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Abstract BitTorrent is a peer-to-peer computer network protocol for sharing con-
tent in an efficient and scalable way. Modeling and analysis of the popular private
BitTorrent communities has become an active area of research. In these communities
users are strongly incentivized to contribute their resources, i.e., to share their files.
In BitTorrent terminology, users who have finished downloading files and stay online
to share these files with others in the network are called seeders. The combination of
seeders and downloaders of a file is called a swarm. In this paper we examine and
evaluate the efficiency of the resource allocation of seeders in multiple swarms. This
is formulated as an integer linear fractional programming problem. The evaluation
is done on traces representing two existing BitTorrent communities. We find that in
communities, particularly with low users-to-files ratio (which is typically the case),
there is room for improvement.

Keywords BitTorrent · File sharing system · Resource allocation ·
Integer optimization

1 Introduction

BitTorrent has enabled the emergence of communities that work as powerful con-
tent distribution systems [1,2]. In these communities, users provide the resources to
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distribute files to their peers through swarms. Peers within a swarm are divided into
two classes. Those peers who have and share the complete copy of a file are called
seeders, while peers who are downloading the file are called leechers. Note that a peer
in a community can be both seeder and leecher simultaneously in multiple swarms.
Because asymmetric Internet connections prevail among domestic users, the upload
bandwidth available in a swarm is frequently a bottleneck for the download speed.
Seeders alleviate this problem and are therefore paramount for download performance.

In this paper, we evaluate how well seeder resource allocation (to be defined later
in Sect. 2) serves downloaders in two BitTorrent communities. Each seeder currently
allocates its resources among previously downloaded files autonomously. It is not clear
whether this strategy yields desirable results in practice. We devise here an algorithm
which serves as a tool for investigating the margins for further optimization.

Considerable research and development effort has been invested in designing and
evaluating incentive mechanisms to promote seeding (e.g. [6,8,10]), but the analysis of
the allocation mechanisms at inter-swarm level has received less attention. The paper
[9] deals with the problem of channel-resource imbalance in multi-channel peer-to-
peer systems, which is similar to the problem considered in this paper, however, their
provided solution is heuristic based. The approaches proposed in the papers [3,7] are
similar to ours, but the scenarios are studied only under synthetic workloads.

We take the complementary approach of analyzing traces from two BitTorrent com-
munities to contrast normally used resource allocation mechanisms with results from
optimizing algorithms. We consider the average download performance as evalua-
tion criteria which indicates the aggregate throughput in the community. Our analy-
sis advances the hypotheses that it is possible to increase download performance in
BitTorrent communities through better seeder allocation mechanisms.

2 Problem formalization

We represent a BitTorrent community as a triplet (G, L , C) at an instant in time con-
sidering the demand in each swarm, in which swarms each user can seed and how many
swarms each user can seed. The first two aspects are represented by a directed acyclic
bipartite graph G = (T ∪U, El∪Es), where T = {t1, . . . , tm} is the set of swarms cur-
rently active in the community, U = {u1, . . . , un} is the set of users in that community,
El = {(u, t) : u ∈ U, t ∈ T and u is leeching in t}, and Es = {(u, t) : u ∈ U, t ∈ T
and u is able to seed t}. A user is able to seed in a swarm if the user has downloaded the
corresponding file in the past and has neither deleted it nor configured the BitTorrent
software to stop serving it. We denote Li = {t | (ui , t) ∈ Es} as the library of user
ui ; thus L := {L1, . . . , Ln}.

Besides G and L , we also need to represent how much users can seed. Each user ui

has a seeding capacity (hereafter capacity for short) ci , providing C := {c1, . . . , cn}.
Note that 0 < ci ≤ |Li | holds.

In this paper we investigate a resource allocation problem in which the aim is to
find how well a seeding allocation maximizes the mean leeching session throughput.
We use the proportion of leechers in swarms to approximate throughput. This met-
ric evaluates an allocation focusing on leeching sessions in a way that the swarms
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are characterized by the fixed number of downloaders and by the variable number of
seeders in them. Thus, we do not consider which user a leeching session belongs to. In
order to formalize this, we introduce further notations. Let ai j be a binary parameter
which shows if seeder ui has the corresponding file of t j in the library, i.e.,

ai j =
{

1, if t j ∈ Li ,

0, otherwise.

