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Abstract This paper gives an exact mathematical programming modiedlgiorithm
of the max-min fairness bandwidth allocation problem in tirsllvarm peer-to-peer
content sharing community. The proposed iterative methedives solution of LP
and MILP problems of large scale. Based on real-world datzes, numerical exper-
iments demonstrate that the new algorithm is computatiprfaster than an earlier
developed one for larger problem sizes, and it providesbetimerical stability.
Moreover, even if its execution is stopped after some insti@ps it still grants feasi-
ble solution with good approximation to max-min fairness.
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1 Introduction

BitTorrent is one of the most popular content-sharing poke used by millions of
Internet users [16]. It is based on peer-to-peer (P2P) t#oby which, in contrast
with centralized solutions, consists of nodes (peershgdioth as servers and clients
at the same time. This decentralized approach can leadhelfigiency and extreme
scalability. A BitTorrent network is basically a colleatiof swarms A swarm is com-
prised of content and two types of users, namely seederseactidrs. Theontent
is the data file to be shared by the participating ussesedersare those users who
have the complete copy of the content, being online andngilio sharelLeechersre
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those users who are actively downloading the content. Byidiefi, the BitTorrent
protocol splits the content into smaller pieces. Duringdbe/nload the leechers are
obtaining the content piece-by-piece, following RaresstHpiece selection policy.
Once a piece has been downloaded by a leecher, it can uplati thther leechers,
hence becoming an uploader.

An important detail of the BitTorrent protocol [5] is the htin sharing incentive
mechanism, realized via the choking algorithm, which is @dave of tit-for-tat [6].
This mechanism ensures that while a peés in leeching mode it uploads pieces of
the shared content to a set of leeching peers in recipraocttiother pieces they pro-
vide for downloading tg. While this scheme works very well during the leeching
phase, there is no (widely spread) incentive mechanism tifoBent which works
for the seeders. Thus, in principle, once the whole contastideen downloaded, the
peer can simply leave the system without further conseaqgeimong the possible
solutions to this problem, one of the most popular is thealted private BitTorrent
community [25]. Although it breaks the decentralized pipte of the P2P system
with a dedicated server, the idea is that each user has tsteegiith an individual
account and follow some prescribed rules, e.g., sharig eaforcement. Thehar-
ing ratio of a user is defined as the amount of data uploaded dividedebgrttount
of data downloaded. These values are then stored by ther false calledracker)
and the users who do not follow the rules, e.g., their shamatig is below a certain
threshold for long time, are subject to access restrictmresen exclusion from the
community. According to measurement studies the privat€oBient communities
provide higher download speed and better availability camag to the open BitTor-
rent networks [17].

Most of the BitTorrent clients allow users to participatenmltiple swarms at
the same time, both as seeders and leechers. This fact taetiwainvestigate the
inter-swarm resource allocation problem (RAP) in BitTotrevhich is, in general,
a mixed-integer nonlinear optimization problem [4]. A peutar instance of RAP
is the max-min fair bandwidth allocation problem. In thigiopzation problem, the
goal, essentially, is to find a bandwidth allocation whicbyades as many users as
possible with enough download speed. Although, BitTorreas originally not de-
signed for P2P video-streaming, many researchers havstigated and proposed
modifications of the protocol (see, e.g., in [18,21,26])tHis context, the max-min
fair bandwidth allocation targets maximizing the numbeusérs receiving sufficient
download speed for streaming, leading to the best possitakty of experience for
users. Moreover, it also enables the usage of multiplersiregrates of varying qual-
ities together with the minimization of the number of usexgegiencing low-quality
streams. This problem has been studied in [4], where arcatériiterative algorithm
was given. In this paper we revisit this interesting problestance and aim at giv-
ing an exact mathematical programming formalism, and tnyasng its numerical
properties by means of computational tests using realdvodasurement data.

