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Abstract. We present a distributed control strategy that lets a swarm
of satellites autonomously form a lattice in orbit around a planet. The
system, based on the artificial potential field approach, proposes a novel
way to split the artificial field in two main terms: a global artificial field
that gathers the satellites around a predefined meeting point, and a local
term that allows a satellite to place itself in the correct position relative
to its closest neighbors. We apply the method to the problem of forming a
two dimensional hexagonal lattice, using the well-known Lennard-Jones
potential as local artificial field. The control parameters have been ob-
tained with a genetic algorithm to maximize the precision of the formed
lattice. The precision does not depend on the number of satellites and
convergence is achieved from all initial distributions of the satellites.

1 Introduction

In this paper, we propose a control system that allows a swarm of small space-
craft, called pico satellites, to build an hexagonal lattice in orbit around a planet.
This is considered an important prerequisite for applications such as formation
flight, coordinated observation [1, 2], autonomous self-assembly of solar powered
satellites [3], large antennas and large reflectors in space. The control system
follows the principles of swarm intelligence: it is distributed and interactions
among satellites are only local. Thanks to these characteristics, the system is
highly scalable. Moreover, the system converges to the desired configuration for
any initial distribution of the satellites. The validity of our results has been
tested in simulations of up to 500 satellites. This paper builds on top of our
preliminary work [4], in which we introduce the control system and we briefly
study the precision of the lattice with control parameters chosen by hand in a
flat space (no gravitational forces). In this paper, we optimize the control pa-
rameters for a real orbital environment and we study the precision of the formed
lattice with a varying number of satellites and with different initial conditions.

The swarm is represented as a set of N identical point-masses. Initially, the
satellites are randomly distributed in space under the gravitational influence of
a near planet. A point p orbiting around the planet is defined at design time as



Fig. 1: An example of hexagonal lattice
with 100 satellites.

Orbit ω (rad/s) R (km) T (s)

LEO 1 · 10−3 7,000 6,283
GEO 7.3 · 10−5 42,000 86,071
Amalthea 1.5 · 10−4 181,000 41,888
Metis 2.5 · 10−4 129,000 25,133
Io 4.1 · 10−5 421,600 153,248

Fig. 2: Different types of orbital environ-
ments considered. ω is the angular speed
of rotation around the planet, R is the
distance from its center and T is the time
needed to complete one orbit.

the origin of a reference frame. The control strategy we present in this paper lets
the satellites position themselves around p to form a regular hexagonal lattice
located on the xy plane (see Figure 1). The satellites keep a mutual target
distance σ which is a control parameter fixed at design time. In our simulations,
the motion of a satellite has been modeled with the Hill’s system of differential
equations [5] assuming that the orbit of p around the planet is circular. The
satellites have a mass m = 100 kg and a thrusting capability Tmax = 50 mN.
The swarm has been tested in various orbital scenarios, reported in Table 2:
geostationary orbits (GEO), low Earth orbits (LEO), and Jupiter orbits close to
those of its satellites Amalthea, Metis and Io.

The main goals of the work are to ensure that satellites are not lost in space,
that collisions are avoided and that the overall system is scalable, i.e., that the
control strategy does not depend on the number N of satellites.

2 The Control Strategy

The control strategy studied in this work follows the artificial potential ap-
proach [6]. This idea has been first introduced for robot path planning [7] and
proved effective also in satellite control problems [8]. The agent is imagined im-
mersed in a virtual potential field calculated by its control system. The control
action u is the virtual force due to the virtual potential. The goal position of the
agent corresponds to the status of minimum energy in the potential field. The
artificial potential approach has been applied for formation control of wheeled
robots. Balch and Arkin [9] proposed a system in which a small group of robots,
uniquely identified, keep preassigned relative positions with a very simple attrac-
tion potential. Spears et al. [10] devised a distributed system in which robots
form an hexagonal lattice through local interactions inspired by gravitational
forces. This work neglects collision avoidance and assumes the robots to be ini-
tially very tightly distributed.

The features of the task considered in this paper suggested a novel definition
of the virtual potential field. The control strategy u has been expressed as the
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Fig. 3: (a) The equipotential curves of g on the xy plane (b) A butterfly shaped lattice
obtained with a suitable g potential.

superposition of three contributions:

u = g + l + d, (1)

where g is a force that attracts each satellite towards the origin of the common
reference frame, l is a force that creates locally flat lattices with the neighboring
satellites while avoiding in-swarm collisions, and d is a damping factor analo-
gous to viscosity, used to stabilize the behavior of the swarm and to ensure
convergence.

