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Abstract

This paper presents improved lower bounds for the total energy and the minimal
inter-particle distance in minimal energy atom cluster problems with interactions given
by a Morse potential. The methods use simple arguments and can be employed di-
rectly for Morse clusters, where the atom separation problem is difficult due to the
finite energy at zero atom separation. The theoretical results are applied numerically
achieving sharper results than those previously known for various Morse potentials,
even for ρ ≥ 4.967 parameters. Most results hold for more general pair potentials.

Keywords: atom cluster, lower bounds, minimal distance, Morse clusters.

1 Introduction

Given a cluster of n atoms in d-dimensional space (d > 1), define the coordinate vectors
xi ∈ Rd (i = 1, . . . , n) as the center of the ith atom. The potential energy of the cluster x =

∗This work has been supported by the grants OTKA T 048377 and AÖU 60oü6.
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(x1, . . . , xn) ∈ Rdn is then defined as the sum of the two-body inter-particle pair potentials
over all of the pairs, i.e.,

E(x) =
∑
i<j

v(rij), (1)

where
rij = ‖xi − xj‖2

is the Euclidean distance of xi and xj and v(r) is the value of the pair potential for two
particles at distance r. The aim of this paper is to obtain lower bounds for the total energy
and for the minimal interatomic distance in the structure with minimal total energy (1) in
case that the pair potential is a Morse potential,

vρ(r) = eρ(1−r)
(
eρ(1−r) − 2

)
, (2)

where ρ > ln 2 is a parameter. Most results hold more generally for pair potentials v(r) which
are a continuous, piecewise differentiable function strictly decreasing for r ≤ s and increasing
for r ≥ s, with global minimum value v(s) < 0, positive for small r, and approaching zero
from below for r →∞. v has a unique zero, which is denoted by t. Clearly, t < s and

v(t) = 0, v(r) < 0 for r > t.

For the Morse potential, s = 1, v(s) = −1, and

t = 1− ln 2

ρ
.

The existence of a positive zero requires ρ > ln 2.

Previous results. The book by Ruelle [9] contains in Section 2.3 (see also the references
given there) investigations for general pair potentials. Ruelle calls a pair potential function
stable if the associated total energy of a cluster is bounded from below by a linear function
of the cluster size, and proves sufficient conditions for stability (see Proposition 3.2.7 and
3.2.8 in [9]) but without giving explicit formulas for the resulting bounds. Ruelle’s results
apply to the Morse potential for ρ > ln 16(≈ 2.7726), giving a linear lower bound on the
energy but nothing about atom separation.

Most other rigorous work was done for the Lennard-Jones interaction; see, e.g., [1, 6, 10, 13,
14]. For Morse clusters, the atom separation problem is significantly more difficult due to
the finite energy at zero atom separation. Indeed, the first size-independent lower bounds for
the interatomic distance in the optimal structures were obtained only in 2002 by Locatelli
& Schoen [5], using complicated geometric arguments establishing such a bound for d = 3
and ρ ≥ 6. Then Vinkó [11], obtained – for general potential functions satisfying natural
asymptotic properties – size-independent lower bounds on the minimal distance and linear
lower bounds on the total energy which improved the results of [5], and Schachinger et
al. [10] improved these further. All these results work only for ρ ≥ 6, since they are based
upon crucial estimates of [5].

The method presented in this paper improves these lower bounds further, using arguments
much simpler than those of [5]. Moreover, we find size-independent lower bounds on the
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minimal distance already for ρ ≥ 4.967. Most arguments apply to more general pair poten-
tials. All numerical computations were done both with MuPAD [7] and Mathematica [12],
to be sure of the correctness of the numerical results we obtained. Note that Mathematica
provided faster evaluation times than MuPad.

Notation. The following notation will be used. A global minimizer of the function E is any
configuration x∗ ∈ Rdn with

E∗ := E(x∗) = min
x∈Rdn

E(x), (3)

where d > 1 is the dimension of the space containing the cluster. (Of interest are mainly
d = 2 and d = 3.) Let rij be the Euclidean distance of the points x∗i and x∗j (i, j = 1, . . . , n).
The potential energy of particle i in an arbitrary configuration x is defined as

Ei(x) =
∑

i 6=j

v(‖xi − xj‖) (i = 1, . . . , n)

and we put
E∗

i = Ei(x
∗).