The rest of the paper is structured as follows. In Section @vanview of related
works is given. Section 3 summarizes the definitions andiooisof the graph model
we use. Then, in Section 4, after giving the formal definitafrthe max-min fair
bandwidth allocation, the proposed algorithmic approadtetailed, including math-
ematical analysis, re-formalism and proof of the correstn&ection 5 contains the
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numerical experiments, including comparison with the fmesly proposed method
for the same problem.

2 Related works

Although the concept of fairness and in particular the max-fairness have been
studied in the literature of computer networks in general.(én [2,13, 14,20]), one
finds considerably less papers in the context of peer-toipetevorks, and in partic-
ular in BitTorrent-like systems.

Max-min fairness in P2P network$/a et al.[15] develop a resource bidding mech-
anism which provides max-min fairness. An important restithe paper is that the
mechanism is incentive based, so two competing nodes watsdame value of bid-
ding would not obtain the same amount of resource if theiraatontribution to the
P2P community differs. Our approach does not involve diye¢ke already mentioned
built-in incentive mechanism of BitTorrent (tit-for-tatpcause that is the piece-level
part of the protocol. We assume, though, that the particiggieers are following
the rules dictated by the private BitTorrent communitysliorth mentioning here
that according to the earlier results in [4], standard Bitdot provides suboptimal
bandwidth allocation compared to max-min fairness. ¥aml. [24] present a the-
oretic framework of optimal resource allocation and admoissontrol for P2P net-
works. The proposed approach utilizes publicly observable verifiable informa-
tion to achieve optimal resource allocation. Our papekedifin many ways. Firstly,
we focus on bandwidth allocation, which is the most impdrtasource in content-
sharing systems. Secondly, our model works at the interraviavel, which is the
most complex level due to the behaviour of users, i.e., miodteousers are partici-
pating in uploading and downloading multiple contents atshme time. Moreover,
our experiments are done on real-world measurements atdaaje.

BitTorrent-like systemskanet al.[8] show that there is a fundamental trade-off be-
tween keeping fairness and providing good download ratetifoBent-like systems.
Measuring fairness is done using the so-called fairnesifit4] which can express
how equal a given assignment is, where the assignment wae#rs’ sharing ratio,
i.e., the uploading amount divided by the download amoumaah peer. The paper
deals with the max-min fair allocation as rate assignmeategy. It considers such
a max-min model in which theverall downloading speed of peers are taken into
account. Similar approach was taken in the paper of Eger &Kf¥]. Our model
gives solution to the problem of optimizirigdividually the downloading sessions
of peers. This means, essentially, that we take into accmamé details motived
by measurement facts. The problem of channel-resourcdamixin multi-channel
P2P systems, which corresponds to the performance optionzaf live streaming, is
considered by Wt al.[22]. Our work definitely fits into the same context of multi-
channel P2P live streaming. While the provided solution @ [ heuristic based,
we give an exact mathematical model based on theoretichissmarhe paper of Wu
et al.[23] gives a distributed algorithm to tune the P2P live vidgstem towards the
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optimal fairness while still maintaining the targeted wrsal streaming rate. Our pa-
per differs in the underlying model. They consider a dynalr#€ system with video
streaming servers, leading to a nonlinear optimizatiorblern. \We analyse a static
system without central component and more importantlyfldve network model we
use allows the usage of efficient linear programming teakesq

3 Notation

For modeling the state of a BitTorrent community at a certagiant, we use the
graph-theoretical model introduced in [4], which can be siarized as it follows.
A BitTorrent community consists of a sétof users and a séf' of torrents. Note
that technically speaking there is a difference betweermbdi(a metafile describing
the details of the file subject to download) and swarm (ctibecof leechers and
seeders of the file); we can use these two terms interchalyg&aloh usei € I has
upload bandwidth; and download bandwidtf}. The flow network representation of
a BitTorrent community i€ = ({U, L, D}, E, f, ¢), which is a directed, bipartite,
weighted graph, where

U={u;|i€l}: theupload node®f G, whereu, represents the upload (seeding
or leeching) potential of user