We define the decision variable xi j to denote whether seeder ui is seeding in swarm
t j :

xi j =
{

1, if seeder i is seeding in swarm t j ,

0, otherwise.

Moreover, λ(t j ) denotes the number of leechers in swarm t j , i.e., λ(t j ) = |{(u, t j ) ∈
El}|. Our resource allocation problem is to find

arg max
x

m∑
j=1

λ(t j )
∑n

i=1 ai j xi j

λ(t j )+∑n
i=1 ai j xi j

,

subject to :
m∑

j=1

ai j xi j = ci (i = 1, . . . , n),

xi j ∈ {0, 1} (i = 1, . . . n, j = 1, . . . m),

(1)

which is an integer linear fractional programming problem. The term
∑n

i=1 ai j xi j

gives the number of actual seeders in swarm t j . In the objective function, for each
swarm we take the number of actual seeders divided by the size of the swarm (so that
this ratio is normalized into (0, 1]) and this ratio is multiplied with the number of lee-
chers in order to weight each swarms when we calculate the global metric (summation
of metrics in each swarm). The constraints ensure that the seeders are not seeding
more than their capacities.

Our aim is to determine what is the optimal solution of Problem (1) under the typi-
cal conditions of real BitTorrent communities. The optimal solution provides us with
insights on how good the allocation established by the users of BitTorrent communities
following no central instructions is, and how far it is from a random allocation. In order
to do so, first a deterministic algorithm is introduced, which is inspired by those used
for solving maximum flow problems. Then, we present the datasets obtained from
measurements of activities in two BitTorrent communities. The last section gives the
numerical results we acquired, followed by concluding remarks.

3 A deterministic algorithm

We develop a deterministic greedy algorithm to maximize seeding allocations accord-
ing to Problem (1). It takes inspiration from the algorithms for computing the maximum
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Algorithm 1 Optimal seeder allocation algorithm
Require: BitTorrent community ((U ∪ T, Es ∪ El ), L , C)

Ensure: E ′ ⊆ Es
1: U+ ← {s0} ∪U ; E+s ← {(s0, u) | u ∈ U such that ∃t ∈ T : (u, t) ∈ Es } ∪ Es
2: ∀(s0, ui ) ∈ E+s : ξ(s0, ui )← ci
3: ∀ui ∈ U,∀t j ∈ Li : ξ(ui , t j )← 1

4: ∀(a, b) ∈ E+s : f (a, b)← 0
5: E ′ ← ∅
6: Q ← T
7: repeat

8: tmax ← arg maxt∈Q
( λ(t)(1+∑

(u,t)∈E+s f (u,t))

1+λ(t)+∑
(u,t)∈E+s f (u,t) −

λ(t)(
∑

(u,t)∈E+s f (u,t))

λ(t)+∑
(u,t)∈E+s f (u,t)

)
9: w← s0tmax path such that ∀(a, b) ∈ w : ξ(a, b)− f (a, b) > 0
10: if length(w) = 0 then
11: Q ← Q \ {tmax}
12: else
13: for all (a, b) ∈ w do
14: f (a, b)← f (a, b)+ 1
15: f (b, a)← f (b, a)− 1
16: end for
17: end if
18: until Q = ∅
19: E ′ ← {(u, t) ∈ E+s | f (u, t) = 1}

flow in a graph [4,5]. In this section a description of the algorithm is given followed
by a proof that it finds the optimal allocation for Problem (1).

3.1 Description of the algorithm

Our algorithm takes a BitTorrent community at an instant time as input, transfers it into
a flow network graph, on which iteratively selects swarms and increases the number
of seeders in them until it reaches the maximum individual values of the sum of the
objective function of Problem (1) in all the swarms. That provides the optimal solution
of Problem (1), where the feasibility is ensured by the capacity constraints in the flow
network.

