound
of the kite inclusion and the current upper bound for f ∗ or the width
of the candidate interval was smaller than a preset ε, i.e.

w([FK , f̃ ]) ≤ ε or w(Y ) ≤ ε.

In the comparisons the standard algorithm from [7] was used, which
uses centered forms for inclusion functions of f . To measure the perfor-
mance we use the following indicator: the number of function evalua-
tions + 2×(the number of the derivative evaluations) + 3×(the number
of the second derivative evaluations). Our experiments show that this
is a correct weighting.
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For the numerical tests the total CPU time used was below one
second, thus the comparison of the computation time does not make
much sense.

4.1. First order algorithms

First the basic algorithm with the cut-off and monotonicity test was run
using centered forms and the kite algorithm with and without pruning
technique. These variants use only first order information about the
objective function. The numerical results for these variants that are
obtained with ε = 10−12 are summarized in Table I. All of the given 40
standard test problems were solved. For each test function the number
of function evaluations (F-eval), the number of derivative evaluations
(D-eval), the number of bisections (bisection) and the maximum list
length necessary (list length) are reported. These indicators are given
for all the three algorithm variants. At the end of the table the sum of
the given indicators and the relative compound indicators for the new
methods compared to that of the basic one are represented as percents.

The sum of function evaluations was 15,706 for the traditional method
and 8,416 and 11,710 for the kite algorithm with and without pruning,
meaning 46% and 26% improvement, respectively. The improvement
in the sum of the function evaluations is mainly produced by hard
problems, particularly by the last two, when the number of function
evaluations were reduced by 38% and 37%, respectively. It can also be
seen that the use of the pruning technique is beneficial.

The sum of derivative evaluations was 9,646 for the old method and
3,406 and 5,536 for the kite algorithm with and without using pruning
meaning 65% and 43% improvement, respectively.

The performance measure is 34,998 for the old method and 15,228
and 22,728 for the kite algorithm with and without pruning. This means
56% and 35% improvement. From these indicators we can conclude
that the use of the new enclosure method together with the pruning
technique is important.

The sum of the number of bisections was 3,114 for the original
method, 1,683 and 2,728 for the new procedure with and without
pruning meaning 46% and 13% improvement, respectively. This to-
gether with the efficiency measure of the function and the derivative
evaluations indicate that the pruning has an important role in the usage
of the kite enclosure method.

The sum of the maximal list lengths was 379 for the old method, 310
and 237 for the new algorithm with and without pruning, meaning 18%
and 37% improvement. On the other hand, the memory complexity was
very small.
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20 A New Inclusion Function for Optimization: Kite

Table I. Numerical results for the first order algorithms on 40 one-dimensional problems.