D ={d,|i €I} : thedownload nodesf G, whered; represents the download (leech-
ing) potential of usef;

L={ll|iel, teT}: theleeching nodesf G, where the presence ¢f, called
leeching sessiqrdenotes that usérdeeches actually torremt

E: the set of edge® = FEy U Ep, whereEy = Ui,j,t(%l;) is the set ofupload
edgesandEp = {J; (%, d;) is the set otlownload edges

c:UULUD — N: the capacity functiorrepresents the bandwidth constraints of
the peers:

c(u;) = pi, c(d;) = 6;, c(It) = oo;

f: E — RT: theflow functionrepresents the bandwidth allocation on the edges sat-
isfying the flow conservation property:

D fluslh) = f(I5,dy) (VI € L),

as well as theapacity constraints

> Fluill) < pi V(ui, 1) € Ev,
tj

> fhdy) <65 V(ll,d;) € Ep.
t

Figure 1 contains a small example for the bipartite graphasgmtation of a snap-
shot of a BitTorrent network with two torrents and three gsdihe rectangles rep-
resent two different torrent files. There are two active léeg sessions for torrent
to. The second user downloads the second file from the third asdrthe third user
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Fig. 1 Bipartite graph of a two-torrent BitTorrent network. Altingh the graph model has three types of
nodes, strictly speaking the BitTorrent community graphdépartite.

downloads the first file from the first user and the second filenfthe first and the
second users. Note that every leeching node correspondattlyeone download
edge.

4 Max-min fair bandwidth allocation
4.1 Problem definition

Using the flow network model from Section 3, a bandwidth atam is max-min
fair if the flow valuef(l;?, d;) on a download edg(al§, d;) can only be increased by

decreasing the flow valuﬁ(l;?//’dj/) on another download edg{é}*i, d;:) for which
FUL dy) < f(I5, dy).

A max-min fair allocation assures that the highest possiblenloading speed is
provided to each user, so that they perceive the best pessillity of experience.
Remark that a leecher can have multiple leeching sessipnssenting multiple file
downloads at the same time. The problem formulation we aadirdewith in this
work requests the max-min fairness fdr download edges. As it was already stated
in [4], the problem is formulated on continuous and convexlsence the max-min
fair allocation uniquely exists [2,19].

4.2 Algorithm outline

Our algorithm is an adapted version of the general Max-MiogPamming Algo-
rithm [19], as it computes the max-min fair weights of the dévad edges with an
iterative manner, by fixing the coordinates with the smalledixed weight in every
iteration. In the subsequent description, sets are dermtedpital letters, the deci-
sion variables of the optimization problems by small lettnd parameters (and fixed
values) by Greek letters. The following steps build up thpathm:

1. Initialization. LetF :=0,k:=1, E; := Ep, andV(l§,dj) € Ep: €§. = 0.

The setF’ contains the identifiers of the actually fixed flowss the iterator. After the
last iteration/; contains the optimal flow values for every download edged;) <
Ep.
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2. Lower bound computation for the flows. Solve the following linear program-
ming (LP) problem, denoted iyMy:

max f,

stf(ldy) = f v(l5.d;) € Ep.
Save the minimal flow valueLet ¢ := f.

Note thatMMy is the same problem, as published as a detail of the MaxMio-alg
rithm of Capoa et al. [4]. Its optimal solution is calculated only once to achieve
good lower bound for the flows in Step 3. By definitior(u;, l%), (I},d;) € E :
flus, 15), f(I%,d;) € RY, andf), € RT at every presence.

3. LP solving. Solve the following LP problem, denoted b}d\/lM,i”:

max fr+ Y flhd)+ > L

(l;,dj)EEk (lsqu)G(ED\Ek)
S.t.f(l;,dj) > V(l;,dj) € Ey,
k> ¢.

