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Abstract
Submodular function maximization is an attractive optimization model and also
a well-studied problem with a variety of algorithms available. Constraint gen-
eration (CG) approaches are appealing techniques to tackle the problem with,
as the mixed-integer programming formulation of the problem suffers from the
exponential size of the number of constraints. Most of the problems in these top-
ics are of combinatorial nature and involve graphs on which the maximization is
defined. Inspired by the recent work of Uematsu et al. [1], in this paper we intro-
duce variants of the CG algorithm which take into account certain properties of
the input graph aiming at informed selection of the constraints. Benchmarking
results are shown to demonstrate the efficiency of the proposed methods.

Keywords: Submodular function maximization, combinatorial optimization, integer
programming

1 Introduction
In recent years, the theory of submodular maximization has been improved and it has
played a key role in extraordinarily varied application areas [2]. Examples include
several classes of important combinatorial optimization problems [2], namely, the
Simple or “uncapacitated” Plant (facility) Location Problem (SPLP) and its com-
petitive version [3], the Quadratic Cost Partition Problem (QCP) with non-negative
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edge weights, and its special case – the Max-Cut Problem [4], the generalized trans-
portation problem. Many different problems of data mining and knowledge discovery
in biomedical and bioinformatics research (e.g., diagnostic hypothesis generation,
logical methods of data analysis, conceptual clustering, and proteins functional anno-
tations) as well as applied to the statistics, machine learning and experimental design
[5, 6], multiobject tracking [7], sparse reconstruction [8], influence spread [9], and
also combining multiple heuristics online [10]. There are models in mathematics [2],
including the rank function of elementary linear algebra, which is a special case of
matroid rank functions [11, 12] require the solution of submodular maximization
problem.

Solving submodular optimization problems on graphs are also popular line of
study as set functions can easily be defined on graphs. The objectives in these graph
based problems vary from simultaneous localization and mapping problem for robots
[13], route planning, such as mobile robot sensing and door-to-door marketing [14],
and investigation of more general class involving, e.g., s-t path constraint [15].

This paper contributes to the research effort invested into submodular function
maximization with cardinality constraints by introducing efficient variations of a
recently proposed constraint generation algorithm by [1].

Submodular function. Let N = {1, . . . ,n} be a finite set. The function f : 2N →R
is called submodular if it fulfills f (S)+ f (T )≥ f (S∩T )+ f (S∪T ) for all S,T ⊆ N.
There are many natural linkage between submodular functions and both convexity
and concavity, see, e.g., in [10]. A submodular function f is called non-decreasing
if f (S) ≤ f (T ) holds for all S ⊆ T ⊆ N. In the rest of the paper it is assumed that f
fulfills this property, i.e., it is a non-decreasing submodular function.

The submodular maximization problem with a cardinality constant k (where 0 <
k ≤ n) is defined in the following way:

max f (S)
subject to |S| ≤ k, S⊆ N.

(1)

Solvability. Interestingly, the submodular function minimization problem can be
solved in polynomial time [16, 17], whereas the non-decreasing submodular function
maximization is NP-hard [18, 19]. The greedy strategy is an often applied approach
to solve (1) as it guarantees the (1− 1/e) approximation of the optimal solution
[20], however, it might be computationally inefficient for large-scale instances. On
the other hand, many applications expect a globally optimal result, and that was the
aim of the approach proposed in [21]. The algorithm is based on the following mixed
integer programming (MIP) model:

max z
s.t. z≤ f (S)+ ∑

i∈N\S
f ({i} | S) · yi, S ∈ F,

∑
i∈N

yi ≤ k,

yi ∈ {0,1}, i ∈ N,

(2)
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where f (T | S) := f (S ∪ T )− f (S) for all S,T ⊆ N and F denotes the set of all
feasible solutions satisfying the cardinality constraint | S |≤ k. Notably, the number of
constraints in (2) grows exponentially, hence a constraint generation (CG) algorithm
was proposed in [21]. The CG approach starts with a reduced problem with a small
number of constraints and then iterates the solution of the reduced problem by adding
a new constraint condition. In practice, the CG algorithm solves many reduced MIP
problems, which might lead to poor efficiency in applications. This can be mitigated
by the branch-and-bound approach using linear programming relaxation of the MIP.

