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Abstract—A considerable body of research shows that Bit-
Torrent provides very efficient resource allocation inside single
swarms. Many BitTorrent clients also allow users to participate
in multiple swarms simultaneously, and implement inter-swarm
resource-allocation mechanisms that are used by millions of
people. However, resource allocation across multiple swarms in
BitTorrent has received much less attention. In this paper, we in-
vestigate whether currently prevalent inter-swarm resource allo-
cation mechanisms perform acceptably or call for improvements.
We use data from two BitTorrent communities and present results
from trace-based simulations. Two use-cases for allocation mech-
anisms drive our evaluation: (1) file-sharing communities, whose
objective is maximizing throughput, and (2) video-streaming
communities, whose objective is maximizing the number of users
receiving sufficient resources for uninterrupted streaming. To
put the results from the analyzed mechanisms into perspective,
we devise theoretical efficiency bounds for inter-swarm resource
allocation, for which we map the resource allocation problem
to a graph-theoretical flow network problem. In this formalism,
the goal of the file-sharing use-case, throughput maximization,
is equivalent to maximizing the flow in the network. The goal of
the video-streaming use-case translates into finding a max-min
fair allocation for BitTorrent downloading sessions, a problem
for which we devise a new algorithm.

I. INTRODUCTION

A large body of research (e.g., [1], [2]) shows that Bit-

Torrent provides resource allocation mechanisms to create

efficient and scalable peer-to-peer swarms for content distri-

bution. However, nearly all evidence of BitTorrent’s efficiency

has been found exclusively in the context of single-swarm

operation. At the same time, measurements show that most

BitTorrent users participate in multiple swarms, or torrents,

simultaneously [3]. It is customary for users to download, or

leech, multiple files concurrently, and to continue uploading

the files they finished downloading, or seed, at the same time.

In order to enable this multiple-swarm operation, designers of

BitTorrent clients have introduced two mechanisms to perform

inter-swarm resource allocation: the selection of torrents to

seed in, and the allocation of upload bandwidth across all

torrents in which a peer participates, either as a seeder, or as

a leecher. Although these mechanisms are routinely used by

millions of users, it is presently unknown how they perform,
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and whether they can be improved upon. In this paper, we

provide a thorough analysis of their performance.

The evaluation of inter-swarm resource allocation mecha-

nisms presumes a theoretical understanding of the problem

they address. We thus build a foundation for this work by

formally defining the inter-swarm resource allocation problem

(Section II). Our formalization shows that this problem is NP-

hard. We find that to make it tractable, it is necessary to divide

it into two parts, torrent selection and bandwidth allocation,

similarly to what has been done in BitTorrent clients. Such

a relaxation allows us to derive theoretical upper bounds

for the performance of resource allocations in a BitTorrent

community–a group of users that access torrents through the

same site [2], [4]. This is done by modeling the community

as a flow network and using graph theory (Section IV). In this

work, we consider two types of communities: (1) file-sharing

communities, which target maximizing aggregate download

speed, and (2) video-streaming communities, which target

maximizing the number of users receiving sufficient download

speed for streaming. The performance upper bound for a file-

sharing community is obtained by solving the maximum flow

problem; for video-sharing communities, we introduce a novel

algorithm to find the max-min fair allocation of flow.

The theoretical results provide the context for the evaluation

of the inter-swarm resource allocation mechanisms presently

deployed in BitTorrent clients. Our analysis focuses on the

mechanisms of uTorrent and Azureus, two clients that together

account for 80% of BitTorrent’s usage [2]. We describe their

behavior and recreate it with simulators for torrent selection

and bandwidth allocation (Section III). To obtain realistic

results, we use traces of real-world BitTorrent usage from two

BitTorrent communities to drive our simulations. Each trace

captures the behavior of nearly 100 000 users over several

months, representing large-scale real instances of the inter-

swarm resource allocation problem (Section V).

Our results (Sections VI and VII) show that it is possible

to significantly improve current inter-swarm resource alloca-

tion mechanisms, but that efforts should focus on bandwidth

allocation. The present torrent selection mechanism does not

hamper performance, partly because of a reduced space of

possibilities for selection algorithms in practice. In contrast,

the current bandwidth allocation mechanism performs poorly

compared to the optimal: as low as 50% for file sharing, and

25% for video streaming.



II. THE INTER-SWARM RESOURCE ALLOCATION PROBLEM

In this section we formulate and formalize the problem of

inter-swarm resource allocation in BitTorrent. We first describe

the need for inter-swarm resource allocation. Next, a formu-

lation of the general resource allocation problem is presented.

Finally, we define the two goals for resource allocation that

are considered in this paper.

A. Background

Consider a BitTorrent community with a set of users I and

a set of torrents T . A user participating in multiple torrents

simultaneously is said to have a session in each of these

torrents, and these torrents are said to form the user’s active

torrents set. Users downloading a torrent are called leechers,

and their sessions are called leeching sessions, while users that

have finished downloading a torrent and are only uploading

it are called seeders, and their sessions are called seeding

sessions. We denote by St and Lt the sets of seeders and

leechers in a torrent t, respectively.

Efficiently participating in a torrent requires a BitTorrent

client to maintain a certain number of open TCP connections.

However, too many simultaneous connections may reduce the

overall upload or download speed of the client. Therefore,

most BitTorrent clients have a configuration parameter to set

the maximum number of active torrents, thus limiting the total

number of open TCP connections in the client. Furthermore,

limiting the number of active torrents ensures that disk activity

is also limited, thus preventing disk trashing.

