
Modeling Unconnectable Peers in Private BitTorrent Communities

Kornél Csernai, Márk Jelasity
Dept. of Informatics,

University of Szeged, Hungary

Johan Pouwelse, Tamás Vinkó
Department of Computer Science,

Delft University of Technology, The Netherlands

Abstract—In a typical BitTorrent swarm, a large proportion
of the peers are behind firewalls or NATs. These peers are
called unconnectable. When developing P2P applications, a
main requirement is to handle unconnectable peers appropri-
ately. One important aspect of this problem, which has not been
emphasized so far, is understanding the difference between
the attributes of unconnectable peers and peers in the open
Internet. For example, if unconnectable peers spend much less
time online, or if they download significantly more, exploiting
these facts helps to optimize the implementation; and ignoring
these facts can even lead to severe performance problems.
Comparing open and unconnectable peers is not easy because
most traces contain no information about connectability. Here
we study two large traces collected in two private BitTorrent
communities: FileList.org and BitSoup.org, both of which
contain the connectability attribute. From these traces we
extract several attributes of individual online sessions, swarms,
and users. We compare the distributions of these attributes over
unconnectable and open peers. We find that there are some
potentially important differences, e.g., unconnectable users
tend to have a lot more sessions, and they tend to spend slightly
more time online. Some of our findings are in contradiction
with previous results that were based on a different trace
collection methodology.

I. INTRODUCTION

It is clear that in the past years interest in developing P2P
protocols that tolerate or even exploit NATs and firewalls has
been increasing. Apart from technical aspects of NAT punc-
turing [6], protocols have also been proposed. For example,
Kermarrec et al. and Leitão et al. proposed gossip protocols
for environments with NATs and firewalls [11], [12], and
D’Acunto et al. measure through simulations the speed gap
between the two connectivity classes and they concluded
that the connectable peers benefit from the presence of the
unconnectable peers [4].

This increasing interest makes it important to understand
the difference between the behavior of unconnectable and
open clients so that simulating P2P protocols in the devel-
opment phase could rely on realistic assumptions. However,
although there are numerous P2P (and BitTorrent) traces
available [1], [2], [8], [16], [18], very few of them have
direct information about the connectability of the peers. In
this paper this will be our main focus.

We are not aware of any studies that offer a thorough
comparison of the different connectability classes, although
some measurement studies do provide information on the
ratio of peers that are behind a firewall or NAT [5], [7],
[15]. Reported values range from 35% to 90%.

In this paper we look into questions that go well beyond
the ratio of unconnectable peers such as the dependence
of several key attributes of sessions and users (upload and
download volume, session length, and so on) on uncon-
nectability based on two datasets from two private BitTorrent
communities: FILELIST.ORG and BITSOUP.ORG.

II. BASIC NOTIONS

First let us summarize some basic notions of BitTor-
rent [3]. In a BitTorrent P2P network, each peer (user)
downloads and uploads data simultaneously. The torrent file
describes one or more files that are to be shared. The files
are then split into fixed-size chunks or pieces, which are
transferred in blocks. The peers can acquire these pieces
in any order. A swarm is the set of peers participating
in downloading a common torrent. The peers that have
finished downloading all the pieces defined in the torrent
are called seeds, whereas the ones still trying to get some
of them are called leeches. The sharing ratio is defined as
the uploaded/downloaded ratio for each session.

A tracker is typically a central database-driven website
that coordinates the peers and keeps track of their uploads,
downloads, sharing ratios, client versions, and so on.

Let us now introduce the notion of private communities.
A private BitTorrent community, or a ’BitTorrent darknet’
[19], [20] is a special kind of BitTorrent network. These
communities restrict their membership: one can typically
join only after receiving an invitation from a senior member.

Private trackers aggregate the lifetime sharing ratio of
each user and enforce a sharing ratio policy. The method
of sharing ratio enforcement depends on the private tracker
site. For example, users that have a sharing ratio below a
given threshold may have to wait hours before being able
to start downloading newly added content, or may even be
excluded from the community. However, a good sharing ratio
can earn the user some extra privileges. For this reason users
have a strong incentive to contribute to the community by
uploading (seeding) as much as they can.