Prob. F-eval. D-eval. bisection list length

No. cf k+pr k cf k+pr k cf k+pr k cf k+pr k

1 84 60 93 53 25 44 25 12 21 4 5 3

2 88 77 99 55 31 46 26 15 22 5 6 5

3 98 93 100 55 39 48 25 19 23 3 5 2

4 96 95 119 59 35 56 27 17 27 4 7 4

5 109 100 141 69 45 68 33 22 33 3 3 2

6 88 69 110 55 27 52 25 13 25 3 4 3

7 79 57 95 51 25 46 23 12 22 2 2 2

8 92 80 115 59 37 56 27 18 27 2 6 2

9 94 84 118 61 37 58 28 18 28 2 4 2

10 89 76 113 57 33 54 27 16 26 2 3 2

11 83 70 101 53 29 48 24 14 23 3 2 1

12 83 68 103 53 29 50 24 14 24 2 3 2

13 91 71 111 59 33 54 27 16 26 3 4 3

14 118 95 138 77 41 66 36 20 32 2 3 2

15 107 85 132 69 33 66 32 16 32 6 13 6

16 113 107 138 73 49 70 35 24 34 8 12 8

17 109 107 128 71 47 62 33 23 30 2 6 3

18 153 105 117 99 49 56 47 24 27 4 4 3

19 95 72 93 59 31 44 27 15 21 4 4 3

20 82 52 79 53 23 38 24 11 18 1 3 1

21 83 64 79 53 29 38 25 14 18 2 2 1

22 145 125 147 93 57 68 43 28 33 4 6 3

23 161 144 167 103 63 78 47 31 38 3 5 3

24 158 136 166 103 65 76 47 32 37 3 6 3

25 155 128 192 101 59 94 47 29 46 4 6 3

26 223 110 202 145 51 98 69 25 48 4 5 3

27 179 143 220 117 69 108 55 34 53 4 6 4

28 229 122 226 149 55 110 69 27 54 4 5 3

29 215 156 209 139 67 92 63 33 45 4 5 4

30 310 212 302 203 101 148 93 50 73 4 8 4

31 88 75 99 57 33 48 26 16 23 2 3 2

32 602 251 386 395 119 188 186 59 93 8 15 8

33 345 272 401 225 131 198 107 65 98 17 18 15

34 292 216 242 189 101 102 86 50 50 8 7 5

35 88 74 87 57 33 42 26 16 20 1 2 1

36 762 559 529 383 197 212 177 98 105 14 14 9

37 352 289 291 217 117 122 101 58 60 10 13 7

38 1,026 567 530 675 253 212 201 126 105 12 14 4

39 3,965 1,519 1,409 2,329 511 564 436 255 281 109 31 19

40 4,377 1,631 3,583 2,673 597 1,856 635 298 927 97 40 77

Σ 15,706 8,416 11,710 9,646 3,406 5,536 3,114 1,683 2,728 379 310 237

54% 74% 35% 57% 54% 87% 82% 63%
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From these results we can conclude that if the derivative of the
objective function f is available, then the new algorithm using the kite
inclusion function together with pruning is much better than the old
one using only centered forms. Our numerical investigation shows that
all the standard test problems can be solved with less computational
effort.

4.2. The second order algorithm

In this subsection the numerical results for second order algorithms
with cut-off test, monotonicity test, concavity test and interval Newton
step are presented. The numerical results are demonstrated in Table II,
where the indicators are again the number of function (F-eval), deriva-
tive (D-eval), and second derivative (H-eval) evaluations, the number
of bisections (bisection) and the maximal list length (list length).

These algorithm variants are more sophisticated, use all the well-
known accelerating tools, thus we cannot expect so much improvements
as in the previous subsection, because the more powerful methods we
use, the less chance we have to improve their capabilities. In the im-
plementation after bisecting the candidate interval the natural interval
inclusion is used. After completing the monotonicity test, cut-off test
and concavity test, also a Newton step is applied. The kite inclusion
function together with its pruning procedure is used only on the subin-
terval(s) given by the Newton step. Our experience shows that only
the (d), (e) and (f) pruning steps should be used, because these steps
produce only one subinterval and this is suitable for this algorithm
variant. This order of the accelerating techniques allowed a reduced
computation effort.

For the second order algorithms the number of the function eval-
uations was 4, 029 for the original one, 3, 101 and 3, 401 for the new
method with and without pruning, which means 23% and 16% im-
provements, respectively.

The sum of derivative evaluations was 2, 747 for the old algorithm,
1, 659 and 1, 899 for the new one with and without pruning. This means
40% and 31% improvement in the efficiency, respectively.

The sum of the second derivative evaluations was 612 for the old
algorithm, 638 and 733 for the new one with and without pruning,
which means that the performance of the kite algorithm was worse
than the original method – according to this indicator. However, for
every test function the number of evaluations of second derivatives was
relatively small compared to the number of function and derivative
evaluations, so it did not corrupt the performance too much.
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Table II. Numerical results for the second order algorithms on 40 one-dimensional problems.