Save the LP optimum.Letoy. := 32 i 4 ycp, fs,dy) + 221t dy)e(Bp\By) 2,
and¢k = fk-

The LP problen’mMM,(j) combines the maximum flow and the max-min fair objec-
tive. It computes the maximum throughput of the network,aded byo,, restricted
by the fulfillment of the max-min fairness property. As it ke shown in Lemma 2,
this amount of data transfer is guaranteed in every itaratiothe proposed algo-
rithm. The max-min fair allocation, which still guaranteébe maximum throughput
o, Will be computed in the next step. The aim of this step is tmpotesy., ¢x, and

to offer a good initial (feasible) solution for the followgrMINLP of special type.

4. MINLP solving. Solve the following mixed-integer bilinear programminglps
lem, denoted bynMM?:

t
max g xj,

(I5.d5)€ By
st > flhd)atte > A-2h) + > li=oay,
(U%,d;)E LN, (1t,d;)EEy, (11d5) € (Bp\ By
F5,dj) > ¢ V(it,d;) € Ey,
f(l;,dj) > ¢k x§ V(ljtv,dj) c B,

wherez’; € {0, 1}.
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The bilinear MINLP problemnMMf) guarantees that the max-min flow valig
will be fixed for the least possible download edges in evessaiion. In fact, this is
a combinatorial optimization problem. The strict ineqtyationstraint sets the binary
xé variable to zero iff(l}, d;) cannot be increased aboyg in later iterations, so
f(l%, d;) should be fixed t@ only if 2% = 0. Lemma 4 of Subsection 4.3 warrants
at least one feasible solution for this problem.

In order to soIvemMMf) efficiently, it will be reformulated using the McCormick
envelopes [12]. This results in an equivalent mixed-intéigear programming (MILP)
problem, in which the bilinear terms are substituted by nemtiouous variables

pﬁ = f(l;7dj) ' I§-7

whereV(l%,d;) € Ei : p5 € RT. Furthermore, the reformulation involves four
additional constraints for every new variabi’]e

Pl < f(15,dy) Y(l5,d;) € Ey,
p§ < z§ V(l;,dj) € F,
Pl > f(lh,dy) =65 - (1 —af) (15, d;) € B,
p; >0 V(i d;) € By,

Although, the dimension of the problem is increased, anteBsanch and Bound
solver can be applied [3] to find the globally optimal solatiaf the resulting MILP.
We will refer to this problem as the McCormick reformulatiohmMMff).

5. Fixing. Find the binding constraints far,, and fix the flow values of the adequate
download edges. In other words, collect the download edgleste the optimal
flow is equal tog, to a setd,, add the elements @, to I, and subtract them
from E.. Formally,

P, = {(It,d;) € Ey, | 2t =0},
V(1,d;) € By forwhicha) =0 : ¢ := ¢y,
FI:FUq)k, Ek+1 :Ek\dsk

6. Stopping criteria. If F' = Ep, then stop. Otherwisé; := k£ + 1 and go back to
Step 3 (new iteration).

4.3 Correctness

In the following it is proved that the proposed algorithmll@hmMaxMin conveys
the max-min fair bandwidth allocation.
Denote the optimal objective function valuerm\/IM,(cl) as follows:

Fi = gkarO'k.

Lemma 1 Every feasible solution cvﬁMMgf_)l can be mapped to a feasible solution
of mMM{" for k > 1.
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Proof Let f := ¢5_1 and
) = 2 W dy) (I dy) € By,

after the fixing step olnMaxMin Wheref,iy) (1%, d;) denotes the flow value&(lt, d;)
in a feasible solution oMM, O

The mapping of the optimal solution l:vfMM;(f_)1 will be referred to ashe initial
solution of MMM (",

Lemma 2 For every iterationk of mMaxMin
o =0
holds, wherer denotes a constant, the maximum throughput of the netwotkthat
Wit d;) € Fp : (I d;) > 6.

