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Abstract This paper gives an exact mathematical programming model and algorithm
of the max-min fairness bandwidth allocation problem in multi-swarm peer-to-peer
content sharing community. The proposed iterative method involves solution of LP
and MILP problems of large scale. Based on real-world data traces, numerical exper-
iments demonstrate that the new algorithm is computationally faster than an earlier
developed one for larger problem sizes, and it provides better numerical stability.
Moreover, even if its execution is stopped after some initial steps it still grants feasi-
ble solution with good approximation to max-min fairness.
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1 Introduction

BitTorrent is one of the most popular content-sharing protocols used by millions of
Internet users [16]. It is based on peer-to-peer (P2P) technology which, in contrast
with centralized solutions, consists of nodes (peers) acting both as servers and clients
at the same time. This decentralized approach can lead to high efficiency and extreme
scalability. A BitTorrent network is basically a collection ofswarms. A swarm is com-
prised of content and two types of users, namely seeders and leechers. Thecontent
is the data file to be shared by the participating users.Seedersare those users who
have the complete copy of the content, being online and willing to share.Leechersare
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those users who are actively downloading the content. By definition, the BitTorrent
protocol splits the content into smaller pieces. During thedownload the leechers are
obtaining the content piece-by-piece, following Rarest First piece selection policy.
Once a piece has been downloaded by a leecher, it can upload that to other leechers,
hence becoming an uploader.

An important detail of the BitTorrent protocol [5] is the built-in sharing incentive
mechanism, realized via the choking algorithm, which is a variant of tit-for-tat [6].
This mechanism ensures that while a peerp is in leeching mode it uploads pieces of
the shared content to a set of leeching peers in reciprocation to other pieces they pro-
vide for downloading top. While this scheme works very well during the leeching
phase, there is no (widely spread) incentive mechanism in BitTorrent which works
for the seeders. Thus, in principle, once the whole content has been downloaded, the
peer can simply leave the system without further consequences. Among the possible
solutions to this problem, one of the most popular is the so-called private BitTorrent
community [25]. Although it breaks the decentralized principle of the P2P system
with a dedicated server, the idea is that each user has to register with an individual
account and follow some prescribed rules, e.g., sharing ratio enforcement. Theshar-
ing ratio of a user is defined as the amount of data uploaded divided by the amount
of data downloaded. These values are then stored by the server (also calledtracker)
and the users who do not follow the rules, e.g., their sharingratio is below a certain
threshold for long time, are subject to access restrictionsor even exclusion from the
community. According to measurement studies the private BitTorrent communities
provide higher download speed and better availability compared to the open BitTor-
rent networks [17].

Most of the BitTorrent clients allow users to participate inmultiple swarms at
the same time, both as seeders and leechers. This fact motivates to investigate the
inter-swarm resource allocation problem (RAP) in BitTorrent, which is, in general,
a mixed-integer nonlinear optimization problem [4]. A particular instance of RAP
is the max-min fair bandwidth allocation problem. In this optimization problem, the
goal, essentially, is to find a bandwidth allocation which provides as many users as
possible with enough download speed. Although, BitTorrentwas originally not de-
signed for P2P video-streaming, many researchers have investigated and proposed
modifications of the protocol (see, e.g., in [18,21,26]). Inthis context, the max-min
fair bandwidth allocation targets maximizing the number ofusers receiving sufficient
download speed for streaming, leading to the best possible quality of experience for
users. Moreover, it also enables the usage of multiple streaming rates of varying qual-
ities together with the minimization of the number of users experiencing low-quality
streams. This problem has been studied in [4], where an intricate iterative algorithm
was given. In this paper we revisit this interesting probleminstance and aim at giv-
ing an exact mathematical programming formalism, and investigating its numerical
properties by means of computational tests using real-world measurement data.

The rest of the paper is structured as follows. In Section 2 anoverview of related
works is given. Section 3 summarizes the definitions and notations of the graph model
we use. Then, in Section 4, after giving the formal definitionof the max-min fair
bandwidth allocation, the proposed algorithmic approach is detailed, including math-
ematical analysis, re-formalism and proof of the correctness. Section 5 contains the
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numerical experiments, including comparison with the previously proposed method
for the same problem.

2 Related works

Although the concept of fairness and in particular the max-min fairness have been
studied in the literature of computer networks in general (e.g., in [2,13,14,20]), one
finds considerably less papers in the context of peer-to-peer networks, and in partic-
ular in BitTorrent-like systems.