Prob. F-eval. D-eval. H-eval. bisection list length

No. cf k+pr k cf k+pr k cf k+pr k cf k+p k cf k+pr k

1 60 38 48 40 18 25 8 6 9 6 3 4 4 3 3

2 74 49 56 48 23 30 10 10 11 6 5 5 4 4 4

3 66 49 52 45 26 29 11 12 13 7 6 6 1 1 1

4 67 68 71 44 30 33 9 10 11 6 5 5 8 4 4

5 95 74 84 67 42 49 13 16 19 10 8 9 3 2 2

6 58 38 52 38 18 29 8 8 11 5 4 5 4 1 1

7 43 35 38 29 18 21 6 8 9 5 4 4 2 2 2

8 51 35 39 34 18 22 7 8 9 5 4 4 2 1 1

9 52 43 46 35 23 26 7 10 11 6 5 5 2 2 2

10 55 42 53 37 19 27 8 8 11 6 4 5 2 3 3

11 44 35 38 29 18 21 6 8 9 5 4 4 2 1 1

12 45 47 43 30 21 20 6 8 7 5 4 3 3 1 1

13 59 50 53 40 27 30 8 12 13 7 6 6 3 3 3

14 57 46 60 40 26 34 8 10 15 7 5 7 2 2 2

15 106 84 94 69 43 50 14 14 17 9 7 8 8 6 6

16 118 100 103 77 53 56 15 16 17 11 8 8 8 5 5

17 54 43 46 37 23 26 9 10 11 2 5 5 2 2 2

18 84 51 70 58 25 38 13 10 16 9 5 7 3 2 2

19 74 40 50 48 20 27 10 8 11 6 4 5 5 2 2

20 43 36 46 30 19 26 6 8 11 5 4 5 1 1 1

21 50 36 39 34 19 22 7 8 9 5 4 4 2 1 1

22 77 58 61 54 35 38 13 12 13 7 6 6 1 1 1

23 92 75 76 62 40 44 15 14 15 8 7 7 6 4 4

24 73 55 58 50 32 35 12 12 13 7 6 6 1 1 1

25 92 66 80 64 34 45 14 14 18 10 7 8 2 2 2

26 113 92 99 80 48 55 17 20 23 13 10 10 3 3 3

27 92 62 82 64 33 47 15 14 20 10 7 9 3 3 3

28 103 86 93 72 45 52 16 20 23 12 10 10 3 3 3

29 53 43 46 35 23 26 5 8 9 5 4 4 2 1 1

30 144 121 130 103 65 74 22 28 32 17 14 14 5 4 4

31 51 44 47 36 24 27 6 10 11 6 5 5 2 1 1

32 275 158 174 195 84 100 43 32 40 31 16 16 8 7 7

33 362 229 243 243 128 139 48 56 61 33 28 29 17 16 16

34 116 90 96 81 52 55 19 18 19 12 9 9 5 3 3

35 51 44 54 36 24 31 7 10 13 6 5 6 1 1 1

36 207 191 186 140 108 106 32 36 35 20 18 17 9 7 7

37 120 102 105 79 49 52 18 16 17 12 8 8 5 3 3

38 162 118 143 111 71 84 30 26 32 15 13 15 6 4 4

39 273 218 238 188 123 137 50 44 50 25 22 24 8 9 9

40 218 210 209 145 112 111 36 40 39 20 20 19 10 9 9

Σ 4,029 3,101 3,401 2,747 1,659 1,899 612 638 733 406 319 336 168 131 131

77% 84% 60% 69% 104% 120% 79% 83% 78% 78%
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The performance measure is 11, 359 for the traditional algorithm,
8, 333 and 9, 398 for the new one with and without pruning, which
means 27% and 17% improvement, respectively. These indicators em-
phasize again the advantage of the kite method together with its prun-
ing effect.

The sum of the number of bisections was 406 for the original method,
319 and 336 for the new procedure with and without pruning meaning
21% and 17% improvement, respectively.

The sum of the maximal list length was 168 for the old method, and
131 for both new algorithms, meaning 22% improvement.

Concluding the results we have obtained from the numerical inves-
tigations, the use of the kite inclusion function in the second order
algorithms provides a better performance. Although this improvement
is not as high as in the first order case, the usage of the new inclusion
technique is still recommended.

5. Summary

The interval function enclosure method proposed here is derived from
the centered form and the linear boundary value form. We have proved
that the kite inclusion function is at least as good as the two older
methods and there is a unique optimal case for the selection of the
parameter c. The new method can easily be implemented in a branch-
and-bound type interval global optimization algorithm. For a single
inclusion larger computation effort is needed by the kite algorithm,
thus an extended numerical study was reported on the performance. We
can conclude that a 27-56% performance improvement can be achieved
depending on what kind of information is used in the optimization
algorithm.
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