Clearly, the total energy is

E(x) =
1

2

n∑
i=1

Ei(x). (4)

If the number of atoms is to be emphasized, the notation E∗(n) and E∗
i (n) is used for the

optimal total energy and for the optimal potential energy of particle i, respectively.

We write Rk for the minimum over i of the kth smallest distance of some atom from xi.
Then R1 = 0, and

R2 = rmin := min
i,j

rij (i, j = 1, . . . , n) (5)

is the minimal distance in the optimal configuration. The Rk form a not necessarily increasing
sequence. We give some atom (to be determined later) the label 1 and label the remaining
atoms such that ri := r1i satisfies

0 = r1 ≤ r2 ≤ . . . ≤ rn.

Then (5) implies ri ≥ Ri for i = 2, . . . , n.

2 Energy bounds

In this section we prove bounds on the optimal total energy. We first generalize considerations
by Maranas & Floudas [6] for the Lennard-Jones potential.

Lemma 1. An optimal n-atom cluster has total energy bounded by

−n(n− 1)

2
|v(s)| ≤ E∗(n) ≤ −d(n− d + 1)|v(s)|. (6)
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Proof. Since v(rij)− v(s) ≥ 0, we have

E∗(n) =
∑
i<j

(
v(rij)− v(s) + v(s)

)

=
∑
i<j

(
v(rij)− v(s)

)
+

∑
i<j

v(s)

≥ −n(n− 1)

2
|v(s)|,

giving the lower bound.

If we construct a cluster containing n atoms where n−d particles are in a position that each
of them touches (i.e., has minimal distance s to) d others, starting with d particles in such
a way that the distances between these points are s (i.e., a line segment in dimension 2, an
equilateral triangle in dimension 3, and so on), we get a cluster of total energy −d|v(s)| −
d(n− d)|v(s)|+ M ≤ −d(n− d + 1)|v(s)| with nonpositive M , which is the sum of the pair
potential values v(r) in case of r is greater than s. Thus this is an upper bound for the total
energy of the optimal structure. Since M < 0, the upper bound follows.

In the following, we shall assume that, in the optimal configuration, the potential energy of
particle i is bounded by

−(n− 1)|v(s)| ≤ E∗
i (n) < −ed|v(s)| (7)

for some constant ed > 0 independent of the dimension and the size of the given optimal
cluster. It is likely that (7) holds for n > d = 3 with ed = d since in the optimal structure,
every atom has most likely at least d contacts. But showing this rigorously seems to be
nontrivial, and we only establish

Lemma 2. (7) holds with ed = 1.

Proof. To prove the upper bound, let k = n if i 6= n and k = n− 1 if i = n, and define the
configuration z = (z1, . . . , zn) in such a way that zj = x∗j for all j 6= i, ‖zi − zk‖ = s and
‖zi − zl‖ ≥ s for all l 6= i. Then place the atom zi on the line determined by the origin and
the coordinates of zk in such a way that zi has the maximal rj value. Thus Ei(z) < −|v(s)|.
By construction of z,

E∗ − E∗
i = E(z)− Ei(z).

Since Ei(z) < −|v(s)| and

E∗ − E∗
i = E(z)− Ei(z) > E(z) + |v(s)| ≥ E∗ + |v(s)|,

we find the upper bound E∗
i < −|v(s)|. The lower bound comes from the fact that v(r)

is monotone decreasing in the interval [0, s] and from the definition of E∗
i (n). Indeed, the

formula for E∗
i (n) contains n− 1 terms and all of them have the lower bound −|v(s)|.
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To get size-independent lower bounds on E∗
i and linear lower bounds on the total energy, we

proceed to find upper and lower bounds on sums of the form

Σm :=
m∑

k=2

v(rk). (8)

Let Nd(r) be the maximal number of disjoint open unit balls fitting into a ball of radius r.
By a simple volume comparison one can easily find the upper bound

Nd(r) ≤ brdc, (9)

which we shall use in the following. Any improvement in this geometric packing bound would
result in corresponding improvements of our estimates depending on it.