III. THE DATASETS

There are many ways of creating a trace of a BitTorrent
network. One is through active measurement [10], [18],
where a modified BitTorrent client is used to request peers
from the tracker as a normal client. The modified client
then performs a handshake with the peers, but instead of
exchanging data, it disconnects itself, and stores information
about the pieces each peer is reported to have. The downside

In Proc. 19th PDP, 2011, pp582–589, doi:10.1109/PDP.2011.21

of this approach is that unconnectable peers are out of reach.
Although unconnectable peers can connect to the modified
client, this is an extremely unreliable and inefficient way for
collecting information about unconnectable peers.

Instead, we rely on data collected from the tracker. The
tracker usually has a Web front-end, which is the main
source of retrieving torrent metafiles. The front-end also
provides the users with some aggregated statistics for each
torrent (swarm) that is registered. The data is based on what
the clients report to the tracker periodically. The attributes
of the stored records include connectability, downloaded and
uploaded amount and speed, completion (%), client version,
sharing ratio, and so on. Collecting the trace consists of
downloading the HTML output of each swarm’s statistics
page periodically and converting these HTML files into
suitable formats.

The advantage of tracker-based traces is that the central
view of the tracker is more complete and accurate than
the former method. However, the tracker also adds a layer
of obscurity and information loss, as indicated by some
anomalies in the collected records. For instance, based on
the traces we processed, we suspect that in some cases
the client and the tracker did not agree on how to report
the downloaded and uploaded amounts. Also, the reporting
period for the various clients can range from 5 minutes to
1 hour. We address some of these issues in Section IV.

For our analysis, we use two separate traces. The first
one is a FILELIST.ORG trace collected by Jelle Roozenburg
between December 9, 2005 and March 12, 2006 [17]. The
second is a BITSOUP.ORG trace collected by Andrade et al.
from April to July, 2007 [1]. Both datasets were collected
using a similar methodology: the tracker website was period-
ically crawled (around every six minutes for FILELIST.ORG,
and every hour for BITSOUP.ORG) to obtain a partial state
of the P2P network.

The BITSOUP.ORG database was originally made up of
multiple observation intervals of which we chose one con-
tinuous interval that resembled the FILELIST.ORG trace most
in terms of length and the number of peers and swarms. In
addition, the BITSOUP.ORG trace does not contain swarms
of torrents smaller than 100MB due to the large crawling
interval [1], so we decided to remove the torrents smaller
than 100MB from the FILELIST.ORG trace as well.

Figure 1 illustrates the number of online users as a
function of time. The actual number of sessions, users, and
torrents (swarms) observed in the datasets can be seen in
Table I along with the effects of the cleaning process which
we discuss in the next section.

IV. CLEANING THE DATA

There are a number of possible factors that can contam-
inate a trace, including measurement errors and malicious
user behavior, where clients intentionally report incorrect
information to the tracker. For a correct and unbiased result,
we need to eliminate these sources of errors as best we can.

We found an insignificant number of trivially erroneous
events that report negative traffic, or otherwise infeasible

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100

N
um

be
r

of
 o

nl
in

e
pe

er
s

in
 a

ll
sw

ar
m

s

Elapsed time relative to the start of the trace (days)

BitSoup.org
FileList.org

Figure 1. The number of online users as a function of time.

Figure 2. The motivation for cleaning the data: the download/upload
scatter plot of the sessions, where every point represents a session.

attribute values. Again, such events might result from bugs
in the tracker or in the crawler. Accordingly, we discard
these events.

Malicious user behavior typically means misreporting the
amount of upload, since this results in a better sharing
ratio. Most trackers do not perform feasibility checks on the
reported amount of upload (including the one that produced
the trace in question) so this is relatively easy to do.

Figure 2 illustrates the rule that we used to clean this type
of misbehavior: we removed all users that had at least one
session that reported traffic exceeding 600GB. The limit was
set based on a visual inspection of the scatterplots shown in
the figure. Observe that the two dataset show a very similar

102

104

106

108

1010

1012

1014

1016

1018

102 104 106 108 1010 1012 1014 1016 1018

U
pl

oa
de

d
(K

B
)

Downloaded (KB)

FileList.org swarms, before cleaning

102

104

106

108

1010

1012

1014

1016

1018

102 104 106 108 1010 1012 1014 1016 1018

U
pl

oa
de

d
(K

B
)

Downloaded (KB)

FileList.org swarms, after cleaning

Figure 3. The effects of cleaning: total download/upload scatter plot of
the swarms, where every point represents a swarm. The BitSoup.org trace
shows a very similar pattern (omitted due to lack of space).

structure.
Note that all the sessions of these users were removed,

not only those that exceeded this limit. This was because
we decided that these users could not be trusted.