Proof We apply mathematical induction. There are no fixed flow \&inethe first
step, sar; = o. Now, let us assume that,_; = o. The sum term of the objective
function, after Step 3 ahMaxMincan be written as

ok =C1¢1 + -+ C_1Pk—1 + ckdr + Ry,

whereg, . .., ¢,_1 are the fixed flow values (the optimal valuesfgfn mMMgl), ce
mMMSZl), ¢y, is the minimal non-fixed flow value; is the multiplicity of; (i.e. how
many downloading edges has flow value equal;jo and Ry, is the residual (the sum
of the non-fixed flow values minus the ones which will be fixedha actual itera-
tion). Similarly,

Op—1=cC1¢1 + - +cp_10k-1 + Rp_1,

and
Ok—1 — 0 = Rk_1 — Rk — Ck¢k-

If R,_1 — R; would be greater than, ¢, that would mean that the LP solver
reduced some non-fixed flow values of the initial solutiorfjrekal in the proof of
Lemma 1, without redistributing that flow to other edgesriMM](:). That would be
a suboptimal solution, and the solver would not terminatih wuch a result. Thus,
Ri_1 — Ry < ¢ ¢ holds, and accordingly;, 1 < oy.

On the other handy, < o for any iterationk, as the upload capacities does not
change in the network in between the iterations of the algari By assumption,
ox—1 = o, thuso, = o holds for everyk. |

Lemma 3 F; > Fi_1, forall iteration &£ > 1 of mMaxMin.

Proof In the initial solution omeMg), all f(l§, d;) < ¢r—1 flow values are fixed,
because of Step 5 ofiMaxMin Thuse¢, > ¢,_1, andoy, = o1 = o holds due to
Lemma 2. O
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Corollary 1 |®| > 0 in everyk iteration ofmMaxMin.

Lemma 4 The optimal solution omMMS) can be mapped to a feasible solution of
mMM (%,

Proof Let
) = RV ),
and
o U RV W) > o and(l),d)) € By,
70 i £V dy) = ¢ and(iL, d)) € By,

O

The mapping of the optimal solution nfMMg) will be referred to ashe initial
solution of mMM,(f).

Lemma 5 The initial solution of the McCormick reformulation m‘MM,(f) can be
constructed from the initial solution uﬁMMf).

Proof The initial solution omeM,(f) is extended with initial values for the vari-
ables:
pj = g

0 if 2t = 0and(lt,d;) € E.

. ?ﬁ@m)Wﬁ:mm@@mEh
J

O

Theorem 1 mMaxMin terminates in finite iterations, and guarantees the max-min
fairness property for every download edge.

Proof The cardinality of sef’ is increasing in every iteration, provided by Lemma 3
and Corollary 1. A, is a finite set, the algorithm will terminate in finite iteiatis.

Due to Lemma 1 and Lemma 4-5, at least one feasible squtietsé&rmMMg)

and mMM,(f) in any iterationk of mMaxMin After the last iteration the set :=
{¢ | (I*,d;) € Ep} contains the fixed flow values for the download edges. The
boundaries of the flow values constrain also the elements dius0 < ¢4 <
dj, V(I%,d;) € Ep. Therefore/ is a compact set. All the constraints for the flow
values are linear, hendas a convex set. Radund@vand Le Boudec [19] proved that
there exists a max-min fair bandwidth allocation for conaexd compact sets. Let us
denote the max-min fair bandwidth allocation for the dovanledges of the given
graph byw:

w = {w} | (I},d;) € Ep andw is max-min fai.