Max-min fairness in P2P networks.Ma et al. [15] develop a resource bidding mech-
anism which provides max-min fairness. An important resultof the paper is that the
mechanism is incentive based, so two competing nodes with the same value of bid-
ding would not obtain the same amount of resource if their actual contribution to the
P2P community differs. Our approach does not involve directly the already mentioned
built-in incentive mechanism of BitTorrent (tit-for-tat)because that is the piece-level
part of the protocol. We assume, though, that the participating peers are following
the rules dictated by the private BitTorrent community. It is worth mentioning here
that according to the earlier results in [4], standard BitTorrent provides suboptimal
bandwidth allocation compared to max-min fairness. Yanet al. [24] present a the-
oretic framework of optimal resource allocation and admission control for P2P net-
works. The proposed approach utilizes publicly observableand verifiable informa-
tion to achieve optimal resource allocation. Our paper differs in many ways. Firstly,
we focus on bandwidth allocation, which is the most important resource in content-
sharing systems. Secondly, our model works at the inter-swarm level, which is the
most complex level due to the behaviour of users, i.e., most of the users are partici-
pating in uploading and downloading multiple contents at the same time. Moreover,
our experiments are done on real-world measurements at large scale.

BitTorrent-like systems.Fanet al. [8] show that there is a fundamental trade-off be-
tween keeping fairness and providing good download rate in BitTorrent-like systems.
Measuring fairness is done using the so-called fairness index [14] which can express
how equal a given assignment is, where the assignment was thepeers’ sharing ratio,
i.e., the uploading amount divided by the download amount ofeach peer. The paper
deals with the max-min fair allocation as rate assignment strategy. It considers such
a max-min model in which theoverall downloading speed of peers are taken into
account. Similar approach was taken in the paper of Eger & Killat [7]. Our model
gives solution to the problem of optimizingindividually the downloading sessions
of peers. This means, essentially, that we take into accountmore details motived
by measurement facts. The problem of channel-resource imbalance in multi-channel
P2P systems, which corresponds to the performance optimization of live streaming, is
considered by Wuet al. [22]. Our work definitely fits into the same context of multi-
channel P2P live streaming. While the provided solution in [22] is heuristic based,
we give an exact mathematical model based on theoretical analysis. The paper of Wu
et al. [23] gives a distributed algorithm to tune the P2P live videosystem towards the
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optimal fairness while still maintaining the targeted universal streaming rate. Our pa-
per differs in the underlying model. They consider a dynamicP2P system with video
streaming servers, leading to a nonlinear optimization problem. We analyse a static
system without central component and more importantly, theflow network model we
use allows the usage of efficient linear programming techniques.

3 Notation

For modeling the state of a BitTorrent community at a certaininstant, we use the
graph-theoretical model introduced in [4], which can be summarized as it follows.
A BitTorrent community consists of a setI of users and a setT of torrents. Note
that technically speaking there is a difference between torrent (a metafile describing
the details of the file subject to download) and swarm (collection of leechers and
seeders of the file); we can use these two terms interchangeably. Each useri ∈ I has
upload bandwidthµi and download bandwidthδi. The flow network representation of
a BitTorrent community isG = ({U,L,D} , E, f, c), which is a directed, bipartite,
weighted graph, where

U = { ui | i ∈I} : theupload nodesof G, whereui represents the upload (seeding
or leeching) potential of useri;

D = { di | i ∈I} : thedownload nodesofG, wheredi represents the download (leech-
ing) potential of useri;

L = { lti | i ∈ I, t ∈ T} : the leeching nodesof G, where the presence oflti , called
leeching session, denotes that useri leeches actually torrentt;

E: the set of edgesE = EU ∪ ED, whereEU =
⋃

i,j,t(ui, l
t
j) is the set ofupload

edges, andED =
⋃

j,t(l
t
j , dj) is the set ofdownload edges;

c : U ∪ L ∪D → N: the capacity functionrepresents the bandwidth constraints of
the peers:

c(ui) = µi, c(di) = δi, c(l
t
i) = ∞;

f : E → R
+: theflow functionrepresents the bandwidth allocation on the edges sat-

isfying the flow conservation property:
∑

ui∈U

f(ui, l
t
j) = f(ltj , dj) (∀ltj ∈ L),

as well as thecapacity constraints:
∑

t,j

f(ui, l
t
j) ≤ µi ∀(ui, l

t
j) ∈ EU ,

∑

t

f(ltj , dj) ≤ δj ∀(ltj , dj) ∈ ED.