2.1 Global Attraction to the Origin

We assume that the satellites know their position with respect to the reference
frame defined by p. This is not a stringent requirement in a space application
because many well known techniques can be employed, spanning from the use
of triangulation with fixed star positions to placing a special satellite in p that
broadcasts its position in space.

Defining q as the position of a satellite with respect to p, and defining the
normalized vector q̄ = [q̄x q̄y q̄z]

T = q/‖q‖, then the virtual force that at-
tracts satellites towards the origin is defined as:

g = −η‖q‖2q̄, (2)

where η is a design parameter. Thanks to virtual viscosity (term d of Equation 1,
see also Section 2.3), a satellite starting from any point in space converges, after
some time, to the origin.

As shown in Figure 3a, sections of the potential that defines g cut parallel
to the xy plane are circle shaped. Therefore, the global shape of the swarm is a
circle. Using a potential with a different section contour, it is possible to change
the global shape of the formation. As an example, Figure 3b depicts a butterfly
shape obtained with a different g.
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Fig. 4: (a) The Lennard-Jones potential (b) Its equilibrium state, an hexagonal lattice.

2.2 Local Lattice Formation

The local potential field lets a satellite interact with its neighbors to create a
lattice, while avoiding collisions. In this work, the local potential is inspired by a
simple and very well known model of molecular interaction, the Lennard-Jones
potential [11]:

V (r) = ǫ
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, (3)

r being the distance between two molecules. The force F (r) between two molecules
is given by

F (r) = −∇V (r) = −
d

dr
V (r)r̂, (4)

where r̂ is a normalized vector directed as the line going from the center of the
first molecule to the center of the second. This force is null when the distance
coincides with the target distance σ; the force is increasingly repulsive as r < σ
decreases; the force is attractive when r > σ. As Figure 4a shows, the attraction
is very strong when r is not much larger than σ, but after a certain distance this
force fades to zero, thus explaining the reason why we call this potential local.
The stable arrangement of two molecules is such that they keep the mutual
target distance σ (in our experiments, σ = 300 m). Increasing the number of
molecules, the stable arrangement is an hexagon (see Figure 4b).

The design parameters of the potential are few and very intuitive to set: σ
is the mutual distance among the satellites in the lattice, while ǫ is the depth
of the potential well, which accounts for the attractiveness and stability of the
minimum located at distance σ. Notably, the lattice is formed on the basis of
positional information only: no communication is needed.

From Equations 3 and 4, the magnitude of the virtual force parallel to the
xy plane between a satellite and its i-th neighbor is given by

lxy
i = −

d

dr
V (r) =
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To flatten the lattice, a virtual force parallel to the z axis is defined as lzi =
−ψ sign(rz)r

2

z , where rz is the projection of r = rr̂ on the z axis. The force



is then li = [lxy
i q̄x lxy

i q̄y lzi ]
T
. Eventually, l is defined as the average of the

virtual forces due to the M closest neighbors (in our experiments, M = 6):

l =
1

M

M
∑

i=1

li.

It is possible to control the shape of the local lattice by using a different po-
tential. A natural choice is a molecular model already studied in crystallography.
In other terms, the work presented here suggests a link between crystallography
and lattice formation in robotics.

2.3 Ensuring Convergence

The virtual forces g and l are defined by conservative fields. This means that
convergence is impossible without a dissipative term. To obtain convergence,
we imagine that the satellites are immersed in a viscous medium. Thus, the
expression of d is analogous to viscosity: d = −ξq̇, where ξ is a design parameter,
usually smaller than 0.2.

2.4 Formation Stabilization After Convergence

Experiments revealed that once the swarm converges to its final configuration,
the satellites oscillate around their equilibrium points, thus wasting propellant.
A solution to this problem is increasing the damping factor ξ after the final
configuration has been reached:

ξ̇ =

{

ξconve
−ξ/2 if ξ < ξstab,

0 otherwise.

The value of ξconv is the one that ensures convergence when satellites form the
lattice (see Section 2.3). The value ξstab for which oscillations disappear depends
on the orbit at which p is located. In our experiments ξstab = 0.7.

A further problem is when to trigger the stabilization. Currently we adopt a
simple time-based criteria. Each satellite individually measures the time elapsed
since the beginning of the shape formation process. After a certain time, stabi-
lization is triggered. A more elegant method would be to trigger the stabilization
with a distributed consensus algorithm [12].