Proposition 1. Let

K(r) := min
m∈N,Rm>0

(m− 1)Nd

( 2r

Rm

+ 1
)
.

Then K is an increasing function of r, and

k ≤ K(rk) for all k = 1, 2, . . . . (10)

In particular,

K(r) ≤ (m− 1)
⌊( 2r

Rm

+ 1
)d⌋

for all m = 2, 3, . . . . (11)

Proof. Fix k ≥ 1 and m ≥ 2. We consider the set S consisting of the k atoms closest to
atom 1. We recursively pick an atom from S, starting with atom 1, and remove it and the
m − 2 atoms nearest to it from S, until S is empty. This picks a set of κ = dk/(m − 1)e
atoms at mutual distance at least Rm. Thus the open balls of radius Rm/2 around these
atoms are disjoint and inside the open ball of radius rk + Rm/2 = (2rk + Rm)/2 around the
atom labelled 1. A scaling argument gives

κ ≤ Nd

(2rk

Rm

+ 1
)
,

hence

k ≤ (m− 1)κ ≤ (m− 1)Nd

(2rk

Rm

+ 1
)
≤ (m− 1)

⌊(2rk

Rm

+ 1
)d⌋

.

Proposition 2. If rm ≤ s then

Σm ≤ −m|v(s)|+ E∗
1 +

∫ ∞

s

K(r)v′(r)dr. (12)

Moreover, if m ≥ 2 and Rm ≤ s then

(m− 1)v(Rm) + (m + ed)|v(s)| ≤
∫ ∞

s

K(r)v′(r)dr. (13)
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Proof. Let first m be the largest integer with rm ≤ s. Then

K(r) ≥ K(rm) ≥ m for r ≥ s

by Proposition 1, and rm+1 > s, hence v(rk+1) − v(rk) ≥ 0 for k ≥ m + 1. Therefore, with
rn+1 = ∞, v(∞) = 0, we have

n∑

k=m+1

k(v(rk+1)− v(rk)) ≤
n∑

k=m+1

K(rk)

∫ rk+1

rk

v′(r)dr

≤
n∑

k=m+1

∫ rk+1

rk

K(r)v′(r)dr =

∫ ∞

rm+1

K(r)v′(r)dr.

The left hand side equals

−mv(rm+1)−
n∑

k=m+1

v(rk) = −mv(rm+1)− E∗
1 + Σm,

and since
∫∞

r
v′(r)dr = −v(r), we find

Σm ≤ E∗
1 +

∫ ∞

rm+1

(K(r)−m)v′(r)dr ≤ E∗
1 +

∫ ∞

s

(K(r)−m)v′(r)dr

≤ E∗
1 + mv(s) +

∫ ∞

s

K(r)v′(r)dr.

This proves (12) for the maximal allowed value of m. Since

Σm −mv(s) =
m∑

k=2

(v(rk)− v(s))− v(s)

is a sum of nonnegative numbers, the left hand side is monotone increasing in m; thus (12)
also holds for all smaller values of m.

By definition of Rm, one can label some atom as 1 such that rm = Rm. In this case, we have
for k < m the trivial lower bound

Σm ≥ (m− 1)v(Rm).

Combining this inequality with (12) and with E∗
1 < −ed|v(s)| gives (13).

The above argument can be improved slightly with the following considerations. For integers
m ≥ 1 and real numbers r′, r, let Km(r′, r) be the number of k > m such that max(t, r′) ≤
rk ≤ r. Clearly, Km(r′, r) is a decreasing function of m and

Km(r′, r) ≤ K(r)−m for all r ≥ rm. (14)

A bound on the value Km(r′, r) can be found as follows: Consider each rk as a center of an
open ball with radius rmin/2. The number of such balls that can be packed into the big ball
with radius r + rmin/2 cannot exceed (2r/rmin + 1)d. On the other hand, since r′ ≤ rk, we
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can drop out the small balls from the ball with radius r′− rmin/2. This estimation based on
the volume of spherical shells gives

Km(r′, r) ≤
⌊( 2r

rmin

+ 1
)d

−max
(
m,

2r′

rmin

− 1
)d)⌋

. (15)

In the following, we shall always define r′ in terms of r ≥ s by

v(r′) = v(r), r′ ≤ s ≤ r. (16)

(Closed formulas for r′ exist for the specific pair potentials in the application part.)