Figure 1 contains a small example for the bipartite graph representation of a snap-
shot of a BitTorrent network with two torrents and three users. The rectangles rep-
resent two different torrent files. There are two active leeching sessions for torrent
t2. The second user downloads the second file from the third user, and the third user



Modeling max-min fair bandwidth allocation 5

Fig. 1 Bipartite graph of a two-torrent BitTorrent network. Although the graph model has three types of
nodes, strictly speaking the BitTorrent community graphs arebipartite.

downloads the first file from the first user and the second file from the first and the
second users. Note that every leeching node corresponds to exactly one download
edge.

4 Max-min fair bandwidth allocation

4.1 Problem definition

Using the flow network model from Section 3, a bandwidth allocation ismax-min
fair if the flow valuef(ltj , dj) on a download edge(ltj , dj) can only be increased by

decreasing the flow valuef(lt
′

j′ , dj′) on another download edge(lt
′

j′ , dj′) for which

f(lt
′

j′ , dj′) < f(ltj , dj).
A max-min fair allocation assures that the highest possibledownloading speed is

provided to each user, so that they perceive the best possible quality of experience.
Remark that a leecher can have multiple leeching sessions representing multiple file
downloads at the same time. The problem formulation we are dealing with in this
work requests the max-min fairness forall download edges. As it was already stated
in [4], the problem is formulated on continuous and convex set, hence the max-min
fair allocation uniquely exists [2,19].

4.2 Algorithm outline

Our algorithm is an adapted version of the general Max-Min Programming Algo-
rithm [19], as it computes the max-min fair weights of the download edges with an
iterative manner, by fixing the coordinates with the smallest unfixed weight in every
iteration. In the subsequent description, sets are denotedby capital letters, the deci-
sion variables of the optimization problems by small letters and parameters (and fixed
values) by Greek letters. The following steps build up the algorithm:

1. Initialization. Let F := ∅, k := 1, E1 := ED, and∀(ltj , dj) ∈ ED : ℓtj := 0.

The setF contains the identifiers of the actually fixed flows,k is the iterator. After the
last iteration,ℓtj contains the optimal flow values for every download edge(ltj , dj) ∈
ED.
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2. Lower bound computation for the flows. Solve the following linear program-
ming (LP) problem, denoted byMM0:

max f,

s.t.f(ltj , dj) ≥ f ∀(ltj , dj) ∈ ED.

Save the minimal flow value.Let φ := f .

Note thatMM0 is the same problem, as published as a detail of the MaxMin algo-
rithm of Capot̆a et al. [4]. Its optimal solution is calculated only once to achievea
good lower bound for the flows in Step 3. By definition,∀(ui, l

t
j), (l

t
j , dj) ∈ E :

f(ui, l
t
j), f(l

t
j , dj) ∈ R

+, andfk ∈ R
+ at every presence.

3. LP solving. Solve the following LP problem, denoted bymMM(1)
k :

max fk +
∑

(lt
j
,dj)∈Ek

f(ltj , dj) +
∑

(lt
j
,dj)∈(ED\Ek)

ℓtj ,

s.t.f(ltj , dj) ≥ fk ∀(ltj , dj) ∈ Ek,

fk ≥ φ.

Save the LP optimum.Let σk :=
∑

(lt
j
,dj)∈Ek

f(ltj , dj) +
∑

(lt
j
,dj)∈(ED\Ek)

ℓtj ,

andφk := fk.

The LP problemmMM(1)
k combines the maximum flow and the max-min fair objec-

tive. It computes the maximum throughput of the network, denoted byσk, restricted
by the fulfillment of the max-min fairness property. As it will be shown in Lemma 2,
this amount of data transfer is guaranteed in every iteration of the proposed algo-
rithm. The max-min fair allocation, which still guaranteesthe maximum throughput
σk, will be computed in the next step. The aim of this step is to computeσk, φk, and
to offer a good initial (feasible) solution for the following MINLP of special type.

4. MINLP solving. Solve the following mixed-integer bilinear programming prob-
lem, denoted bymMM(2)

k :

max
∑

(lt
j
,dj)∈Ek

xt
j ,

s.t.
∑

(lt
j
,dj)∈Ek

f(ltj , dj) x
t
j + φk ·

∑

(lt
j
,dj)∈Ek

(1− xt
j) +

∑

(lt
j
,dj)∈(ED\Ek)