The amount of data that was removed is shown in Table I.
We can see that—especially in the case of FILELIST.ORG—
the amount of information loss is not significant. Table II
shows the distribution of the erroneous sessions, users, and
torrents that we filtered out. We can see that data removed
due to “misbehavior” correlated closely with trivial errors,
which might indicate that what we observe is in fact not
misbehavior afterall, but an artifact of other client-tracker
communication problems.

V. ANALYSIS OF THE DATA

After cleaning the traces, we converted both into three
databases, the records of which describe individual online
sessions, users, and users within a swarm.

The attributes of the session records we discuss in this
paper are the following: session-length (sec); upload and
download, that give the amount of uploaded and down-
loaded data during the session (KB); seeding-length, that
is, the amount of time spent online after the file has been
completely downloaded (sec); seeded, the amount of data
uploaded during seeding (KB); up-speed and down-speed,
that are calculated by taking the maximum of the download
or upload speed, respectively, as reported by the tracker over
the observation points of the session (KB/sec); and open, a

one-bit attribute stating whether the user was open (1) or
unconnectable (0), as reported by the tracker. Obviously, a
session also has an associated user and a swarm (that is, a
file).

Note that up-speed and down-speed are supposed to
approximate the bandwidth available during the session.
Obviously, this is a very rough approximation; nevertheless
for our purposes it is sufficient, since the meaning and
measurement methodology of the value are independent of
the connectability bit.

Most of the attributes of a user record summarize session
attributes that belong to the given user: for each session
attribute we calculate the maximum, average, sum, variance
and median w.r.t. the given user (note that the minimum is
always 0). The record also contains the number of sessions
(# sessions) and torrents (or swarms) (# torrents) the user
belongs to. Attribute # loss gives the number of times a
session has a smaller completion rate (i.e., it has downloaded
a smaller part of the file) than the previous session in the
same swarm. This happens if a user loses parts of a file, or
if many users use the same account, and are downloading
a file in parallel. Attributes # seed-overlap and # non-seed-
overlap give the number of session overlaps within the same
swarm, where the overlapping sessions are both seeding, or
at least one of them is not seeding, respectively. Seeding
overlaps can happen when a user is intentionally seeding a
file from several servers, for example.

User/swarm records contain the same attributes as the user
records, except that each record summarizes the sessions
that belong to a fixed user over a fixed swarm. This way, all
users have as many records in this database as the number
of swarms they participate in.

We calculated and analyzed many additional attributes that
we do not discuss here because we judged them too unre-
liable, we could not reverse-engineer their clear semantics,
or we found them uninteresting or redundant.

Note that the same user can have both connectable and
unconnectable sessions for a variety reasons. For example,
user IDs can be shared among users, or a user can use several
machines or clients at the same time. Our main focus is to
analyze the difference between the records that are clearly
connectable or unconnectable. For this reason, we removed
those records that have an average value of attribute open
different from 0 or 1. Table III shows what proportion of the
records are clearly open or clearly unconnectable. In the case
of the user databases, roughly half of the records (users) have
both open and unconnectable sessions, but within one swarm
user behavior is much more consistent with only around
10% of the users having mixed sessions. A single session is
always clearly open or unconnectable. The proportions are
rather similar in the two traces.

A. Methodology
The key question we would like to answer is whether the

attributes in the unconnectable class of the records have the
same distribution as in the open class? In this study we
consider only single attributes, and ignore the comparison
of covariance, and other multivariate statistics.

FileList.org BitSoup.org
observation points 681,812,792 122,660,152

number of before cleaning after cleaning % diff. before cleaning after cleaning % diff.
sessions 13,935,412 13,809,112 <1% 15,518,599 13,351,279 14%

users 91,745 91,579 <1% 97,943 94,633 4%
torrents 3,064 3,016 2.6% 14,837 11,710 21%

refresh interval 6 minutes 1 hour
first measurement 2005-12-08 2007-01-27
last measurement 2006-03-12 2007-05-10

days 94 102

Table I
BASIC PROPERTIES OF THE TRACES AND THE EFFECTS OF THE CLEANING.