In the following, we refer to the lines of Algorithm 1 for the formal description.
The input of our algorithm is the triplet (G, L , C), which is transfered into a flow
network graph G+ = (T ∪ U+, E+, ξ). To this end we keep all the existing edges
in the graph G, but extending the edges with introducing the source vertex s0 which
is then connected to all the seeders in the community (line 1). We define the capacity
of the edges in the following way: for the edges between the source vertex s0 and the
seeders the capacity equals to the seeding capacity, while for the other vertices the
capacity equals to 1 (line 2–3). This definition of capacities enforces the constraint in
the allocation defined in Problem (1). The initial flow f through graph G+ is set to 0
as it is given in line 4. Note that for the flow function f : E+ → R, the property of
conservation holds: ∀u ∈ U : f (s0, u) =∑

(u,ti )∈E f (u, ti ).
The algorithm starts processing every swarm in a set Q, initialized with the entire

set of swarms T (line 6). The main loop (starting at line 7) finds augmenting paths
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w between the source vertex s0 and all swarms in Q, and keeps running while there
are swarms to be processed in Q. For each iteration, a swarm tmax is chosen such that
the biggest increment in the objective value is obtained if one more seeder is added to
that swarm (line 8). A path w from s0 to tmax is then constructed (line 9). If there is
no such path (i.e., the length of w is zero, as checked in line 10), then tmax is removed
from the set Q and the loop condition is evaluated; otherwise, the flow f is updated
through the augmenting path w, see lines 13–16. The final allocation is represented
by E ′ ⊆ Es , for which f (u, t) = 1 for all (u, t) ∈ E+s .

3.2 Optimality and complexity of the algorithm

The objective function of Problem (1) is a sum of non-negative numbers (which we
call sharing ratios in the following). Thus, this sum is maximized if its components are
maximized. Moreover, similarly to the flow-conservation in the classical maximum
flow algorithm, when the algorithm increases the sharing ratio in the selected swarm
tmax it does not decrease it in any other swarms.

We show now that if there is no more path w(s0, tmax) available for a selected
swarm tmax, then the swarm tmax reaches its maximum sharing ratio value. To give
the proof by transposition, suppose that we did not reach the maximum sharing ratio
in swarm tmax. This means that it is possible to put at least one more seeder u into
this swarm. Thus, there is at least one seeder whose capacity is not saturated, i.e.,
∃u j : f (s0, u j ) < c j . Therefore, a direct link exists from seeder u j to the swarm tmax,
which provides a w(s0, tmax) path, namely the one consists of the edges (s0, u j ) and
(u j , tmax). Note that the algorithm does not check a swarm t anymore if there is no
w(s0, t) path to it. Hence, we conclude that when there are no more swarms left in the
set Q, then Algorithm 1 reaches the optimum value for Problem (1).

Regarding the complexity of the algorithm we can see that the main iteration loop
has to be done |L| times, the Step 8 can be done in O(Es log Es) time, whereas the
path finding in Step 9 takes O((n + m)2) time.

4 Datasets

This section presents the datasets that inform our analysis and the methodology to
extract the necessary information from these datasets.

We use data from two BitTorrent communities: Bitsoup and Filelist. These two com-
munities require users to obtain accounts to participate in the community. In this way,
they can track user behavior in all swarms over time. Both communities also employ
sharing ratio enforcement to promote seeding. This mechanism prevents users who
have not uploaded a minimum proportion of the data volume they downloaded from
joining new swarms.

Both traces were collected by periodically crawling Web pages in these communi-
ties that report statistics. These include, for each user in each swarm, the user name,
current uptime and amounts uploaded and downloaded during this uptime. For Bit-
soup, these pages were crawled hourly for 64 days; for Filelist, crawling happened
on average every six minutes for 93 days. The main characteristics of the resulting
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Table 1 Characteristics of the datasets with 95 % CI for averages

Trace Swarms Users Sessions

Total Avg. active Total Avg. active

Filelist 3,236 512.2 ± 10.2 91,745 32,829.4 ± 672.8

Bitsoup 13,741 6,869.6 ± 30.8 84,007 76,370.3 ± 1,135.5

datasets are summarized in Table 1. We notice that the two communities are signifi-
cantly different in every aspect. There are more users in Filelist, but much less swarms,
and the average number of active swarms, as well as the average number of leeching
sessions, are also much lower compared to Bitsoup.