ℓtj = σk,

f(ltj , dj) ≥ φk ∀(ltj , dj) ∈ Ek,

f(ltj , dj) > φk xt
j ∀(ltj , dj) ∈ Ek,

wherext
j ∈ {0, 1}.
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The bilinear MINLP problemmMM(2)
k guarantees that the max-min flow valueφk

will be fixed for the least possible download edges in every iteration. In fact, this is
a combinatorial optimization problem. The strict inequality constraint sets the binary
xt
j variable to zero iff(ltj , dj) cannot be increased aboveφk in later iterations, so

f(ltj , dj) should be fixed toφk only if xt
j = 0. Lemma 4 of Subsection 4.3 warrants

at least one feasible solution for this problem.
In order to solvemMM(2)

k efficiently, it will be reformulated using the McCormick
envelopes [12]. This results in an equivalent mixed-integer linear programming (MILP)
problem, in which the bilinear terms are substituted by new continuous variables

ptj := f(ltj , dj) · x
t
j ,

where∀(ltj , dj) ∈ Ek : ptj ∈ R
+. Furthermore, the reformulation involves four

additional constraints for every new variableptj :

ptj ≤ f(ltj , dj) ∀(ltj , dj) ∈ Ek,

ptj ≤ δj · x
t
j ∀(ltj , dj) ∈ Ek,

ptj ≥ f(ltj , dj)− δj · (1− xt
j) ∀(ltj , dj) ∈ Ek,

ptj ≥ 0 ∀(ltj , dj) ∈ Ek.

Although, the dimension of the problem is increased, an exact Branch and Bound
solver can be applied [3] to find the globally optimal solution of the resulting MILP.
We will refer to this problem as the McCormick reformulationof mMM(2)

k .

5. Fixing. Find the binding constraints forφk, and fix the flow values of the adequate
download edges. In other words, collect the download edges,where the optimal
flow is equal toφk to a setΦk, add the elements ofΦk to F , and subtract them
fromEk. Formally,

Φk :=
{

(ltj , dj) ∈ Ek | xt
j = 0

}

,

∀(ltj , dj) ∈ Ek for whichxt
j = 0 : ℓtj := φk,

F := F ∪ Φk, Ek+1 := Ek \ Φk.

6. Stopping criteria. If F = ED, then stop. Otherwise,k := k + 1 and go back to
Step 3 (new iteration).

4.3 Correctness

In the following it is proved that the proposed algorithm, called mMaxMin, conveys
the max-min fair bandwidth allocation.

Denote the optimal objective function value inmMM(1)
k as follows:

Fk := φk + σk.

Lemma 1 Every feasible solution ofmMM(2)
k−1 can be mapped to a feasible solution

of mMM(1)
k for k > 1.
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Proof Let fk := φk−1 and

f
(1)
k (ltj , dj) := f

(2)
k−1(l

t
j , dj) ∀(ltj , dj) ∈ Ek,

after the fixing step ofmMaxMin, wheref (y)
k (ltj , dj) denotes the flow valuesf(ltj , dj)

in a feasible solution ofmMM(y)
k . ⊓⊔

The mapping of the optimal solution ofmMM(2)
k−1 will be referred to asthe initial

solution of mMM(1)
k .

Lemma 2 For every iterationk of mMaxMin

σk = σ

holds, whereσ denotes a constant, the maximum throughput of the network such that

∀(ltj , dj) ∈ ED : f(ltj , dj) ≥ φ.

Proof We apply mathematical induction. There are no fixed flow values in the first
step, soσ1 = σ. Now, let us assume thatσk−1 = σ. The sum term of the objective
function, after Step 3 ofmMaxMincan be written as

σk = c1φ1 + · · ·+ ck−1φk−1 + ckφk +Rk,

whereφ1, . . . , φk−1 are the fixed flow values (the optimal values offk in mMM(1)
1 , . . . ,

mMM(1)
k−1),φk is the minimal non-fixed flow value,ci is the multiplicity ofφi (i.e. how

many downloading edges has flow value equal toφi), andRk is the residual (the sum
of the non-fixed flow values minus the ones which will be fixed inthe actual itera-
tion). Similarly,

σk−1 = c1φ1 + · · ·+ ck−1φk−1 +Rk−1,

and
σk−1 − σk = Rk−1 −Rk − ckφk.

If Rk−1 − Rk would be greater thanckφk, that would mean that the LP solver
reduced some non-fixed flow values of the initial solution, defined in the proof of
Lemma 1, without redistributing that flow to other edges inmMM(1)

k . That would be
a suboptimal solution, and the solver would not terminate with such a result. Thus,
Rk−1 −Rk ≤ ckφk holds, and accordingly,σk−1 ≤ σk.

On the other hand,σk ≤ σ for any iterationk, as the upload capacities does not
change in the network in between the iterations of the algorithm. By assumption,
σk−1 = σ, thusσk = σ holds for everyk. ⊓⊔

Lemma 3 Fk > Fk−1, for all iteration k > 1 of mMaxMin.