We prove by contradiction thahMaxMinguarantees the max-min fairness prop-
erty for every download edge. Suppadse: w. Then there exists the smallest index
k such thaBj3t : (¢ is fixed in iterationk and/} # w?). It means that, = 0 and

f(,dj) # Wt in the optimal solution oanMff). Remark thaff (I, d;) < w, asw
would not be max-min fair otherwise. The constructiorrrm‘/lM,f) guarantees that
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(zf =0 A f(IL,dj) = ¢r) V (2t = LA f(IE,d;) > 1) holds for all(i, d;) € Ep,
and iff(lé, d;) could be set to a greater value thap, thenx§ will be set tol. So
! = 0 induces thayf (I%, d;) = ¢x. On the other handy;, is the max-min non-fixed

flow value in iterationk from the solution oanM,(el). This contradicts the supposi-
tion that?’; # w?. |

4.4 MaxMin-r

Some observations from Subsection 4.3 was made expliditeininiplemented ver-
sion of the algorithm. Furthermore, we have inserted a [wessiep, detailed here-
inafter. The resulting iterative algorithm, call®&bxMin-r, is summarized in Algo-
rithm 4.1. MaxMin-r was implemented in the AMPL modeling language [10] and
some comparative tests were made to investigate its nuahgrioperties — the de-
tails of these tests are given in the next section.

The main differences comparedrtiMaxMinare the following:

1. Step 2 was introduced, based on Lemma 2, to determine tistagdo. The LP

problemMMyaxriow IS SOlved only in the first iteration, and the revised/lM,il)
usess in the first constraint.

2. InmMM", the lower bound (1 — ¢) - 0" is used instead of a strict equation
constraint “= ¢” in regard to possible numerical errors.

3. Step 5 oMaxMin-rintroduces a presolve phase, based on a standard LP presolve
technique, which is implemented also in AMPL [9, 11]. Durthg testing phase
of earlier implementation of the algorithm we noticed tha presolving mech-
anism of AMPL was able to reduce the number of real variabfethe MILP
problem. Closer investigation revealed that the set

E. = (Zt d;) € By, | c(dj) _Z(l§fdj)€(ED\Ek) Z; =4
SRR B 7 Y

wheredeg, (d;) denotes the number of non-fixed incoming edges;ptontains
download edges, where the corresponding flow val(@s d;) can be fixed by
Step 7 oMaxMin-r.

If any flow can be fixed in the presolve phase, MILP solving igpgkd. The
reason is experimental: for our test cases, in a significangqstion of the itera-
tions, all the necessary fixations were found in this presplvase. However, in
certain cases there are some downloading edges on whiclptingab max-min
flow value is¢;. and they do not become elements of thelsgt. If this situation
occurs then the value af, cannot be improved in Step 4 of the next iteration,
i.e. ¢x+1 = ¢r. Hence, the seflyy, is empty, so in order to find downloading
edges on which the flow value must be fixed, the algorithm sotiie MILP
problem.

Due to this modification, in worst-case, the algorithm taked’ | iterations. As
it can be seen in Section 5, much less iterations are usuadygh in practice.
Figure 2 contains a small illustration for dimension reduttvithout solving the
MILP. User 5 downloads five torrents at the same time, and taeimal flow
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Fig. 2 Example of possible dimension reduction without MILP solving

for downloading the first two torrents was set to 1 and 2 inieaiterations of
MaxMin-r. Assume that, = 3. So f(lt,ds) > 3 for t = 3,4, 5. The residual
download capacity ofl5 in this iteration is12 — (1 + 2) = 9, so 3 is also the
maximum value for these flow values. Therefore, ffiee 3,4, 5 the flow values
f(it,ds) can all be set t8 without solving the MILP.

4. Step 6 oMaxMin-r uses the McCormick reformulation ofMMﬁf).

5 Numerical results

For the numerical tests the post-processed BitTorrentuneant traces of Andrade
et al. [1] were used. The same dataset was investigated in [4] iclwthieMM al-
gorithm was proposed and empirically tested. The postgased dataset contains
actual statuses of a BitTorrent community called BitSorgpusing the graph format
discussed in Section 3. The graphs are implemented in AMP4 fdamat. For our
current purposes we selected one gréptandomly and based on that four instances
(G500, G1000, G1500 andGogoo) Were derived containing 500, 1000, 1500 and 2000
torrents, respectively. More precisely, these subgraphtam the correspondirig, L
andD nodes ofG and their edges. The characteristics of the subgraphs ansh
Table 1. Note thati;5¢¢ contains less edges théh oo, however, it contains much
more nodes, and more edges representing leeching sessions.