FileList.org BitSoup.org
removed total due to trivial error due to misbehavior removed total due to trivial error due to misbehavior

sessions 126300 (100%) 120241 (95%) 111837 (89%) 2167320 (100%) 2165082 (99.9%) 1946322 (90%)
users 166 (100%) 161 (97%) 153 (92%) 3310 (100%) 3305 (99.8%) 3204 (97%)

torrents 48 (100%) 45 (94%) 48 (100%) 3127 (100%) 3127 (100%) 3127 (100%)

Table II
THE DISTRIBUTION OF THE DATA THAT WAS FILTERED OUT. NOTE THE LARGE OVERLAPS AMONG REASONS FOR REMOVAL.

FileList.org BitSoup.org
database total / open(%) / total / open(%) /

unconnectable(%) unconnectable(%)
session 13,809,112 / 69% / 31% 13,351,279 / 68% / 32%

user/swarm 2,148,871 / 62% / 27% 1,848,478 / 60% / 26%
user 91,579 / 32% / 16% 94,633 / 36% / 19%

Table III
PROPORTIONS OF CLEARLY UNCONNECTABLE AND CLEARLY OPEN

RECORDS.

To compare two distributions, one can apply several
statistical tests and visualizations. Since the distributions we
are dealing with are very far from normal, we can apply
only generic nonparametric tests such as the Wilcoxon two-
sample rank-sum test [9]. After studying the results of this
test, we found that for a large enough sample size it suggests
that the distributions over each attribute differ significantly.
However, we are not interested in whether the distributions
are exactly the same or not: we are more interested in the
nature and significance of the difference, where a test score
offers little help.

We also experimented with several visualizations, among
which the well-known quantile-quantile (or Q-Q) plot
seemed to be the most informative. Given two data sets
drawn from two distributions, the Q-Q plot shows the quan-
tiles of one data set plotted against the same quantiles of the
other. Practically speaking, one has to sort the smaller data
set, which gives one coordinate, and the other coordinate has
to be calculated as the corresponding quantiles of the larger
data set. The Q-Q plot is useful because one can not only
test whether two distributions are the same, but one can also
derive the nature of the difference (scaling, shift, different
skew, etc). In this paper we rely only on Q-Q plots.

When plotting the Q-Q plots, we had to consider two

issues. The first was a special property of the datasets,
namely that the discrete value 0 has a high probability in
almost every case. Table IV summarizes these empirical
probabilities. At other locations, the distributions behave as
continuous distributions. For this reason, the Q-Q plots were
created with the samples of value 0 removed. In other words,
we compare conditional distributions: we assume the value
is positive.

The second issue is the scale of the sample values. In
almost every case, the density function of the distributions
is heavy tailed, often very close to scale-free. To get a usable
visualization, we consider the Q-Q plots on the log-log scale.
Nevertheless, it should be kept in mind that on the log-log
scale the interpretation of the Q-Q plot changes slightly. For
example, if one distribution is scaled w.r.t. the other, then,
instead of a non-translated line with a different steepness,
we get a line with a steepness of 1, but translated.

Finally, we plot the Q-Q plots using vertical lines that
connect every point in the plot to the x = y line to emphasize
the deviation from x = y.

B. Discussion

Figure 4 shows the Q-Q plots for the session database. The
attribute seeded is not shown as it is very highly correlated
to upload. The attribute seeding-length is also very highly
correlated to session-length, as can be seen in the figure.

We can see that only download, and the speed attributes
show notable differences between the open and uncon-
nectable classes. In the case of download, it is clear that
unconnectable sessions tend to download significantly less,
except in the very high range (but over 90% of the sessions
download less than 106 KB).