3 Results

Experimental evaluation shows that even with suboptimal parameters the sy-
stem works reasonably well, although good parameters for an orbital environ-
ment are not equally good for another [4]. Here, we optimize the parameters to
minimize positioning errors in the lattice. With these parameters, we study scala-
bility. Finally, we test the dependence of the control system on initial conditions
(placement of satellites).



Parameter Value

Number of generations 1000
Population size 50
Mutation probability 0.2
Crossover probability 0.9
Elitism the best survives

Fig. 5: Parameters of the genetic algorithm em-
ployed for setting the control parameters.

Parameter Value

η 1.6295 · 108

ψ 5.96201 · 108

ǫ 4.5332 · 104

ξ 0.165984

Fig. 6: Values of the control
parameters obtained via the
genetic algorithm.

3.1 Optimizing the Control Parameters

Good values of some control parameters, such as η, ψ, ǫ and ξ, are not easy to
find. We chose to optimize them with Goldberg’s simple genetic algorithm [13].
Table 5 summarizes the parameter values used for the genetic algorithm.

Evolutions were performed with 10 satellites in a GEO environment. The
trials lasted 1000 time steps, each time step being 12.5 s long. The placement of
a satellite has been evaluated as follows:

χi =
1

Ni

∑

j∈Ni

|σ − rij |

σ

where Ni is the set containing the Ni closest neighbors of satellite i and rij is
the relative distance between the satellites i and j at the final lattice acquisition
time. The genetic algorithm minimizes the worst satellite placement, defined
as χ = maxi χi. The best control parameters that we obtained are reported in
Table 6. They yield a score χ = 0.012842, which corresponds to a positioning
error of 3.85 m (σ = 300 m).

3.2 Scalability

Scalability makes it possible to optimize the parameters with a minimal number
of satellites, thus finding quickly a convenient setup. Figure 7 reports the be-
havior of the placement error for different numbers of satellites. The placement
error is calculated as χ̄ = 1

N

∑N
i=1

χi. Although the parameters were obtained
through trials involving only 10 satellites, χ̄ remains practically constant around
the value 0.02 (that corresponds to 6 m), with a minimum of 0.007 (2.1 m) and
a maximum of 0.035 (10.5 m). Only with 500 satellites the maximum error is
slightly larger: 0.088 (26.4 m).

3.3 Initial Conditions

Convergence to the final structure can be mathematically proven by the presence
of the global attractor located at the origin of the virtual global field and by the
known results about the Lennard-Jones potential.
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Fig. 7: Average placement error for a different
number of satellites.

Distribution χ̄

Centered Cubic 0.0215913
Centered Spheric 0.0199159
Shifted Cubic 0.0207984
Shifted Spheric 0.0191019

Fig. 8: Placement error χ̄ obtained
with different initial spatial distri-
butions.

Table 8 shows the results of a set of experiments run to test if χ̄ is affected by
the initial spatial distribution of the swarm. In the centered cubic distribution,
the satellites are placed uniformly in a cube with side of 6 km and centered
around the origin. The centered spheric distribution is a hollow sphere centered
around the origin with radius 3 km and 300 m thick. The shifted distributions are
centered in point [3 3 3] (coordinates in km). For all the experiments, the same
experimental conditions described in Section 3.1 have been used with swarms of
100 satellites. The results show that χ̄ has values similar to those found for the
scalability tests.

4 Conclusions

The presented work deals with a decentralized control strategy for swarms of
satellites that allows them to autonomously form a bi-dimensional hexagonal
lattice under the gravitational influence of a near planet. The method is based
on the artificial potential field approach. In the paper, a novel way of defining the
potential is proposed. This method allows the designer to split the problem of
forming the lattice into two more intuitive subproblems: an artificial field attracts
globally the satellites towards a meeting point and controls the shape of the
formation; another artificial field takes care of defining the interactions among
the satellites to form local lattices. In this work, the Lennard-Jones potential
has been used to define the local field. The control parameters to be set by the
designer are few and very intuitive, and acceptable results can be obtained even
by setting the parameters by hand. We have optimized the control parameters
to minimize the placement error and results show that such error is independent
of the number of satellites and of the initial spatial distribution of the swarm.

The way here proposed to define the artificial potential field suggests a pos-
sible link between lattice formation in robotics and known results in crystallo-
graphy. We plan to further study this link by trying other potentials that are
known in the literature.
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