Table 1 Characteristics of the graphs used for the numerical tests

Graph |[UUDU L] |E| |Ep|

Gs00 6984 43410 1411
G1000 14702 272231 2721
G1500 18333 269165 3536

G2000 23670 524054 7326
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We compare the AMPL implementationsidM andMaxMin-r. The results were
obtained using MOSEK version 7.0.0.106 for the underlyifg land Gurobi version
5.6.3 for the underlying MILPs.

Figure 3 showsfyaxminr(€) — fum (), the difference between the optimal flow
value of MaxMin-r and the optimal flow value dfIM for download edge € Ep
in the 1000-torrents instance (related data series ardasifor all examples). The
values are ordered ascending by the optimal solutidvldf Thus positive numbers
on the left side of the figure and negative ones on the rigletisidans thatlaxMin-r
provides better flow values thatM for some “weak” downloader at the expense of a
few “stronger” users. In other words, the new algorithm hssin “fairer” allocation
thanMM despite of the similar precision and tolerance settingsv Iddghat possible?

2000

[N
o
[=]
o

-1000¢

fMaxMin—r(e) B fMM(e)
o

—-2000¢

0 500 1000 1500 2000 2500 3000 3500
flow id (e)

Fig. 3 Effect of the numerical approximation f6#1000

Unfortunately, computer implementation turns the cordimioptimization prob-
lem into a discrete problem, because of the floating pointessmtation of the real
variables. The precision and tolerance settings of the niarselver definitely influ-
ence the quality of the produced allocation. Because of #zalier theoretical results
(optimal max-min fair allocation is unique in the contingocase [2]) could not be
applied in the numerical tests. Remark that working with kght representation
would solve this issue, however, for real-world problentanses, even numerical
methods are quite slow. On the other hand, the cumulatitetiifon of the output
flow values oMM andMaxMin-r are identical for the same problems, and more than
85% of the download edges get identical resources from the tgarigdhm. Therefore
we regard the two solutions equally good hereinafter.

Figure 4 summarizes two aspects of the behavioigf andMaxMin-r for the
above introduced 500-torrents, 1000-torrents, 150@ids; and 2000-torrents prob-
lems. The first column shows the total absolute deviance freanoptimal solution:

abgk) = > |fu(lhdy) — fop(lh, dj)]

(15.d;)€Ep

where fi (1%, d;) is the flow value on the download edgg, d;) in iterationk, and
fopt(l§7dj) is the optimal flow value on the same edge, i.e., the resulheflast
iteration of the relevant algorithm.
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Fig. 4 Quality of results oMM (dash-dotted lines), ardaxMin-r (solid lines) for the test cases.
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Fig. 5 Running times oMM (dash-dotted lines), afdaxMin-r (solid lines) for the test cases

The second column shows the proportion of the download edgew/hich the
relative deviance of the allocated flow values from the ogtisolution is less than
five percent:

Z(z;,dj)eED r (k, (5, d;))

rel(k) = T ,

where

o [ (U ody) = fom(lh )|
Lif Jom(l%,d;)
0 otherwise

> 0.05,
r(k, (I%,d;)) =

The running times for the same tests are pictured in Figure 5.

It seems that the exact formulation MaxMin-r produces very good solutions
from the first iteration. Comparing total absolute deviartbe output of the new
algorithm after the first iteration is the same quality asdbgput of MM after 85%
of its iterations. The second column of Figure 4 shows MaxMin-r sets the flow
values close to the optimum on much more edges Mighdoes. For example, 46%
of the download edges 2000 get almost optimal allocated flow values after the
first iteration, compared to the 2.4% near-optimal flow gibgrMM. Furthermore,
the first iteration oMaxMin-r took 46 seconds fa& 2099 compared to the more than
eight-hour running time for the firét1 0 iterations ofMM.
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Figure 5 shows, thaMaxMin-r produces shorter running times thiM for
the bigger test cases, however, it is still impossible to meal-time calculations
for complete BitTorrent networks with this technique. Téfere we suggest to stop
MaxMin-r after the very first iteration to obtain a good feasible agpnation for the
max-min fair allocation of large problem instances in rewsie time.