4.1 Estimating user capacities and libraries

We consider the capacity of a user at time τ to be the number of swarms the user is
seeding in at τ .

To estimate the contents of the libraries of users, we consider two scenarios that
bound the worst- and best-case configurations from the allocation perspective. The
worst-case scenario, named conservative, considers that a file is in the library of a user
at time τ if that user was observed seeding this file both in the past, [τ − wp, τ ], and
future, [τ, τ+w f ]. The values wp and w f define windows of observation. The second
scenario, named optimistic, identifies the best-case configuration. In this scenario, a
file is in the library of a user at time τ if that user is observed seeding it at least once
in the past, [τ − wp, τ ]. Maintaining these windows constant allows us to perform
unbiased comparisons of possible allocations at different times and in different traces.

4.2 Sampling community states

To analyze the seeding allocation in a community, we look at a sample of snapshots of
that community taken at random times. All snapshot times τi must allow for τi −wp

and τi +w f to be contained in the sampled trace. The larger the time windows wp and
w f are, the better the library estimations, but the less space for choosing snapshots
and hence the more potential sampling bias.

We address this problem by devising a compromise by setting wp = w f to the
largest value such that we still have a time period of at least one week for choos-
ing snapshots in both communities. We consider that randomly sampling times in a
one week interval accounts for most of the significant fluctuation of BitTorrent users’
behavior. As a result, we have wp = w f = 28 days.

5 Numerical results

This section presents the numerical results obtained on the datasets which were intro-
duced in Sect. 4. From both communities we selected 10 instances and created the
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Table 2 Evaluation of the Filelist scenarios

Allocation Observed Conservative Optimistic

Random Optimal Random Optimal

f01 3,973.58 3,937.14 4,021.00 2,908.88 4,243.77

f02 3,777.38 3,764.27 3,838.49 3,141.6 4,137.08

f03 3,845.39 3,803.09 3,893.66 2,685.02 4,111.53

f04 4,507.20 4,453.40 4,576.90 3,180.16 4,830.27

f05 4,754.60 4,712.29 4,846.77 3,355.07 5,097.60

f06 4,556.87 4,517.72 4,622.38 3,373.36 4,857.51

f07 2,871.20 2,859.01 2,921.44 2,322.03 3,104.50

f08 4,441.21 4,398.17 4,511.96 2,780.37 4,724.06

f09 4,539.42 4,505.15 4,596.92 2,824.92 4,825.59

f10 4,375.45 4,336.19 4,433.42 2,617.55 4,634.68

Objective function values of Problem (1) are shown

conservative and the optimistic scenarios. The allocations recorded in the commu-
nity traces serve as the baseline for possible improvements. We call this baseline the
observed allocation and compare it to random allocation, which represents a com-
pletely uninformed algorithm, and to the optimal allocation given by our Algorithm 1.

The results obtained for the Filelist community are presented in Table 2. We observe
first that the conservative scenario gives space for tiny improvements only, both for
random and optimized allocations. This is due to the fact that in this case the variety
of possible allocations is very small. On the other hand, considering the optimistic
scenario, the possible improvements are much larger. The observed allocations are
already 20–45 % better than those of random allocations. The optimal allocations give
about 7 % improvements compared to the observed. We conclude that in both sce-
narios the current allocations are already giving close to optimal allocations, which is
mainly due to the fact of large peers-to-swarms ratio.

Albeit the possible improvement is little in terms of the objective value of Prob-
lem (1), the actual allocation can be still diverse in different scenarios. To investigate
this, Fig. 1 depicts histograms of the swarms’ seeder-to-leecher ratio (SL R) for a
selected Filelist instance for the observed, conservative and optimistic scenarios. The
optimized conservative scenario results in a very similar seeder distribution to that of
the observed. On the other hand, the optimized optimistic scenario provides much bet-
ter distribution: it eliminates most of the very high over-seeding situations as well as
decreases the under-seeding ones (the number of swarms with SL R ≤ 1 got decreased
from 34 to 12) and establishes good ratios between 4 and 12.