A BitTorrent client decides which torrents to keep active at

any given moment. Clients usually always keep their leeching

sessions active. If a client has fewer leeching sessions than

the maximum number of active torrents, it will start seeding

sessions in torrents from its seeding library, i.e., the set of

torrents that have been fully downloaded and that have not

been removed. The seeding library of user i is denoted by Λi.

The maximum number of seeding sessions of a client, called

its seeding capacity and which is denoted ki, is determined

by the maximum number of active torrents, the number of

leeching sessions, and the size of the seeding library.

B. Problem formulation

An inter-swarm resource allocation represents the decisions

of all users in the community about which leeching sessions

they serve, and how much bandwidth they assign to each of

these leeching sessions. An inter-swarm resource allocation

must satisfy two constraints. Constraint C1 is the seeding

capacity constraint: users cannot exceed their seeding capacity

ki, and Constraint C2 is the bandwidth constraint: users cannot

offer more bandwidth than their upload bandwidth µi, and

they cannot accept more bandwidth than their download band-

width δi. More formally, a resource allocation is a function

A : P → R which satisfies:

(C1) ∀i ∈ I :
∣

∣{t ∈ Λi | ∃j ∈ Lt s.t. A(i, j, t) > 0}
∣

∣ ≤
ki; and

(C2) ∀i ∈ I:
∑

t∈T,j∈Lt
A(i, j, t) ≤ µi ∧

∀j ∈ I:
∑

t∈T,i∈St∪Lt
A(i, j, t) ≤ δj ,

where P is the set of triplets (i, j, t) representing the potential

data transfer connections, P := {(i, j, t) ∈ I × I × T | (i ∈
St ∨ i ∈ Lt) ∧ j ∈ Lt}.

The Resource Allocation Problem (RAP) is finding a

resource allocation that achieves a specific goal. Such a goal

can be either the optimization of a metric or satisfying a set

of constraints. The RAP for a particular community may be

to maximize the total throughput in the community, whereas

another community may be interested in maximizing the me-

dian download speed across all leeching sessions. Regarding

constraint satisfaction, there can be communities interested in

guaranteeing a certain minimum download speed for all users,

or communities aiming at achieving some form of max-min

fairness. We give precise definitions for goals we consider in

the next subsection.

In general, a RAP is a mixed-integer (non-)linear optimiza-

tion problem, which is, regardless of the goal, NP-hard. Nev-

ertheless, it is possible to divide RAP into two subproblems,

which are the seeding sessions allocation problem and the

bandwidth allocation problem. This decomposition may lead

to an approximative solution for a RAP, and maps parts of the

problem to more tractable equivalents.

The Seeding Sessions Allocation Problem (SSAP) consists

in selecting a subset Ps of P , such that the number of torrents

in which any seeder uploads does not exceed its seeding

capacity: ∀i ∈ I :
∣

∣{t ∈ Λi | ∃j ∈ Lt s.t. (i, j, t) ∈ Ps}
∣

∣ ≤ ki.

Solving SSAP yields a set of possible data transfer connections

Ps that satisfies the seeding capacity constraint C1. This

corresponds to the torrent selection done by BitTorrent clients.

We define a bandwidth allocation as a function B : Ps → R

such that the bandwidth constraint C2 holds. Because of the

definition of Ps, the bandwidth allocation also satisfies C1.

The Bandwidth Allocation Problem (BAP) is then finding

a bandwidth allocation that achieves a RAP goal. BAP is

a tractable relaxation of RAP. It is possible to map BAP

to equivalent problems in flow networks, as we show in

Section IV.

Framing a RAP as being composed of SSAP and BAP also

allows us to derive upper bounds for its solution. Applying

an algorithm that optimally solves BAP to the complete set

P will produce an upper bound to RAP. This is equivalent to

relaxing RAP by ignoring C1. Although this upper bound is

not necessarily a feasible solution of RAP, it can be used as

a reference for the performance of heuristic solutions.

C. Maximizing download speed and optimizing streaming

We consider two goals for BitTorrent communities in this

paper. The first one is suitable for a community interested in

maximizing the average download speed of its users. This goal,

named Maximum throughput, is in line with many existing

file-sharing communities. It is formally defined as finding an

allocation A that maximizes
∑

(i,j,t)∈P A(i, j, t).
The second goal reflects the requirements of video-

streaming systems. In this case, the community intends to

provide as many users as possible with enough download

speed for streaming. One way to formalize this objective is



to aim at providing a certain minimum streaming rate to as

many leeching sessions as possible. However, we opt for a

stronger formulation named Max-min fairness. In a max-min

fair allocation, the download speed of a leeching session can

only be increased at the cost of decreasing the download speed

of another leeching session that has a lower speed. Formally,

an allocation A is max-min fair iff

∀A′: if ∃p ∈ P s.t. A′(p) > A(p) then ∃q ∈ P s.t. A(q) ≤
A(p) and A′(q) < A(q).

Intuitively, the allocation should provide the highest possible

streaming rate for the lowest-bandwidth user, then the highest

possible streaming rate for the second lowest-bandwidth user

and so on. With the resulting allocation, users that download

at a rate lower than the streaming rate will experience some

startup delay, but will still have the best possible quality

of experience. Furthermore, max-min fairness enables the

community to work with multiple streaming rates of varying

qualities and to minimize the number of users experiencing

low-quality streams.

III. SIMULATORS FOR CURRENT RAP SOLUTIONS

We now describe in detail the inter-swarm resource alloca-

tion mechanisms currently deployed in BitTorrent clients. In

addition, we introduce simulators that replicate their behavior,

and present a simulator validation experiment.