In the case of the speed attributes it is apparent that
unconnectable sessions tend to be faster when it comes to
upload. The bump in the Q-Q plots shows that the highest

Statistics over the session database
FileList.org BitSoup.org

mean-1 mean-0 std-1 std-0 P (0|0) P (0|1) mean-1 mean-0 std-1 std-0 P (0|0) P (0|1)
session length 18102 18259 34999 36267 0.0677 0.0537 29922 31471 61032 62665 0.0008 0.0006

upload 403781 351502 2507378 2139577 0.3416 0.3478 297791 263032 2134956 1699252 0.3400 0.4203
download 748835 651444 978731 890217 0.7169 0.6720 821859 654589 1229945 1075100 0.7861 0.7724

seeding length 18095 18341 36508 38445 0.2392 0.2878 29572 31441 62502 64274 0.1864 0.2217
seeded 392759 337736 2441262 2161164 0.4711 0.5211 276871 237969 2122849 1685898 0.4696 0.5552

up-speed 95 101 8408 6555 0.4979 0.5612 14 16 3264 1767 0.4765 0.5695
down-speed 256 277 7669 14505 0.7655 0.7363 138 90 14046 9449 0.8038 0.7969

Statistics over the user database
FileList.org BitSoup.org

mean-1 mean-0 std-1 std-0 P (0|0) P (0|1) mean-1 mean-0 std-1 std-0 P (0|0) P (0|1)
torrents 37 93 77 219 0.0000 0.0000 36 103 99 307 0.0000 0.0000
sessions 41 107 111 307 0.0000 0.0000 37 106 109 359 0.0000 0.0000

session-length-avg 23264 22112 22682 23701 0.0038 0.0038 40303 37521 56328 53359 0.0001 0.0001
session-length-sum 872977 2034761 2237036 5639709 0.0038 0.0038 1311153 3411258 3654604 10691444 0.0001 0.0001

upload-avg 720156 479084 2942067 2874685 0.0307 0.0371 661080 384126 3085786 2522138 0.0612 0.0841
upload-sum 23349397 29824368 121485330 150603731 0.0307 0.0371 16104440 19250478 111726542 79252263 0.0612 0.0841

donwload-avg 659193 516800 738597 614973 0.0515 0.0516 702225 477704 946447 766688 0.0816 0.0757
download-sum 17500925 27638790 35100807 62204665 0.0515 0.0516 14084784 18633679 29871850 39872233 0.0816 0.0757

seeding-length-avg 17772 15025 21764 22648 0.0926 0.1101 30285 27232 53358 50532 0.1670 0.1768
seeding-length-sum 763316 1707381 2176955 5349162 0.0926 0.1101 1183659 3192954 3558187 10564417 0.1670 0.1768

seeded-avg 557374 319991 2098243 1671083 0.1172 0.1379 510757 292804 2505441 2599416 0.2143 0.2389
seeded-sum 20005238 23695184 110628312 143061014 0.1172 0.1379 14017881 16163008 114788037 73464048 0.2143 0.2389

up-speed 3969 4340 86765 61920 0.0507 0.0713 173 271 8282 15647 0.0818 0.1136
down-speed 2942 3851 31576 36112 0.0560 0.0592 488 462 28344 17970 0.0869 0.0839

loss 2 3 3 4 0.8751 0.7476 2 2 2 4 0.9111 0.8342
non-seed-overlap 0 0 0 0 1.0000 1.0000 7 16 12 41 0.6646 0.5238

seed-overlap 0 0 0 0 1.0000 1.0000 25 80 100 338 0.6486 0.5720

Statistics over the user/swarm database
FileList.org BitSoup.org

mean-1 mean-0 std-1 std-0 P (0|0) P (0|1) mean-1 mean-0 std-1 std-0 P (0|0) P (0|1)
torrents 1532 1534 879 878 0.0008 0.0011 76783 76413 7455 7945 0.0000 0.0000
sessions 5 5 11 13 0.0000 0.0000 5 6 10 13 0.0000 0.0000

session-length-avg 23875 24220 29453 32010 0.0044 0.0050 43250 44467 69162 73118 0.0001 0.0001
session-length-sum 89047 99121 353072 288869 0.0044 0.0050 154435 199036 303931 381510 0.0001 0.0001

upload-avg 555239 446469 2873477 2461495 0.0612 0.0862 645595 473339 3662854 2595672 0.0928 0.1292
upload-sum 1708088 1553984 13465809 12424122 0.0612 0.0862 1439515 1272199 6928342 6065491 0.0928 0.1292