Proof In the initial solution ofmMM(1)
k , all f(ltj , dj) ≤ φk−1 flow values are fixed,

because of Step 5 ofmMaxMin. Thusφk > φk−1, andσk = σk−1 = σ holds due to
Lemma 2. ⊓⊔
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Corollary 1 |Φk| > 0 in everyk iteration ofmMaxMin.

Lemma 4 The optimal solution ofmMM(1)
k can be mapped to a feasible solution of

mMM(2)
k .

Proof Let
f
(2)
k (ltj , dj) := f

(1)
k (ltj , dj),

and

xt
j :=

{

1 if f (1)
k (ltj , dj) > φk and(ltj , dj) ∈ Ek,

0 if f (1)
k (ltj , dj) = φk and(ltj , dj) ∈ Ek.

⊓⊔

The mapping of the optimal solution ofmMM(1)
k will be referred to asthe initial

solution of mMM(2)
k .

Lemma 5 The initial solution of the McCormick reformulation ofmMM(2)
k can be

constructed from the initial solution ofmMM(2)
k .

Proof The initial solution ofmMM(2)
k is extended with initial values for thep vari-

ables:

ptj :=

{

f
(1)
k (ltj , dj) if xt

j = 1 and(ltj , dj) ∈ Ek,

0 if xt
j = 0 and(ltj , dj) ∈ Ek.

⊓⊔

Theorem 1 mMaxMin terminates in finite iterations, and guarantees the max-min
fairness property for every download edge.

Proof The cardinality of setF is increasing in every iteration, provided by Lemma 3
and Corollary 1. AsED is a finite set, the algorithm will terminate in finite iterations.

Due to Lemma 1 and Lemma 4–5, at least one feasible solution exists formMM(1)
k

and mMM(2)
k in any iterationk of mMaxMin. After the last iteration the setℓ :=

{ℓtj | (ltj , dj) ∈ ED} contains the fixed flow values for the download edges. The
boundaries of the flow values constrain also the elements ofℓ, thus 0 ≤ ℓtj ≤
δj , ∀(l

t
j , dj) ∈ ED. Therefore,ℓ is a compact set. All the constraints for the flow

values are linear, henceℓ is a convex set. Radunović and Le Boudec [19] proved that
there exists a max-min fair bandwidth allocation for convexand compact sets. Let us
denote the max-min fair bandwidth allocation for the download edges of the given
graph byω:

ω := {ωt
j | (l

t
j , dj) ∈ ED andω is max-min fair}.

We prove by contradiction thatmMaxMinguarantees the max-min fairness prop-
erty for every download edge. Supposeℓ 6= ω. Then there exists the smallest index
k such that∃j∃t :

(

ℓtj is fixed in iterationk andℓtj 6= ωt
j

)

. It means thatxt
j = 0 and

f(ltj , dj) 6= ωt
j in the optimal solution ofmMM(2)

k . Remark thatf(ltj , dj) ≤ ωt
j , asω

would not be max-min fair otherwise. The construction ofmMM(2)
k guarantees that
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(

xt
j = 0 ∧ f(ltj , dj) = φk

)

∨
(

xt
j = 1 ∧ f(ltj , dj) > φk

)

holds for all(ltj , dj) ∈ ED,
and if f(ltj , dj) could be set to a greater value thanφk, thenxt

j will be set to1. So
xt
j = 0 induces thatf(ltj , dj) = φk. On the other hand,φk is the max-min non-fixed

flow value in iterationk from the solution ofmMM(1)
k . This contradicts the supposi-

tion thatℓtj 6= ωt
j . ⊓⊔

4.4 MaxMin-r

Some observations from Subsection 4.3 was made explicit in the implemented ver-
sion of the algorithm. Furthermore, we have inserted a presolve step, detailed here-
inafter. The resulting iterative algorithm, calledMaxMin-r, is summarized in Algo-
rithm 4.1.MaxMin-r was implemented in the AMPL modeling language [10] and
some comparative tests were made to investigate its numerical properties – the de-
tails of these tests are given in the next section.

The main differences compared tomMaxMinare the following:

1. Step 2 was introduced, based on Lemma 2, to determine the constantσ. The LP
problemMMMaxFlow is solved only in the first iteration, and the revisedmMM(1)

k

usesσ in the first constraint.
2. In mMM(1)

k , the lower bound “≥ (1 − ǫ) · σ” is used instead of a strict equation
constraint “= σ” in regard to possible numerical errors.