A. Current mechanisms in BitTorrent clients

Current BitTorrent communities tackle RAP in a decen-

tralized manner using various heuristics implemented by Bit-

Torrent clients. We investigate for this analysis the two most

popular clients, uTorrent and Azureus, which account for 80%

of BitTorrent usage [2]. Examining the configuration and

documentation of these clients shows that they solve SSAP

and BAP using a similar behavior.

With regard to SSAP, or torrent selection, these clients

employ a heuristic based on the proportion of leechers in

each swarm. First, all torrents in the user’s seeding library are

sorted according to their proportions of leechers. Then, the

torrents with the highest proportions of leechers are chosen

to be part of the active torrents set. The torrents that fall

outside the seeding capacity are paused. This heuristic relies

on the assumption that the proportion of leechers is a good

approximation for the bandwidth need in a torrent. Note that

this heuristic does not take into account the bandwidth of

seeders and leechers. However, the impact of this omission

on the quality of the solution will depend on the problem

instance at hand.

The solution to BAP, or bandwidth allocation, involves

three steps. First, the client allocates the same number of

upload connections to each active torrent, five by default.

Second, the connections are allocated to leechers inside each

torrent. This is done differently by seeders and leechers.

Seeders allocate connections in a round-robin fashion to all

leeching sessions. Leechers allocate one connection randomly

in order to bootstrap the discovery of new peers. The rest

of the connections are allocated to the fastest reciprocating

peers following a tit-for-tat strategy. In the third step, after

connections are allocated, each upload connection receives an

equal share of the peer’s total upload bandwidth.

There are various reasons for the current BAP solution.

The equal division of connections across torrents stems from

the assumption that a small fixed number of connections

is sufficient for good performance in a torrent. The round-

robin allocation of upload connections used by seeders gives

every leecher an equal share of the seeder’s bandwidth. The

allocation of upload connections inside a torrent by leechers

incentivizes cooperation. Note that in principle tit-for-tat leads

to an emergent clustering of peers by upload bandwidth: peers

tend to exchange data with others with similar bandwidth.

However, the randomly allocated connection, called optimistic

unchoke in BitTorrent terminology, affects the clustering: a

low-bandwidth leecher receiving a random connection from

a high-bandwidth leecher will frequently reciprocate with a

regular connection, potentially disconnecting a leecher with

similarly low bandwidth. This bias of slow peers towards faster

uploaders is well documented in the literature [5], [6].

Allocation mechanisms for network resources must also

interact with lower network layers. In the context of large

data transfers, a paramount issue is the interplay between the

application and transport layers. BitTorrent clients typically

use TCP connections, hence in case a leecher’s download con-

nection gets congested, TCP congestion control mechanisms

come into effect, interfering with the bandwidth allocation

of the BitTorrent client. TCP congestion control divides the

bandwidth of a congested download connection equally among

all uploading connections.

The interplay of the current BAP solution and TCP

congestion-control has non-obvious effects on the overall

resource allocation. For instance, consider a scenario in which

there are two torrents, each with one leecher. There are also

two seeders, s1 and s2. The upload and download bandwidth

of all peers is c. Seeder s1 has seeding capacity 1 and is

thus only active in one torrent, while s2 has seeding capacity

2 and is active in both torrents. If the seeders allocate their

bandwidth according to the current BAP solution, the leecher

served by both seeders will be a bottleneck, and the download

capacity of this leecher will be divided equally among the two

seeders. The other leecher would be served by a seeder with

spare capacity 0.5c. The resulting aggregate download speed

will be 1.5c, instead of the maximum of 2c. If the system aims

at maximizing throughput, this is a suboptimal solution.

Finally, note that the SSAP and BAP solutions we describe

in this section are decentralized. Each peer acts autonomously

based on local information about other peers. We create

simulators to determine the resource allocation that results

from applying these decentralized solutions by all peers. The

next two subsections explain the simulators for the current

SSAP and BAP solutions, respectively.

B. A simulator for the current SSAP solution

We approximate the current SSAP solution with a simu-

lator that calculates the allocation to which the community



eventually converges given its instantaneous configuration. The

algorithm for this simulation is named cSSAP and is presented

in Algorithm 1. The simulator repeatedly iterates over the

peers with seeding sessions and runs the observed torrent

selection heuristic for each of these peers. The information

available to the seeders about leecher proportions in the

torrents is updated after each seeder decision. The simulation

stops when the peers stop changing their allocations.

Algorithm 1 cSSAP – Current SSAP solution simulator

∀i ∈ I,Σi := ∅
repeat

consensus := true

for all seeder i do

order-descending-by-proportion-of-leechers(Λi)

Σ′

i := top-ki(Λi)

if Σ′

i 6= Σi then

consensus := false

end if

Σi := Σ′

i

end for

until consensus

Note that we are interested in the effect of the current

SSAP mechanism on the composition of the active torrents

sets. We isolate this effect by examining the solution to which

the mechanism converges; we do not consider the convergence

time. In reality, peers get information about the proportions of

leechers in torrents only periodically. Depending on the rate

of state changes in the system, this may hamper convergence.

Nevertheless, this is essentially an information dissemination

concern, which is outside the scope of this work.

C. A simulator for the current BAP solution

Similar to SSAP, our analysis is concerned with the result

of the current BAP solution after convergence. To approximate

this result, we use a simulator named cBAP, that repeatedly

performs the following steps:

1) Allocate the available upload bandwidth of each peer

according to the current BAP solution without consid-

ering the download bandwidths of leechers, excluding

congested leechers where the uploader has a share of

the download bandwidth equal to the other uploaders;

2) Check every leecher for download congestion: if there

is no congestion, subtract the allocated bandwidth of

uploaders from their available bandwidth; if there is

congestion, subtract only an equal share of the leecher’s

download bandwidth from the available bandwidth of

every uploader.