download-avg 565829 522494 770871 704590 0.1111 0.1236 700061 587136 1063323 948435 0.1681 0.1666
download-sum 1460824 1513681 3618277 4011277 0.1111 0.1236 1433483 1331936 2063635 1996053 0.1681 0.1666

seeding-length-avg 21219 20621 29683 32307 0.1753 0.2203 40400 40924 70350 73647 0.2651 0.2959
seeding-length-sum 86540 93964 381729 312751 0.1753 0.2203 163095 213663 327817 412933 0.2651 0.2959

seeding-avg 506295 382149 2703333 2258770 0.2359 0.2952 588845 399961 3643943 2542001 0.3176 0.3756
seeding-sum 1634034 1417370 13414912 13000970 0.2359 0.2952 1405743 1206209 7244536 6457105 0.3176 0.3756

up-speed 298 305 15368 12684 0.1303 0.2081 32 44 1682 3852 0.1408 0.2036
down-speed 377 488 9706 20826 0.1223 0.1380 204 147 17098 13396 0.1797 0.1802

loss 1 1 1 1 0.9796 0.9693 1 1 0 1 0.9867 0.9803
non-seed-overlap 0 0 0 0 1.0000 1.0000 3 4 3 4 0.9117 0.8802

seed-overlap 0 0 0 0 1.0000 1.0000 7 9 13 19 0.8461 0.8213

Table IV
STATISTICS OVER EACH DATABASE. THE POSTFIXES 0 AND 1 STAND FOR THE UNCONNECTABLE AND THE OPEN CLASS, RESPECTIVELY. P (0|0) AND

P (0|1) ARE THE EMPIRICAL PROBABILITIES OF THE VALUE 0.

density region of the speed is higher for the unconnectable
sessions. In the case of down-speed, we also see that in
the low-speed region unconnectable sessions have a higher
density. In other words, low-speed unconnectable sessions
tend to be slower, while high speed ones tend to be faster
than low-speed and high-speed open sessions, respectively:
the distribution of unconnectable download speed is broader.
Note that the second bump in the Q-Q plots is most likely
due to errors in the trace because it corresponds to unrealistic
speeds; but it involves only relatively few outliers.

Figure 5 reveals another important difference: uncon-
nectable users tend to have significantly more sessions,
and participate in significantly more swarms. In addition,
we can also see that the increased number of sessions is
largely explained by participating in more swarms, since
within a swarm the difference is much smaller, although
unconnectable users tend to have slightly more sessions
within a swarm as well.

The distribution of the session length in the two classes
is very similar in the user and user/swarm databases as

well (we show only the user database). The behavior of the
total session length is more interesting (see Figure 5). An
unconnectable user has a larger total online time, but the
difference is much smaller than what we could expect from
the large difference in the number of sessions. The reason
is that the two attributes: # session, and session-length are
not independent. Those users that have a larger number of
sessions tend to have more shorter ones. In addition, within
a swarm unconnectable and open users have a practically
identical distribution of online time. Our results show that
seeding time is correlated with online time in the aggregated
case as well, so we do not discuss this attribute separately.

Let us now examine the aggregated traffic related at-
tributes (Figure 6). In this case there is no dramatic differ-
ence between the user and user/swarm database, so we show
only the user database due to lack of space. In addition, our
seeding traffic related attributes are again highly correlated
with the upload related attributes, so they are not discussed
separately.

Quite surprisingly, the sums of uploaded and downloaded

session length

seeding length

upload

download

up-speed

down-speed

Figure 4. Session database Q-Q plots. Left column: BitSoup.org, right
column: FileList.org.

user database, # torrents

user database, # sessions

user/swarm database, # sessions

user database, session length average

user database, session length sum

user/swarm database, session length sum

Figure 5. User and user/swarm database Q-Q plots. Left column:
BitSoup.org, right column: FileList.org.

upload average

upload sum

download average

download sum

Figure 6. User database Q-Q plots. Left column: BitSoup.org, right
column: FileList.org.

data have very similar distributions, despite the large differ-
ence in the number of sessions and the fact that sessions have
the same length distribution. A possible explanation is that
those who have many sessions tend to have smaller transfers
in them. In other words, people still want to download and
upload the same amount of data, only they seem to use more
sessions if they are unconnectable.