6 Conclusions

It was shown by Capatet al. [4] that using the standard BitTorrent protocol’s band-
width allocation, the average performance of a BitTorrembmunity is suboptimal
in terms of max-min fairness. This fairness measure cooredpto the case of video-
streaming service — an emerging application of P2P netw@lks motivation here
was to give an exact mathematical programming formulatiosh @gorithm which
provides details about the particular instance of thisregtng optimization prob-
lem.

The model involves the McCormick reformulation of the rethtMINLP. Our
observations show that this reformulation, together wisplve techniques, helps
the Gurobi solver to achieve shorter running times, kiakMin-r can be faster than
the earlier proposelM algorithm on larger problem instances. Moreover, the tesul
from the first iterations ofMaxMin-r could be used as a very good approximation for
the max-min fair allocation. This approximation, which igeasible solution, can be
achieved in fraction of the time of the adequate precesdidid.

There are two possible directions for further work. Due te timavoidable in-
volvement of solving several large scale MILPs to obtaincesalution to the prob-
lem including millions of nodes and edges, it is desired toett®p very quick heuris-
tics. Furthermore, as the application field of the max-mimfss problem we inves-
tigated lies in peer-to-peer systems, a distributed versicthe exact algorithm or
even distributed heuristics would be preferred. We belibaéthe results achieved in
this paper provide useful insights towards these goals.
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Algorithm 4.1 MaxMin-r
1. Lower bound computation for the flows. SolveMMjy:

max f,
stf(ll,dy) > f v(l%,d;) € Ep.

Save the minimal flow valueLet ¢ := f.
2. Maximal throughput computation. Solve the following LP problem, denoted MMwaxriow:

max > f(lf,dy),
(1t,d;)€ED
st.f(lf,d;) > ¢ v(1t,d;) € Ep.
Save the LP optimum.Leto := Z(l;,dj)eED f(, dy).
3. Initialization. LetF :=0,k:=1, B := ED,V(Z§,dj) € Ep: £§. =0, ¢9 = 0.
4. LP solving. Solve the revised version uﬁMMS):

max f,
st > f@hdy) + > tb>(1-e 0
(lz'adj)EEk (lg,dj)E(ED\Ek)
S, d5) > fr V(15,dj) € Ex,
k> ¢,

Save the LP optimum.Let ¢y := f%.
5. Presolve.

deg,. (dj)

zh =0, V(% dj) € By,

c(dy) _Z(l’:,d‘)e(E \E )@'
Ey, ::{(l§,d1)€Ek| e R

If \Ekf\ # 0,goto Step 7.
6. MILP solving. Solve the McCormick reformulation oﬁMME?:

t
max E T,

(1h,d;j)EEy,

st > phder >, (I—zh)+ > &>(1-e¢) o,

(1%,d;)E By, (1t,d;)€e By, (1t,d;)e(Ep\Ey)
F(5,dj) > ¢ (1%, dj) € By,
f,dj) > ¢ @ V1, d;) € Ey,
min (§; x;», f(l;,dj)) > p§~ V(l;,dj) € Fg,
max(O, f(l;-,dj)—éj (1—903)) sz ‘v’(l;-,dj)EEk,

wherez!, € {0, 1} andp’, = f(l},d;) %
7. Fixing. Find the binding constraints faf;, and fix the flow values of the adequate download edges:

@y :={(l},d;) € Ex |z} =0},
05 = ¢, V(1%,d;) € By, wherez!, =0,

F:ZFU@k, Ek+1 = Ek\gpk
8. Stopping criteria. If FF = Ep, then stop. Otherwisé; := k + 1 and go back to Step 4.