The simulation stops when for each peer, either there is no

more upload bandwidth available, or every leecher the peer

is uploading to is congested and the peer has a share of its

download bandwidth that is at least equal to the average share

of the other uploading peers.

We validate cBAP with an experiment using regular BitTor-

rent clients that are instrumented to provide detailed reports

TABLE I
PARAMETERS FOR THE VALIDATION EXPERIMENT. L AND S INDICATE IF A

PEER IS A LEECHER OR A SEEDER IN A TORRENT, RESPECTIVELY.

Peer ID Download Upload Torrent
bandwidth (KiB/s) bandwidth (KiB/s) A B C

1 512 64 S
2 1024 128 L
3 2048 256 L L
4 2048 256 L S
5 2048 256 L L
6 512 64 L
7 512 64 L L S
8 2048 256 L L L
9 1024 128 L L L

10 512 64 L L L
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Fig. 1. A comparison of bandwidth allocations produced by the cBAP
simulator and an experiment with real BitTorrent clients.

on the data exchanges. The output logs of clients contain

sufficient information to determine the bandwidth allocations

among the peers during download. The validation consists

of simultaneously starting ten peers that participate in three

torrents. Some of these peers participate in multiple torrents,

creating the need for inter-swarm resource allocation. More-

over, peers have heterogeneous bandwidths, so that clustering

can be observed in the experiment. The characteristics of all

peers are summarized in Table I. Each peer uses an asymmetric

connection with a download bandwidth equal to 8 times the

upload bandwidth, and the size of the files distributed in each

torrent is 200 MiB.

To compare the cBAP simulator to the actual BitTorrent

clients, we discard the warm-up and end phases of the exper-

iment. The warm-up phase is the period before all peers have

downloaded at least 10% of the torrent. During this period,

it is the piece availability—and not the RAP solutions—that

chiefly determines the resource allocation. The end phase of

the experiment is the period after which one leecher has

become a seeder. When this happens, the configuration of

the community has changed, and must be compared against

another solution by the simulator.

A comparison between the results of the simulation and

the experiment, using the same configuration, is shown in

Figure 1. Overall, the bandwidth allocation patterns are similar,

with the experiment displaying a marginally less stable clus-

tering. Also the absolute values of the bandwidths allocated

by the peers are close, with the highest pairwise transfer speed

~60 KiB/s in both cases.



IV. OPTIMAL BANDWIDTH ALLOCATION IN BITTORRENT

COMMUNITIES

In this section, we introduce a graph-theoretical model of

resource allocation in BitTorrent communities that allows us

to map BAP to flow network problems. This mapping, in turn,

permits us to apply graph-theory solutions for BAP targeting

throughput maximization in the community, and to devise an

algorithm to find the max-min fair allocation of bandwidth to

the leeching sessions in the community.

A. A graph-theoretical model for BitTorrent communities

We model the state of a BitTorrent community at a certain

instant as a flow network G = (V,E, f, c), where V is the set

of vertices, E is the set of edges, f is the flow function, and c

is the capacity function. The flow network G is a directed

tripartite graph, with V being the union of three disjoint

subsets of vertices, U,L and D, and with each edge in E

connecting two vertices that are in distinct subsets. These three

sets of vertices are defined in the following way:

• the upload nodes U = {u1, . . . , um} represent the upload

potential of the m users (both seeders and leechers) who

are active in the community at the instant considered;

• the leeching sessions nodes L = ∪iLi represent the

presence of leechers in torrents, where Li = {lti | i ∈ Lt}
is the set of leeching sessions of user i; and

• the download nodes D = {d1, . . . , dn} represent the

download potential of the leechers.

In the graph G, a user i is represented by the set of nodes

{ui, di} ∪ Li. Figure 2 shows an example mapping.

The set of edges E represents the transfer potential from the

upload nodes to the leeching sessions and from the leeching

sessions to the download nodes. If user i is leeching in a

torrent t, then there are edges from ui to the leeching sessions

of all other users in torrent t. Using the notation introduced in

Section II, this formally means that ∀t ∈ T, ∀i, j ∈ Lt (i 6= j)
: (ui, l

t
j) ∈ E. Similarly, if a user i is seeding in a torrent

t then there are edges from ui to the leeching sessions of

all other users in torrent t. Formally, ∀t ∈ T, ∀i ∈ St, ∀j ∈
Lt : (ui, l

t
j) ∈ E. All of the edges thus defined are called

upload edges. Finally, to represent downloading, the graph

also has edges from the leeching session nodes to download

nodes: ∀t ∈ T, ∀i ∈ Lt : (l
t
i , di) ∈ E. These edges are called

download edges.

The capacity and flow functions of G are defined as follows:

• the capacity function c : U ∪ L ∪ D → Z represents

the bandwidth of peers, where c(ui) := µi is the upload

bandwidth of user i, c(lti) := ∞, and c(di) := δi is the

download bandwidth of user i, and

• the flow function f : E → R represents the bandwidth

allocation, having the property of flow conservation:

∀ltj ∈ L,
∑

ui∈U f(ui, l
t
j) = f(ltj , dj).

It is easy to see that any flow in G is equivalent to

a bandwidth allocation B, and that the Seeding Sessions

Allocation Problem is equivalent to selecting a subset E′ ⊆ E

such that ∀i ∈ I : |{t ∈ T | (ui, l
t
j) ∈ E}| ≤ ki.
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Fig. 2. An example of a BitTorrent community with three users and two
torrents and its representation as a flow network.