Another issue worth discussing is a peculiar behavior
of unconnectable users, that we found accidentally while
analyzing the traces. We found that some users run sessions
in parallel in the same swarm, that is, they participate in
the swarm with more than one client. We speculated that
this might be for at least two reasons: sharing the user
ID with others, or boosting one’s sharing ratio via seeding
from multiple servers after completing the download. We
defined attributes #non-seed-overlap and #seed-overlap, as
described previously, to see how this behavior is correlated

user database

user/swarm database

Figure 7. User and user/swarm database Q-Q plots. All plots belong to
BitSoup.org. Left column: #non-seed-overlap, right column: #seed-overlap.

with being unconnectable or open. In fact, Figure 7 shows
that there are significant differences between the two classes
for these attributes (although note that only a small fraction
of the users have parallel sessions, see Table IV). We have
overlap data only in the BITSOUP.ORG trace, since in the
FILELIST.ORG trace overlaps have been artificially removed.

The main conclusion regarding overlaps is that uncon-
nectable users have a significantly stronger tendency to run
overlapping sessions. In the user database this very strong
effect is partly explained by the larger number of sessions,
but after removing this effect (that is, looking inside one
swarm) the effect is still visible.

We did not shown Q-Q plots of speed attributes for the
user and user/swarm databases because they show similar
patterns to those of the session Q-Q plots.

VI. CONCLUSIONS

We performed an extensive statistical analysis of the
difference between unconnectable and open peers, based on
two large traces from two different BitTorrent communi-
ties. We found several interesting differences. For example,
unconnectable users tend to have many more sessions, and
participate in more swarms, but at the same time they upload
and download similar amounts of data. Furthermore, more
peers have high-speed connections among the unconnectable
peers than among the open ones.

We also suspect that the class of unconnectable peers
is not homogeneous. For example, a company server is
typically behind a firewall, and is thus unconnectable, just
like a naive user behind a NAT device, who is not able
(or does not wish) to configure the client properly. This
could explain why we see broader distributions in speed
with unconnectable nodes; but this requires further analysis.

It is worth mentioning here that our conclusions are rather
different from some of the conclusions presented in [15].

For example, we found that unconnectable users are actually
more active than open ones, while Mol et al suggested the
opposite. The differences are probably due to the different
methodology for collecting the trace: our data comes from
the tracker, while Mol et al used active measurement tech-
nology, which is not ideal for approximating properties of
unconnectable peers. It is also known that private trackers
in general have a higher ratio of connectable peers, higher
speed, and longer seeding times [13], [14], so public swarms
can be expected to behave differently. At the same time,
we found a strong agreement between the FILELIST.ORG
and BITSOUP.ORG traces, which further strengthens the
reliability of our conclusions concerning private trackers.

In this work, we examined distributions of single at-
tributes, but in our discussion we often had to refer to
positive or negative correlations between different variables;
for example, between upload and seeded, or between #
sessions and session-length, etc. For a complete picture, it
would be helpful to apply multivariate techniques, but this
is left as a topic for a future study.

ACKNOWLEDGMENT

M. Jelasity was supported by the Bolyai Scholarship of
the Hungarian Academy of Sciences. This work was par-
tially supported by the Future and Emerging Technologies
programme FP7-COSI-ICT of the European Commission
through project QLectives (grant no.: 231200), and TÁMOP-
4.2.2/08/1/2008-0008. We thank Nazareno Andrade for pro-
viding us with the BITSOUP.ORG dataset.

REFERENCES

[1] N. Andrade, E. Santos-Neto, F. Brasileiro, and M. Ripeanu.
Resource demand and supply in bittorrent content-sharing
communities. Computer Networks, 53(4):515–527, 2009.

[2] A. Bellissimo, P. Shenoy, and B. N. Levine. Exploring the use
of BitTorrent as the basis for a large trace repository. Techni-
cal Report 04-41, University of Massachusetts Amherst, Dept.
of Computer Science, June 2004.

[3] B. Cohen. Incentives build robustness in BitTorrent. In
Proceedings of the 1st Workshop on Economics of Peer-to-
Peer Systems (P2PECON), Berkeley, CA, 2003.

[4] L. D’Acunto, M. Meulpolder, R. Rahman, J. A. Pouwelse, and
H. J. Sips. Modeling and analyzing the effects of firewalls
and NATs in P2P swarming systems. In Proceedings IPDPS
2010 (HotP2P 2010). IEEE, April 2010.