Regarding the Bitsoup community, the results are more divergent, as we can see
in Table 3. Considering the conservative scenario, even random allocation can some-
times give better results than the current ones. Though these are only minor improve-
ments, if any. Comparing the current allocations to the optimal ones, we obtain about
7 % improvements. Turning to the optimistic scenario, which enables larger search
space, the current allocation gives about 20 % improvement to the random selection.

123



T. Vinkó et al.

0 10 20 30 40
0

20

40

60

80

seeder−to−leecher ratio

fr
eq

ue
nc

y

0 10 20 30 40
0

20

40

60

80

seeder−to−leecher ratio

fr
eq

ue
nc

y

0 10 20 30 40
0

20

40

60

80

seeder−to−leecher ratio

fr
eq

ue
nc

y

Fig. 1 Histograms of seeder-to-leecher ratios in a FileList instance (f04): observed (left), conservative
optimized (middle), and optimistic optimized (right)

Table 3 Evaluation of the Bitsoup scenarios

Allocation Observed Conservative Optimistic

Random Optimal Random Optimal

b01 7,244.46 7,328.22 7,758.15 6,112.89 8,579.42

b02 6,881.75 6,939.45 7,350.61 5,806.37 8,251.39

b03 8,770.55 8,742.70 9,224.74 7,346.63 10,197.70

b04 6,943.62 6,975.18 7,360.97 5,896.56 8,258.42

b05 7,800.13 7,717.13 8,099.10 6,592.94 9,020.58

b06 6,730.72 6,764.55 7,137.31 5,625.16 7,985.79

b07 6,935.80 6,887.35 7,240.27 5,719.05 8,103.33

b08 6,121.71 6,191.36 6,557.21 5,126.19 7,375.58

b09 7,046.89 7,091.39 7,460.58 5,916.87 8,379.00

b10 6,819.41 6,930.89 7,315.75 5,813.62 8,203.85

Objective function values of Problem (1) are shown

The optimal allocation provides even better allocations, having further 20 % improve-
ments compared to the current ones. Given that the associated graph of Bitsoup (as it
was defined in Sect. 2) is sparser (compared to that of Filelist), giving larger variation
of possible allocations, the optimized allocations lead to significantly better average
leeching session throughput

Further analysis of the allocations in a particular Bitsoup instance is given in Fig. 2.
The histograms of SLR in the observed, conservative optimized and optimistic opti-
mized scenarios are shown. We can observe that, first of all, in the observed allocation,
swarms with SL R ≤ 1 are the most frequent ones, followed by decreasing frequen-
cies of SL R values. For the conservative scenario, the optimized allocation already
shows a bit different pattern. Here the swarms with SL R ≤ 1 have a lower frequency
compared to those up to and including 5. From that value on, we obtain a pattern
similar to the observed allocation. Finally, for the optimistic optimized scenario, the
histogram gives the evidence of a completely different resource allocation structure.
SL R values below 3 are much less frequent, and again, we hardly obtain highly over-
seeded swarms. We conclude that the optimal allocation in both cases (conservative
and optimistic) leads not only to better throughput, thus faster average download time,
but also more balanced allocation of seeders.
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Fig. 2 Histograms of seeder-to-leecher ratios in a BitSoup instance (b01): observed (left), conservative
optimized (middle), and optimistic optimized (right)

6 Conclusion

The seeders in BitTorrent file sharing communities can decide in which swarms they
want to share their resources. We have shown that optimizing the seeder resource
allocation across multiple swarms is equivalent to an integer optimization problem.
We evaluated the seeder resource allocation in two communities and compared them
to both optimized and random allocations in worst-case and best-case scenarios. Sum-
marizing our findings we conclude that in typical communities, where the number of
users is relatively low compared to the number of shared files, it is possible to improve
the average throughput as well as decrease the number of under- and over-seeded
swarms at the same time.
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