B. Maximizing throughput

Using the flow network model defined above, solving BAP

to maximize throughput is equivalent to solving the maximum

flow problem for G, a problem for which several algorithms

exist [7]. In this paper, a linear programming (LP) problem

formalization is used, which we denote MaxFlow:

max
∑

(ui,l
t
j
)∈E f(ui, l

t
j),

subject to
∑

t,j f(ui, l
t
j) ≤ µi ∀ui ∈ U,

∑

t f(l
t
j , dj) ≤ δj ∀dj ∈ D.

Note that the flow is not required to take integer values.

Because the capacity function does take integer values, the

integral flow theorem states that there exists an integral maxi-

mum flow; this solution can be found in polynomial time using

an LP solver. In our experiments we use MOSEK [8].

C. Max-min fairness algorithm

Our second goal from Section II-C is to find the max-min

fair allocation. In order to do so, we establish an iterative algo-

rithm, which we denote MaxMin, that maintains an increasing

set F of download edges for which the flow values are fixed

to their proper value in the max-min fair allocation. This set F

is initially empty, and in every iteration, new download edges

are added to F . In every iteration k, our algorithm solves the

following linear programming problem MMk:

maxφk,

subject to f(lti , di) ≥ φk ∀(lti , di) ∈ Ek,
∑

t,j f(ui, l
t
j) ≤ µi ∀(ui, l

t
j) ∈ E,

∑

j f(l
t
j , dj) ≤ δj ∀(ltj , dj) ∈ E,

where Ek is the set of edges whose flows have not yet been

fixed in previous iterations, i.e., Ek = E\F . The MaxMin

algorithm stops when F contains all download edges.

In the main loop of our algorithm, having solved the actual

instance of MMk, an LP solver returns with a flow f on the

graph. In this flow, there may be multiple download edges with

the max-min flow value φk. These edges are collected into a

set Φ, which contains the candidate edges to be added to the

set F . However, among the edges in Φ, there may be edges

on which the flow value can be increased. In order to check

this property, the algorithm continues with two inner loops; to



explain these, we use the following terminology. We say that

an upload node ui node is saturated if
∑

t,j f(ui, l
t
j) = µi,

that download node di has the max-min property if there is no

torrent t for which f(lti , di) > φk, and that a download node

di is saturated if
∑

t f(l
t
i , di) = δi.

We now describe the two inner loops. The first one checks

for all elements of Φ whether they should actually be included

in F . We only keep an edge (lti , di) for which either a) the

download node di is saturated and has the max-min property,

or b) all upload nodes uj connected to it (through an upload

edge (uj , l
t
i)) are saturated and all other upload edges (uj , l

t′

i′ )
with positive flows are connected to download edges (lt

′

i′ , di′)
for which the flow is ≤ φk (i.e., uj cannot be desaturated).

The second loop considers all download edges (lti , di) in Φ
for which condition b) but not condition a) from the first loop

holds. We discard those download edges (lti , di) for which

there exist upload edges (uj , l
t
i) with a saturated upload node

uj , which has other (uj , l
t′

i′ ) edges with positive flows on them

in such a way that (lt
′

i′ , di′) is not in Φ, but has f(lt
′

l′ , di′) = φk.

Finally, the MaxMin algorithm takes the elements of Φ,

fixes the flows on them, and adds them to F .

Properties of the MaxMin algorithm. We first observe that in

each iteration at least one element is added to F , since at least

one edge with the minimum flow φk is kept in Φ after filtering.

On the other hand, the flow on these edges (lti , di) ∈ Φ can

be increased only by decreasing flows on those edges (ltj , dj)
which have at most flow value φk, which assures that all edges

in Φ belong to the max-min fair allocation. Since the set F of

edges with fixed flows is incrementally constructed using the

edges from Φ, it follows that the algorithm finds the max-min

fair allocation for a given flow network G.

As a consequence, we find that the number of iterations in

our algorithm is at most equal to |E|. For each iteration there

is a linear program, MMk, to be solved, which happens in

polynomial time (we again use MOSEK). The filtering part

of the algorithm has complexity O(|E| · |U | · |L|), as it only

considers the download edges and edges connected to them

through paths of length at most two.

Regarding the existence of the solution of the max-min

fair allocation problem, note that our MaxMin algorithm runs

on a continuous, convex set (bounded by the finite number

of constant capacities), on which the max-min fair allocation

exists [9]; moreover, the allocation is unique [10].

V. DATASETS

To evaluate current inter-swarm resource allocation mech-

anisms in realistic conditions, we derive RAP instances from

traces of real-world BitTorrent usage. In the following, we

describe the datasets we use and the method for extracting

problem instances.

A. Communities studied

We use data from two BitTorrent communities: Bitsoup and

Filelist1. Both traces were collected by periodically crawling

1We note that some of this data has been analyzed before (e.g., [4], [11]).
Nevertheless, the aspects evaluated in this paper have never been considered.

TABLE II
SUMMARY OF DATASETS. (95% CONFIDENCE INTERVALS FOR MEANS).

Bitsoup Filelist

Registered users 84 007 91 745
Total torrents 13 741 3 236
Mean active torrents 6 869.6 ± 30.8 512.2 ± 10.2
Mean active sessions 76 370.3 ± 1 135 32 829.4 ± 672.8
Mean seeders/leechers ratio 5.125 ± 0.155 3.65 ± 0.2

web pages published in these communities containing user

activity information. These pages include, for each user in each

torrent, the user name, the session duration, and the amount

of data uploaded and downloaded in the session. The pages

were crawled hourly for Bitsoup, and every six minutes, on

average, for Filelist. Table II summarizes the datasets. In total,

there are around 100 000 BitTorrent sessions active at every

moment, allowing us to form large-scale problem instances.