[5] L. D’Acunto, J. A. Pouwelse, and H. J. Sips. A measurement
of NAT and firewall characteristics in peer-to-peer systems.
In L. W. Theo Gevers, Herbert Bos, editor, Proc. 15th ASCI
Conference, pages 1–5. Advanced School for Computing and
Imaging (ASCI), June 2009.

[6] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communi-
cation across network address translators. In Proceedings of
the USENIX Annual Technical Conference (ATC’05), pages
179–192, Berkeley, CA, USA, 2005. USENIX Association.

[7] A. Ganjam and H. Zhang. Connectivity restrictions in overlay
multicast. In Proceedings of the 14th international workshop
on Network and operating systems support for digital audio
and video (NOSSDAV ’04), pages 54–59, New York, NY,
USA, 2004. ACM.

[8] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of BitTorrent-like sys-
tems. In Proceedings of the 5th ACM SIGCOMM conference
on Internet Measurement (IMC’05), Berkeley, CA, USA,
2005. USENIX Association.

[9] M. Hollander and D. A. Wolfe. Nonparametric Statistical
Methods. Wiley-Interscience, 2nd edition, 1999.

[10] A. Iosup, P. Garbacki, J. Pouwelse, and D. Epema. Corre-
lating topology and path characteristics of overlay networks
and the Internet. In In 6th Int’l Workshop on Global and
Peer-to-Peer Computing (GP2PC), held in conjunction with
the IEEE/ACM CCGrid’06, 2005.

[11] A.-M. Kermarrec, A. Pace, V. Quema, and V. Schiavoni.
NAT-resilient gossip peer sampling. In Proceedings of the
2009 29th IEEE International Conference on Distributed
Computing Systems, pages 360–367. IEEE Computer Society,
2009.

[12] J. Leitao, R. van Renesse, and L. Rodrigues. Balancing
gossip exchanges in networks with firewalls. In Proceedings
of the 9th International Workshop on Peer-to-Peer Systems
(IPTPS’10), 2010.

[13] Z. Liu, P. Dhungel, D. Wu, C. Zhang, and K. W. Ross. Un-
derstanding and improving incentives in private p2p commu-
nities. In Proc. 30th International Conference on Distributed
Computing Systems, ICDCS, Genoa, Italy, 2010.

[14] M. Meulpolder, L. D’Acunto, M. Capota, M. Wojciechowski,
J. Pouwelse, D. Epema, and H. Sips. Public and private
bittorrent communities: A measurement study. In IPTPS
2010, 2010.

[15] J. J. D. Mol, J. A. Pouwelse, D. H. J. Epema, and H. J.
Sips. Free-riding, fairness, and firewalls in P2P file-sharing.
In K. Wehrle, W. Kellerer, S. K. Singhal, and R. Steinmetz,
editors, Proc. 8th IEEE International Conference on Peer-
to-Peer Computing, pages 301–310. IEEE Computer Society,
Sept. 2008.

[16] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The Bit-
Torrent P2P file-sharing system: Measurements and analysis.
In Peer-to-Peer Systems IV (IPTPS 2005), number 3640 in
Lecture Notes in Computer Science, pages 205–216. Springer,
2005.

[17] J. Roozenburg. Secure decentralized swarm discovery in
Tribler. Master’s thesis, Parallel and Distributed Systems
Group, Delft University of Technology, 2006.

[18] B. Zhang, A. Iosup, J. Pouwelse, D. Epema, and H. Sips.
Sampling bias in BitTorrent measurements. In P. D’Ambra,
M. Guarracino, and D. Talia, editors, Euro-Par 2010 - Parallel
Processing, volume 6271 of Lecture Notes in Computer
Science, pages 484–496. Springer Berlin / Heidelberg, 2010.

[19] C. Zhang, P. Dhungel, D. Wu, Z. Liu, and K. W. Ross.
BitTorrent darknets. In Proceedings of IEEE INFOCOM
2010, 2010.

[20] C. Zhang, P. Dhungel, D. Wu, and K. W. Ross. Unraveling
the BitTorrent ecosystem. IEEE Transactions on Parallel and
Distributed Systems, 2010. preprint.