Proposition 3. The sum (8) is bounded by Σm ≤ E∗
1 +

∫ ∞

s

Km(r′, r)v′(r)dr.

Proof. Indeed,

Σm − E∗
1 = −

∑

k>m

v(rk) ≤
∑

k>m,rk≥t

∫ −v(rk)

0

dρ

=

∫ −v(rk)

0

∣∣∣{k > m | rk ≥ t; − v(rk) ≥ ρ}
∣∣∣dρ

=

∫ ∞

s

Km(r′, r)v′(r)dr,

(17)

where we made the substitution ρ = −v(r) with r ≥ s.

Note that this estimate combined with (14) for rm ≤ s implies Proposition 2. However,
combining it with (15) gives stronger bounds.

Theorem 1. If

B :=

∫ ∞

s

K1(r
′, r)v′(r)dr < ∞ (18)

then
E∗

i ≥ −B for all i = 1, . . . , n. (19)

Moreover, for any constant B satisfying (19),

−B

2
n ≤ E∗. (20)

Proof. The special case m = 1 of (17) gives

0 = Σ1 ≤ E∗
1 +

∫ ∞

s

K1(r
′, r)v′(r)dr = E∗

1 + B

which leads to (19) for i = 1. Since the choice of the label 1 is arbitrary, (19) holds for all i.
Finally, (20) follows from (4).
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Corollary 1. If q is a lower bound on the minimal inter-particle distance rmin then (19)
holds with

B :=

∫ ∞

s

⌊(2r

q
+ 1

)d

−max
(
2,

2r′

q
− 1

)d)⌋
v′(r)dr. (21)

Proof. Using (15) for m = 2, we can bound B as defined in (18) by

B ≤
∫ ∞

s

⌊( 2r

rmin

+ 1
)d

−max
(
2,

2r′

rmin

− 1
)d)⌋

v′(r)dr

≤
∫ ∞

s

⌊(2r

q
+ 1

)d

−max
(
2,

2r′

q
− 1

)d)⌋
v′(r)dr.

As mentioned in the introduction, Ruelle [9] calls a potential function stable if the energy
of the optimal cluster is bounded below by a multiple of the cluster size. We summarize
his sufficient conditions for stability in [9, Section 3.2.6]. For Morse clusters, it gives a
lower bound for the energy proportional to n under weaker conditions than other known
arguments.

Proposition 4. (Ruelle [9]) If the pair potential v is of positive type and v(0) is finite
then it is stable, and

−n

2
v(0) ≤ E∗. (22)

Here a continuous function f is of positive type if, for arbitrary x1, . . . , xn,

n∑
i=1

n∑
j=1

f(xi − xj) ≥ 0. (23)

Proof. For the optimal configuration x?,

0 ≤
n∑

i=1

n∑
j=1

v(||x∗i − x∗j ||) = nv(0) + 2
∑
i<j

v(||x∗i − x∗j ||),

hence

−v(0)

2
n ≤

∑
i<j

v(||x∗i − x∗j ||).

In general it is not trivial to show that a pair potential function is of positive type, but
Ruelle [9] quotes the known result (Bochner [2]) that f is of positive type if and only
if the Fourier transform of f is of positive type. More generally, it clearly suffices for the
desired conclusion that f is bounded below by a function whose Fourier transform of f is of
positive type.
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3 Bounds on the minimal distance

Corollary 1 depends on a lower bound for the minimal inter-particle distance. This section
is devoted to obtain such lower bounds. Note that by Lemma 2 the following certainly holds
with ed = 1.

Lemma 3. If n > 2 + ed then

q(n) = w
(
(n− 2− ed)|v(s)|

)
(24)

is a lower bound for the minimal inter-particle distance in the optimal configuration. Here
w, defined by

w(x) =

{
r iff x = v(r) and r ≤ s,
0 otherwise.