3. Step 5 ofMaxMin-r introduces a presolve phase, based on a standard LP presolve
technique, which is implemented also in AMPL [9,11]. Duringthe testing phase
of earlier implementation of the algorithm we noticed that the presolving mech-
anism of AMPL was able to reduce the number of real variables of the MILP
problem. Closer investigation revealed that the set

Ekf
:=

{

(ltj , dj) ∈ Ek |
c(dj)−

∑

(lt
j
,dj)∈(ED\Ek)

ℓtj

deg−k (dj)
= φk

}

,

wheredeg−k (dj) denotes the number of non-fixed incoming edges ofdj , contains
download edges, where the corresponding flow valuesf(ltj , dj) can be fixed by
Step 7 ofMaxMin-r.
If any flow can be fixed in the presolve phase, MILP solving is skipped. The
reason is experimental: for our test cases, in a significant proportion of the itera-
tions, all the necessary fixations were found in this presolve phase. However, in
certain cases there are some downloading edges on which the optimal max-min
flow value isφk and they do not become elements of the setEkf

. If this situation
occurs then the value ofφk cannot be improved in Step 4 of the next iteration,
i.e. φk+1 = φk. Hence, the setEkf

is empty, so in order to find downloading
edges on which the flow value must be fixed, the algorithm solves the MILP
problem.
Due to this modification, in worst-case, the algorithm takes2 · |ED| iterations. As
it can be seen in Section 5, much less iterations are usually enough in practice.
Figure 2 contains a small illustration for dimension reduction without solving the
MILP. User 5 downloads five torrents at the same time, and the maximal flow
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Fig. 2 Example of possible dimension reduction without MILP solving

for downloading the first two torrents was set to 1 and 2 in earlier iterations of
MaxMin-r. Assume thatφk = 3. Sof(lt5, d5) ≥ 3 for t = 3, 4, 5. The residual
download capacity ofd5 in this iteration is12 − (1 + 2) = 9, so 3 is also the
maximum value for these flow values. Therefore, fort = 3, 4, 5 the flow values
f(lt5, d5) can all be set to3 without solving the MILP.

4. Step 6 ofMaxMin-r uses the McCormick reformulation ofmMM(2)
k .

5 Numerical results

For the numerical tests the post-processed BitTorrent measurement traces of Andrade
et al. [1] were used. The same dataset was investigated in [4] in which theMM al-
gorithm was proposed and empirically tested. The post-processed dataset contains
actual statuses of a BitTorrent community called BitSoup.org using the graph format
discussed in Section 3. The graphs are implemented in AMPL data format. For our
current purposes we selected one graphG randomly and based on that four instances
(G500, G1000, G1500 andG2000) were derived containing 500, 1000, 1500 and 2000
torrents, respectively. More precisely, these subgraphs contain the correspondingU,L
andD nodes ofG and their edges. The characteristics of the subgraphs are shown in
Table 1. Note thatG1500 contains less edges thanG1000, however, it contains much
more nodes, and more edges representing leeching sessions.

Table 1 Characteristics of the graphs used for the numerical tests

Graph |U ∪D ∪ L| |E| |ED|

G500 6 984 43 410 1 411
G1000 14 702 272 231 2 721
G1500 18 333 269 165 3 536
G2000 23 670 524 054 7 326
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We compare the AMPL implementations ofMM andMaxMin-r. The results were
obtained using MOSEK version 7.0.0.106 for the underlying LPs and Gurobi version
5.6.3 for the underlying MILPs.

Figure 3 showsfMaxMin-r(e) − fMM (e), the difference between the optimal flow
value ofMaxMin-r and the optimal flow value ofMM for download edgee ∈ ED

in the 1000-torrents instance (related data series are similar for all examples). The
values are ordered ascending by the optimal solution ofMM. Thus positive numbers
on the left side of the figure and negative ones on the right side means thatMaxMin-r
provides better flow values thanMM for some “weak” downloader at the expense of a
few “stronger” users. In other words, the new algorithm results in “fairer” allocation
thanMM despite of the similar precision and tolerance settings. How is that possible?
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 f M
M

(e
)

Fig. 3 Effect of the numerical approximation forG1000

Unfortunately, computer implementation turns the continuous optimization prob-
lem into a discrete problem, because of the floating point representation of the real
variables. The precision and tolerance settings of the numeric solver definitely influ-
ence the quality of the produced allocation. Because of that, earlier theoretical results
(optimal max-min fair allocation is unique in the continuous case [2]) could not be
applied in the numerical tests. Remark that working with symbolic representation
would solve this issue, however, for real-world problem instances, even numerical
methods are quite slow. On the other hand, the cumulative distribution of the output
flow values ofMM andMaxMin-r are identical for the same problems, and more than
85% of the download edges get identical resources from the two algorithm. Therefore
we regard the two solutions equally good hereinafter.