BitTorrent communities that require registration such as

those we analyze are known to have lower resource contention

than open BitTorrent sites such as The Pirate Bay [2]. This

is caused by accounting mechanisms used by the community

administrators to keep track of the contributions of users and

to expel those users who fail to contribute enough. As a

consequence, users seed for longer, and the proportion of

leechers is low. To investigate if our results are affected by

this, we generate problem instances with higher proportions

of leechers than those in the traces. In order to do so, we start

with the traces and we reduce the seeding capacities of all

users to produce a second dataset with an overall ratio of two

leeching sessions per seeding session.

B. Extracting seeding capacities and seeding libraries

Given the set of users who are online at a certain instant, we

define for each user a seeding capacity and a seeding library.

The seeding capacity of a user at a certain time is taken directly

from the traces as the number of torrents the user is seeding

at that time.

Defining the contents of the seeding libraries of the users is

a more complex task because the traces only contain a series of

times when the user was seeding a torrent, but no information

about when that torrent was removed. We circumvent the

absence of such information by considering the two extreme

scenarios for reconstructing the seeding libraries. The first

one, named minimal libraries, assumes a user deletes a torrent

immediately after the last time the user is observed seeding

it. In this scenario, a torrent is in the seeding library of a user

at a certain time only if that user was observed seeding it

both before and after that time. The second scenario, named

maximal libraries, assumes users never delete torrents. Then,

a torrent is in the seeding library of a user if the user was

observed seeding it at least once in the past. The seeding

library size distribution is heavily skewed in both communities.

In Bitsoup, using minimal and maximal estimation, the median

library sizes are 3 and 6, respectively, while the maximums

are 290 and 542, respectively. In Filelist, the medians are 2

and 4, while the maximums are 72 and 566.

To obtain unbiased comparisons using different times in

different traces, we define limited time windows for analyzing



past and future events relative to each instant. In addition,

we use a random selection of instants from one whole week

of each of the two BitTorrent community traces. This allows

us to account for most short-term seasonality in BitTorrent

usage, which is daily or weekly, and to have a time window

for seeding library estimation of 28 days in both traces. In

Sections VI and VII, we use 55 problem instances derived

from Bitsoup and 45 from Filelist.

C. Upload and download bandwidths

The traces do not contain information about the upload and

download bandwidths of users. To obtain realistic numbers,

we turn instead to a trace obtained by Isdal et al. [12], who

measured the upload bandwidths of a large sample of BitTor-

rent peers using passive measurement tools. We derive random

samples from this dataset to assign to the users in our problem

instances, preserving the distribution of bandwidths in [12].

Additionally, we consider two types of user connections. If a

user’s upload bandwidth is less than 100 Mbit/s, we assume the

connection to be asymmetric with download bandwidth equal

to eight times the upload bandwidth (in line with connections

in Europe and North America). On the other hand, if the

upload bandwidth of a user is higher than 100 Mbit/s, the

user is assumed to have a symmetric connection with equal

download and upload bandwidth.

VI. CAN CURRENT ALGORITHMS PROVIDE HIGH

THROUGHPUT?

In this section, we evaluate the performance of current

SSAP and BAP solutions, as resulting from the cSSAP and

cBAP simulators, respectively, in the context of file-sharing

communities interested in maximizing aggregate throughput.

A. Baseline

We first establish a baseline for performance of any alloca-

tion mechanism. Recall that, for a SSAP solution, the band-

width allocation that maximizes aggregate download speed

of all users is that given by MaxFlow (as discussed in

Section IV). Our baseline is thus the performance of MaxFlow

on an unconstrained input, where all seeders can use their

whole seeding libraries–a relaxed version of RAP. The results

represent an upper bound for solutions of any RAP instance

where the seeding capacity constraint holds.

Figure 3 depicts the mean download speed across leeching

sessions, considering different leecher proportion levels, and

library estimation methods. We observe that changes in leecher

proportion have a sizeable effect in Filelist, but little effect

in Bitsoup. This implies that a considerably larger fraction of

seeding sessions in Bitsoup is not contributing to the maximum

flow in the community. Removing these seeding sessions has

no effect on community performance. At the same time, the

mean download speed in Filelist is 2–3 times the speed in

Bitsoup, suggesting the configuration of Filelist is such that

leechers and seeders are balanced more evenly in torrents.

It is also notable that library estimation method has no

significant influence on the results. Maximal library estimation
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Fig. 3. Upper bound throughput for all scenarios, as produced by MaxFlow
in relaxed RAP instances (means with 95% confidence intervals).

provides considerable more option for peers, but this does

not lead to higher performance. Investigating the allocations

produced by MaxFlow shows that in all solutions, the majority

of seeders does not use any file from their libraries. This

suggests that it is possible to attain the maximum flow in the

RAP instances we consider even if most peers do not allocate

bandwidth to seeding sessions.

B. Torrent selection

Our next experiment assesses whether the current solution

for SSAP limits the performance of solutions based on it for

the complete resource allocation problem. Thereafter, we use

the notation Algorithm1+Algorithm2 to denote a RAP solution

composed by the combination of two algorithms Algorithm1

and Algorithm2, that address SSAP and BAP, respectively.