(25)

is the unique solution of v(w(x)) = min(x, v(0)).

Proof. Let E∗
1(n) be the term which contains the minimal distance in the optimal structure.

Using (7), we find

−ed|v(s)| >

n∑
j=2

v(rj)

=
n∑

j=3

v(rj) + v(r2)

≥ −(n− 2)|v(s)|+ v(r2).

Rearranging the inequalities one obtains v(r2) < (n−2− ed)|v(s)|, which implies the bound.

Lemma 4. In the optimal configuration the minimal interatomic distance is always less than
or equal to the minimizer point of the pair potential function, i.e., rmin ≤ s holds.

Proof. Suppose that in the optimal configuration rmin > s. We know that function v is
increasing for r ≥ s. Hence, rescaling all of the distances such that rmin = s decreases the
total energy. Thus rmin ≤ s.

Theorem 2. Let [R,R] ⊆ [0, s] be such that
∫ ∞

s

⌊(2r

R
+ 1

)d
⌋

v′(r)dr ≤ v(R) + |v(s)| for all R ∈ [R,R], (26)

∫ ∞

s

⌊(2r

R
+ 1

)d
⌋

v′(r)dr < min
{

v(R) + |v(s)|, 1

2
v(R) + (1 +

ed

2
)|v(s)|

}
. (27)

Then the function defined by

f(q) := v(q) + (2 + ed)|v(s)| −
∫ ∞

s

⌊(2r

q
+ 1

)d⌋
v′(r)dr (28)

has a smallest zero q in ]R,∞[, and we have rmin ≥ q.
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Proof. For any integer m ≥ 2 we find from (11) and (13) that R = Rm satisfies

(m− 1)v(R) + (m + ed)|v(s)| ≤
∫ ∞

s

(m− 1)

⌊(2r

R
+ 1

)d
⌋

v′(r)dr,

hence

v(R) + |v(s)| < v(R) +
m + ed

m− 1
|v(s)| ≤

∫ ∞

s

⌊(2r

R
+ 1

)d
⌋

v′(r)dr.

This contradicts (26) unless
Rm < R or Rm > R.

If the first case can happen for some m ≥ 2, let m be the largest integer such that Rm < R.
Then Rm+1 > R, hence

K(r) ≤ m

⌊( 2r

Rm+1

+ 1
)d

⌋
≤ m

⌊(2r

R
+ 1

)d
⌋

,

and since v(R) ≤ v(Rm), we find from (13) that

1

m

(
(m− 1)v(R) + (m + ed)|v(s)|

)
≤

∫ ∞

s

⌊(2r

R
+ 1

)d
⌋

v′(r)dr.

The left hand side is monotone in m, hence extremal at the boundary, and since m ≥ 2, this
contradicts (27). Thus the first case cannot happen. In particular, we find for m = 2 that

rmin = R2 > R.

Since (13) implies for m = 2 that f(rmin) ≤ 0 and (26) implies f(R) > 2|v(s)| > 0, the
intermediate value theorem implies that f has a zero in ]R,∞[, and that rmin cannot be
smaller than the smallest such zero.

Corollary 2. If there is some R ∈ [0, s] such that

∫ ∞

s

⌊(2r

R
+ 1

)d
⌋

v′(r)dr < min
{

v(R) + |v(s)|, 1

2
v(R) +

3

2
|v(s)|

}

then the assumptions of the theorem are satisfiable, and there is a positive n-independent
lower bound on rmin.

Proof. Take R = R = R.

Note that the assumption is automatically satisfied with R = 0 if the potential V (r) diverges
for r → 0, but is a nontrivial restriction for the Morse potential.