Figure 4 summarizes two aspects of the behaviour ofMM andMaxMin-r for the
above introduced 500-torrents, 1000-torrents, 1500-torrents, and 2000-torrents prob-
lems. The first column shows the total absolute deviance fromthe optimal solution:

abs(k) =
∑

(lt
j
,dj)∈ED

∣

∣fk(l
t
j , dj)− fopt(l

t
j , dj)

∣

∣ ,

wherefk(ltj , dj) is the flow value on the download edge(ltj , dj) in iterationk, and
fopt(l

t
j , dj) is the optimal flow value on the same edge, i.e., the result of the last

iteration of the relevant algorithm.
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Fig. 5 Running times ofMM (dash-dotted lines), andMaxMin-r (solid lines) for the test cases

The second column shows the proportion of the download edges, for which the
relative deviance of the allocated flow values from the optimal solution is less than
five percent:

rel(k) =

∑

(lt
j
,dj)∈ED

r
(

k, (ltj , dj)
)

|ED|
,

where

r
(

k, (ltj , dj)
)

:=







1 if
|fk(ltj ,dj)−fopt(l

t
j ,dj)|

fopt(ltj ,dj)
> 0.05,

0 otherwise.

The running times for the same tests are pictured in Figure 5.
It seems that the exact formulation inMaxMin-r produces very good solutions

from the first iteration. Comparing total absolute deviance, the output of the new
algorithm after the first iteration is the same quality as theoutput ofMM after85%
of its iterations. The second column of Figure 4 shows thatMaxMin-r sets the flow
values close to the optimum on much more edges thanMM does. For example, 46%
of the download edges inG2000 get almost optimal allocated flow values after the
first iteration, compared to the 2.4% near-optimal flow givenby MM. Furthermore,
the first iteration ofMaxMin-r took 46 seconds forG2000 compared to the more than
eight-hour running time for the first910 iterations ofMM.
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Figure 5 shows, thatMaxMin-r produces shorter running times thanMM for
the bigger test cases, however, it is still impossible to runreal-time calculations
for complete BitTorrent networks with this technique. Therefore we suggest to stop
MaxMin-r after the very first iteration to obtain a good feasible approximation for the
max-min fair allocation of large problem instances in reasonable time.

6 Conclusions

It was shown by Capotă et al. [4] that using the standard BitTorrent protocol’s band-
width allocation, the average performance of a BitTorrent community is suboptimal
in terms of max-min fairness. This fairness measure corresponds to the case of video-
streaming service – an emerging application of P2P networks. Our motivation here
was to give an exact mathematical programming formulation and algorithm which
provides details about the particular instance of this interesting optimization prob-
lem.

The model involves the McCormick reformulation of the related MINLP. Our
observations show that this reformulation, together with presolve techniques, helps
the Gurobi solver to achieve shorter running times, andMaxMin-r can be faster than
the earlier proposedMM algorithm on larger problem instances. Moreover, the results
from the first iterations ofMaxMin-r could be used as a very good approximation for
the max-min fair allocation. This approximation, which is afeasible solution, can be
achieved in fraction of the time of the adequate precession of MM.

There are two possible directions for further work. Due to the unavoidable in-
volvement of solving several large scale MILPs to obtain exact solution to the prob-
lem including millions of nodes and edges, it is desired to develop very quick heuris-
tics. Furthermore, as the application field of the max-min fairness problem we inves-
tigated lies in peer-to-peer systems, a distributed version of the exact algorithm or
even distributed heuristics would be preferred. We believethat the results achieved in
this paper provide useful insights towards these goals.
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17. Meulpolder, M., D’Acunto, L., Capotă, M., Wojciechowski, M., Pouwelse, J.A., Epema, D.H., Sips,
H.J.: Public and private Bittorrent communities: a measurementstudy. In: Proceedings of the 9th
International Workshop on Peer-to-Peer Systems (IPTPS) (2010)

18. Mol, J.J.D., Bakker, A., Pouwelse, J., Epema, D., Sips H.:The design and deployment of a Bittor-
rent live video streaming solution. In: Proceedings of the 11th IEEE International Symposium on
Multimedia, pp. 342–349 (2009)

19. Radunovíc, B., Le Boudec, J.Y.: A unified framework for max-min and min-max fairness with appli-
cations. IEEE/ACM Transactions on Networking15(5), 1073–1083 (2007)