This experiment compares the performance of

cSSAP+MaxFlow running in succession to the established

baseline–which is an upper bound. The solution

cSSAP+MaxFlow would be equivalent to having clients

solve torrent selection in a decentralized manner, and then

obtaining from an oracle the optimal bandwidth allocation for

their SSAP solution. If cSSAP+MaxFlow performs similarly

to the baseline, it is possible to affirm that the current torrent

allocation does not limit the performance of a complete

solution for RAP. At the same time, It may happen that

cSSAP+MaxFlow performs well in the experiment because

the space of possible allocations does not allow a different

outcome. To test for this, we examine the performance of a

random torrent allocation coupled with MaxFlow.

Results comparing the performance upper bound,

cSSAP+MaxFlow and Random+MaxFlow are presented

in Figure 4. Performance is measured as the aggregate

download speed of all peers as relative to the baseline.

For Filelist, there are negligible or no differences between

solutions from cSSAP+MaxFlow and the upper bound.

Moreover, this happens regardless of the library estimation

and the proportion of leechers. In Bitsoup, cSSAP+MaxFlow

is equivalent to the upper bound in most scenarios, but

10-15% worse than the upper bound for the scenarios with
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(b) High proportion of leechers

Fig. 4. Throughput produced with (a) observed and (b) high leecher proportions by current and random SSAP solutions coupled with MaxFlow and relative
to the performance upper bound for each RAP instance (means with 95% confidence intervals).
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high leecher proportion. However, we cannot know if the

upper bound performance is attainable in a given scenario, so

we cannot conclude cSSAP is affected by the change in the

proportion of leechers or if the upper bound is not achievable

for the high leecher proportion scenario. Finally, there is a

slight difference in the performance obtained with minimal

and maximal libraries in Bitsoup. These differences can be

attributed to an effect of larger choice on cSSAP, because all

solutions possible with minimal library estimation are also

possible with maximal library estimation.

Overall, it follows that it is possible to attain optimal or

nearly optimal performance using the current torrent selection

mechanism. This is notable given that this mechanism ignores

bandwidth information. Our results suggest that an efficient

bandwidth allocation algorithm can cope with this limitation.

Finally, an analysis of the Random+MaxFlow results shows

that a heuristic that does not consider any torrent information

can only hamper the performance of an efficient BAP solution

to a limited extent. Our results thus suggest a reduced space

of possibilities for torrent selection.

C. Bandwidth allocation

We now examine the efficiency of the current bandwidth

allocation mechanism. Our experiment compares cBAP cou-

pled with cSSAP to the optimal solution for the cSSAP

allocation, cSSAP+MaxFlow. Figure 5 presents the results of

this experiment. Only minimal libraries are considered, as we

know from our previous experiment that library estimation has

a negligible effect on solutions (Figure 4).

Results are similar for both communities: current BAP solu-

tions achieve less than 80% of the optimal throughput, and the

performance of cBAP is affected by resource contention. In the

scenarios with high leecher proportion, cSSAP+cBAP achieves

only 50-60% of the performance of cSSAP+MaxFlow. Such

results highlight that current decentralized mechanisms fall

short of the performance that can be achieved in multi-swarm

scenarios. Furthermore, note that the decrease in relative per-

formance of cSSAP+MaxFlow suggests that the more resource

contention in the community, the further from the optimal cur-

rent methods are. This is particularly relevant for communities

that have less seeding than those we study. Finally, the similar-

ity between relative performance of cSSAP+cBAP in the two

communities suggests the performance of these mechanisms

is independent from the structure of the community.

Summary We find that the current torrent selection mechanism

does not limit the performance of file-sharing communities,

often allowing for optimal solutions if combined with optimal

bandwidth allocation. On the other hand, the bandwidth allo-

cation mechanism presently implemented in BitTorrent clients

significantly hampers the performance of file-sharing commu-

nities, and performs particularly worse in communities with a

high leecher proportion. Finally, the upper-bound performance

of a file-sharing community is not affected by the size of the

seeding libraries and is only slightly affected by the variation

in leecher proportion we consider.

VII. ARE CURRENT ALGORITHMS APPROPRIATE FOR

VIDEO STREAMING?

We now turn to the video-streaming use-case. In this

context, the ideal resource allocation is max-min fair for

all leeching sessions. Such an allocation provides the best

possible service for the sessions most exposed to streaming

interruptions while guaranteeing that the rest of the sessions

obtain a service at least as good. We use a performance

metric appropriate for video streaming, the download speed

of the fifth percentile worst-performing leeching session. If

the metric has value v, 95% of the sessions in the community

receive a download speed at least equal to v.
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Fig. 7. Fifth percentile session download speed with (a) observed and (b) high leecher proportions produced by current and random SSAP solutions coupled
with MaxMin and relative to unrestricted MaxMin (means with 95% confidence intervals).
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Fig. 6. Upper bound throughput for all scenarios, as produced by MaxMin
in relaxed RAP instances (means with 95% confidence intervals).

A. Baseline

The baseline for this experiment is obtained by running the

MaxMin algorithm introduced in Section IV on relaxed RAP

instances. The average download speed for the fifth percentile

leeching session across all problem instances is presented in

Figure 6. The performance in Filelist is considerably higher

than in Bitsoup, similarly to what we observed for aggregate

download speed in Section VI. The fifth percentile down-

load speed in Filelist is ~6 times that in Bitsoup. Within a

community, the results are not affected by seeding library

estimation nor by the leecher proportion. This implies that the

performance of the worst performing leeching sessions cannot

be improved just by having seeders participate in more torrents

from their libraries.

B. Torrent selection

Analogously to our analysis of aggregate download speed,

we first determine whether the current SSAP solution hinders

the performance of the optimal BAP solution for video stream-

ing. This is done comparing cSSAP+MaxMin to MaxMin

running on the relaxed RAP. At the same time, we establish the

extent to which any SSAP solution can affect the overall RAP

solution by analyzing the results of a random torrent allocation

(Random+MaxMin) in relation to the same unconstrained

MaxMin solution. The results are shown in Figure 7.