By Theorem 2 we can compute lower bound on the minimal inter-particle distance. If we
take m = 2 in formula (15) and in Proposition 3, it leads to better results. Namely, the
function defined by

f(q′) := v(q′) + ed|v(s)| −
∫ ∞

s

⌊(2r

q
+ 1

)d

−max
(
2,

2r′

q
− 1

)d)⌋
v′(r)dr (29)

also has a smallest zero in ]R,∞[ and then we have rmin ≥ q′.
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4 Numerical results

In this section the numerical results are shown for different ρ values. For ρ = 6, the Morse
and the scaled Lennard-Jones pair potential are related; they have the same curvature at
the minimum point r = 1. In the context of global optimization, the cases ρ > 6 are most
interesting, since these are more difficult problems than finding the optimal Lennard-Jones
structures (see Doye et al. [3]). On the other hand, finding minimal interatomic distance in
the optimal Morse cluster becomes more difficult as ρ becomes smaller and the pair potential
becomes less repulsive at small distances.

Size dependent bound for the minimal distance. Lemma 3 gives

(eρ(1−r) − 1)2 − 1 ≤ (n− 2− ed)|vρ(s)|.
Since s = 1, we have vρ(s) = −1, and we conclude that

q(n) = max
{

0, 1− ρ−1 ln
(
1 +

√
n− 2− ed

)}
(30)

is a lower bound for the minimal inter-particle distance of an optimal Morse cluster with
n > 2 + ed particles. This formula yields a strictly positive bound if

n ≤
⌊
(2 + ed) +

eρ(eρ − 2)

|vρ(s)|
⌋

.

q from q from q from new bounds
ρ t R R formula (29) L&S [5] Sch. [10] for E∗

ρ

15 0.95379 0.00001 0.86424 0.865691 0.715166 0.865230 −20.6118n
14 0.95049 0.00197 0.85320 0.854724 0.694918 0.854303 −21.5684n
13 0.94668 0.00039 0.84018 0.841826 0.671606 0.841431 −22.7337n
12 0.94224 0.00077 0.82460 0.826440 0.644492 0.826034 −24.1842n
11 0.93699 0.00152 0.80559 0.807692 0.612565 0.807275 −26.0923n
10 0.93068 0.00302 0.78187 0.784318 0.574381 0.783890 −28.7126n
9 0.92298 0.00608 0.75135 0.754293 0.527627 0.753859 −32.5332n
8 0.91336 0.01250 0.71045 0.714143 0.467709 0.713711 −38.6074n
7 0.90097 0.02663 0.65212 0.657166 0.375988 0.656752 −49.7140n
6 0.88448 0.06167 0.55928 0.567463 0.113522 0.567097 −76.3745n
5 0.86137 0.20982 0.33235 0.371212 – – −245.8110n

4.967 0.86045 0.23439 0.30471 0.356997 – – −272.8310n

Table 1: Lower bounds on minimum inter-particle distance and total energy of optimal Morse
clusters.

Size independent bound and linear lower bound for the energy. Ruelle [8] proved
that if ρ > ln 16 ≈ 2.7726, then the Fourier transform of the pair potential vρ is of positive
type, hence it is stable by Bochner’s theorem [2] and Proposition 4. The resulting linear
lower bound,

−vρ(0)

2
n ≤ M∗

ρ (ρ > ln 16) (31)
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is quite poor: For ρ = 4.967 (the smallest value for which the condition in Corollary 2 holds)
and for ρ = 15 formula (31) gives −1.0166 · 104n and −5.3432 · 1012n, respectively.

No bound on the minimal distance is available from Ruelle’s argument. However, our theory
applies. Table 1 contains the results of the application of formula (29) for Morse clusters,
together with the previous results from Locatelli & Schoen [5] and Schachinger et
al. [10]. Those of Vinkó [11] are intermediate in quality, and are not reported for space
reasons. The last line (ρ = 4.967) shows the smallest ρ where formula (29) could be applied
according to Theorem 2. The linear lower bounds for Eρ obtained from Theorem 1 are also
presented.

5 Conclusions

The methods were introduced in this paper are able to make lower bounds on the minimal
interatomic distance and on the total energy in optimal structures of Morse clusters. With
these methods size dependent bounds (for small configurations) and size independent bounds
(for arbitrary large clusters) can be obtained. Numerical computations show that these
bounds are better than the known ones for Morse clusters. Moreover, the size independent
method has the advantage that is able to handle Morse clusters directly, even for small ρ
parameters.
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