20. Tschorsch, F., Scheuermann, B.: Tor is unfair – and what todo about it. In: The Proceedings of the
IEEE 36th Conference on Local Computer Networks (LCN), 2011,pp. 432–440 (2011)

21. Vlavianos A, Iliofotou M, Faloutsos M.: BiToS: Enhancing BitTorrent for supporting streaming ap-
plications. In: Proceedings of the 25th IEEE INFOCOM, pp. 1–6 (2006)

22. Wu, D., Liang, C., Liu, Y., Ross, K.: View-upload decoupling: A redesign of multi-channel p2p video
systems. In: Proceedings of the IEEE INFOCOM 2009, pp. 2726 – 2730 (2009)

23. Wu, D., Liang, Y., He, J., Hei, X.: Balancing performance and fairness in p2p live video systems.
IEEE Transactions on Circuits and Systems for Video Technology 23(6), 1029–1039 (2013)

24. Yan, Yonghe and El-Atawy, Adel and Al-Shaer, Ehab, Ranking-based optimal resource allocation in
peer-to-peer networks. In Proceedings of the 26th IEEE INFOCOM, pp. 1100–1108 (2007)

25. Zhang, C., Dhungel, P., Wu, D., Liu, Z., Ross, K.: Bittorrent darknets. In: Proceedings of the IEEE
INFOCOM 2010, pp. 1–9 (2010)

26. Zhang, X, Liu, J, Li, B, Yum, T.S.: CoolStreaming/DONet: a data-driven overlay network for peer-to-
peer live media streaming. In: Proceedings of the IEEE INFOCOM2005, pp. 2102–2111 (2005)



Modeling max-min fair bandwidth allocation 17

Algorithm 4.1 MaxMin-r
1. Lower bound computation for the flows.SolveMM0:

max f,

s.t.f(ltj , dj) ≥ f ∀(ltj , dj) ∈ ED.

Save the minimal flow value.Let φ := f .
2. Maximal throughput computation. Solve the following LP problem, denoted byMMMaxFlow:

max
∑

(lt
j
,dj)∈ED

f(ltj , dj),

s.t.f(ltj , dj) ≥ φ ∀(ltj , dj) ∈ ED.

Save the LP optimum.Let σ :=
∑

(lt
j
,dj)∈ED

f(ltj , dj).

3. Initialization. LetF := ∅, k := 1, E1 := ED , ∀(ltj , dj) ∈ ED : ℓtj := 0, φ0 = 0.

4. LP solving. Solve the revised version ofmMM(1)
k

:

max fk,

s.t.
∑

(lt
j
,dj)∈Ek

f(ltj , dj) +
∑

(lt
j
,dj)∈(ED\Ek)

ℓtj ≥ (1− ǫ) · σ

f(ltj , dj) ≥ fk ∀(ltj , dj) ∈ Ek,

fk ≥ φ,

Save the LP optimum.Let φk := fk.
5. Presolve.

Ekf
:=







(ltj , dj) ∈ Ek |
c(dj)−

∑

(lt
j
,dj)∈(ED\Ek)

ℓtj

deg−
k
(dj)

= φk







,

xt
j := 0, ∀(ltj , dj) ∈ Ekf

.

If |Ekf
| 6= 0, go to Step 7.

6. MILP solving. Solve the McCormick reformulation ofmMM(2)
k

:

max
∑

(lt
j
,dj)∈Ek

xt
j ,

s.t.
∑

(lt
j
,dj)∈Ek

ptj + φk

∑

(lt
j
,dj)∈Ek

(1− xt
j) +

∑

(lt
j
,dj)∈(ED\Ek)

ℓtj ≥ (1− ǫ) · σ,

f(ltj , dj) ≥ φk ∀(ltj , dj) ∈ Ek,

f(ltj , dj) > φk xt
j ∀(ltj , dj) ∈ Ek,

min
(

δj xt
j , f(l

t
j , dj)

)

≥ ptj ∀(ltj , dj) ∈ Ek,

max
(

0, f(ltj , dj)− δj (1− xt
j)
)

≤ ptj ∀(ltj , dj) ∈ Ek,

wherext
j ∈ {0, 1} andptj = f(ltj , dj) x

t
j .

7. Fixing. Find the binding constraints forφk, and fix the flow values of the adequate download edges:

Φk :=
{

(ltj , dj) ∈ Ek | xt
j = 0

}

,

ℓtj := φk, ∀(l
t
j , dj) ∈ Ek wherext

j = 0,

F := F ∪ Φk, Ek+1 := Ek \ Φk.

8. Stopping criteria. If F = ED , then stop. Otherwise,k := k + 1 and go back to Step 4.