For the scenarios using the observed leecher proportion,

there are only negligible differences between current, random

and unrestricted SSAP solutions. This suggests the cSSAP

is adequate for maximizing the fifth percentile performance.

At the same time, the close-to-optimal result of random

selection points to a limited potential for choice; it seems

SSAP solutions can only have limited effect on the RAP

solution in the problem instances we study. In summary, given

the observed proportion of leechers, solving SSAP without

bandwidth information does not affect streaming performance

when an efficient BAP solution is used–a similar outcome to

the throughput maximization use-case.

With regard to the high leecher proportion scenario, Filelist

results for cSSAP and random selection show performance

drops of 10–20% compared to the baseline, for both seeding

library configurations. On the other hand, using Bitsoup data,

it is remarkable to see that cSSAP generates a torrent selection

where MaxMin cannot provide the lowest five percent of the

peers with any bandwidth at all. However, since our baseline

applies to an unconstrained RAP, it may be that a higher

performance is not attainable by any solution that respects

the seeding constraint.

C. Bandwidth allocation

Next, we investigate the performance of cBAP for video

streaming. Starting with the torrent allocation produced by

cSSAP, we compare the solution of cBAP to the optimal BAP

solution generated by our MaxMin algorithm. The results are

depicted in Figure 8. Note that only minimal libraries are

considered, as we have observed library estimation has no

significant effect on the performance that can be achieved by

BAP solutions. Moreover, Bitsoup is not considered in the case

with is a high proportion of leechers, since cSSAP generates

a torrent allocation in which it is impossible to provide any

bandwidth to the worst five percent of streaming sessions.

Results are similar for the other scenarios for both commu-

nities: fifth percentile download speeds produced by cBAP are

around 30-40% of the baseline values. This shows that current
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BAP solutions deployed in BitTorrent are far from ideal in the

video-streaming use-case. However, differently from what we

observed for aggregate throughput, there is no sizeable effect

of leecher proportion on the relative performance of cBAP.

Summary Akin to our results for file sharing, we find that

the current torrent selection mechanism does not hamper

performance in video-streaming communities. Nevertheless,

randomly selecting torrents allows for similar performance

using our datasets. Regarding bandwidth allocation, we again

find that the current mechanism’s performance is substantially

worse than the optimal. Finally, the upper bound is not affected

by seeding library estimation or leecher proportion.

VIII. RELATED WORK

Considerable research and development effort has been

invested in designing and evaluating BitTorrent’s intra-swarm

resource allocation methods. Experimental investigations by

Legout et al. suggest that the current algorithms for choosing

upload partners inside a swarm need no further improve-

ment [1] and document the high utilization of upload band-

width inside a swarm [6]. BitTorrent has also been studied at

the community level. Zhang et al. [2] show how an entire

ecosystem forms around the P2P protocol. Guo et al. [3]

and Andrade et al. [4] analyze traces of multiple BitTorrent

communities. Nevertheless, previous work investigating multi-

swarm systems has not considered the community-level met-

rics we use, nor evaluated the effect of current inter-swarm

resource allocation mechanisms.

More similar to our work, Dunn et al. [13] explore seeding

strategies for a BitTorrent-like system centered around a con-

tent provider. Their goal is minimizing the bandwidth demand

at the provider–equivalent to maximizing P2P throughput.

Using synthetic scenarios, they find that the behavior of current

BitTorrent algorithms can be improved. Our results do not

contradict this finding, but question whether improvements

for SSAP solutions are relevant for most real communities.

Peterson et al. [14] design a BitTorrent-inspired content distri-

bution system with a central bandwidth allocation algorithm.

Similar to us, they envisage different goals for the system,

such as guaranteeing a minimum service level in swarms

or avoiding starvation. However, they only present results

for the throughput maximization goal, for which they also

find BitTorrent to perform suboptimally. We corroborate this

finding, adding that it happens in real BitTorrent communities.

Furthermore, we expand the results of Peterson et al. by

examining the video-streaming use-case.

IX. CONCLUSION

In this paper, we present a performance evaluation of

de facto mechanisms for inter-swarm resource allocation in

BitTorrent communities. This paves the way for informed de-

velopments of these mechanisms by identifying requirements

and relevant factors that affect the performance of BitTorrent

communities from a multi-swarm perspective.

We conclude that, for both file-sharing and video-streaming

communities, the present torrent selection mechanism is suit-

able if coupled with efficient bandwidth allocation algorithms,

but the present bandwidth allocation mechanism performs

significantly worse than optimal in multi-swarm operation,

especially in the case of high leecher proportions. In a way,

our results highlight there is currently a price for anarchy

in BitTorrent communities: with individuals allocating re-

sources solely in their own interest, they do not fulfill the

global objective optimally. Nevertheless, this does not imply

that globally optimal mechanisms should not be incentive-

compatible. Instead, future work should ideally improve these

mechanisms considering multi-swarm incentives.

The observation that maximal libraries do not improve the

upper bound performance is relevant for the design of future

BitTorrent clients. Our simulations suggest there is little to

gain through peer-level caching of user downloaded torrents.

Future work should extend the generalizability of our data

with a similar analysis of more BitTorrent communities. Fur-

thermore, the development of real-time implementations of our

optimal bandwidth allocation algorithms could lead to efficient

inter-swarm resource allocation in cooperative scenarios where

peers follow the directions of a centralized coordinator.
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