Roadmap. The rest of the paper is organized as follows. First, we discuss the rel-
evant literature for the non-decreasing submodular function maximization in Section
2. Then, Section 3 is about the problem instances that we use for testing the algo-
rithms. In Section 4 we describe the algorithms. The first one is the improved
constraint generation (ICG) algorithm proposed in [1]. This is followed by the intro-
duction of our ICG modifications, where we motivate and describe three variants. The
numerical experiments are presented in Section 5, including the description of the
computational environments, the properties of the test graphs and finally the details
and discussion of the benchmarking results. The paper is concluded in Section 6.

2 Related works
Optimization of submodular functions has been actively studied. In this section
we discuss the relevant contributions for the non-decreasing submodular function
maximization.

The paper by [10] provides analysis on the theoretical approximation guarantees
of the solver algorithm (greedy as well as more complex methods). They also consid-
ered the different types of extensions of submodular optimization such as the online
settings and adaptive optimization problems. In contrast to our work, the entire paper
is dedicated to approximation (incomplete) algorithms.

An A∗ search algorithm was proposed in [22]. More precisely, it is a framework
for solving non-decreasing submodular optimization problems. The approximate
guarantee based on submodularity property is also provided for non-submodular
functions. In principle, the A∗ algorithm is a heuristic, whereas our approach solves
the problem to optimality.

A new implementation of the CG approach was proposed in [23] to solve the
problem using the formalism (2). The implementation uses lazy constraints, the mod-
ern functionality of MIP solvers, such as CPLEX. Moreover, a GRASP heuristic and
two (heuristic) procedures for separating submodular cuts from fractional solutions
were also developed. Based on numerical experiments, improved efficiency com-
pared to the standard CG was shown. The paper used the same benchmark problem
set which we also use, see Section 3.

[24] formulated the submodular maximization under submodular cover problem
and proposed an approximation framework to solve it. The algorithm provably pro-
duces nearly optimal solutions. As this paper aims at solving a specified version of
(1) its applicability differs from those of our approaches.
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A deterministic algorithm based on a new greedy strategy for solving problem
(1) was proposed by [25]. It is shown by mathematical proof that this new strategy
outperforms the traditional greedy algorithm provided that function f fulfills certain
assumptions.

Finally, [1] presented an improved constraint generation (ICG) algorithm. Being
an iterative method, it starts from a small subset of constraints and repeatedly solves
relaxed problems while adding a promising set of constraints at each iteration. The
ICG method was included into a branch-and-cut algorithm to attain good upper
bounds while solving a smaller number of reduced MIP problems. Computational
results were obtained for well-known benchmark instances. In Section 4 we present
this ICG algorithm because our work is based on it. In fact, we created three variants
of it with the aim of even better computational efficiency. Note that we did not use
the branch-and-cut algorithm.

3 Benchmark sets
We use 3 types of well-known and frequently used examples which have the
non-decreasing submodular property, termed by facility location (LOC), weighted
coverage (COV) and bipartite influence (INF), see [10, 26, 27]. It is important to men-
tion that LOC and COV examples have straightforward MIP formulations, which can
be solved by standard MIP solvers quite efficiently, see [1]. On the other hand, the
INF problem, to be introduced below cannot be formulated as straightforward MIP
and this gives reasons for the attempt to make the universal submodular maximization
framework more efficient [23].

Facility location (LOC) . Let n be the number of locations and m be the number
of clients. The set of locations N = {1, . . . ,n} and the set of clients M = {1, . . . ,m}
are given. Define gi, j > 0 as a non-negative profit when client i ∈ M is served by
location j ∈ N, for all possible pairs. We select a set of k locations S⊆ N to build the
facilities. Each client i ∈M gets the profit from the best opened facility, and we want
to maximize the overall profit, so the total benefit is defined as:

f (S) = ∑
i∈M

max
j∈S

gi, j. (3)

Weighted coverage (COV) . Let n be the number of sensors and m be the number
of items. The set of sensors N = {1, . . . ,n} and the set of items M = {1, . . . ,m} are
given. Each sensor j ∈ N covers the subset of items M j ⊆M and each item i ∈M has
a non-negative weight wi. To cover the items we select a set of sensors S ⊆ N. We
have ai, j = 1, if i ∈M j and ai, j = 0 otherwise. Then, the total weighted coverage is
the following:

f (S) = ∑
i∈M

wi max
j∈S

ai, j. (4)

Bipartite influence (INF) . Let M = {1, . . . ,m} be the set of targets, where m is the
number of targets and N = {1, . . . ,n} be the set of items, where n is the number of
items. Define an influence maximization problem on a bipartite graph G= (M,N; E),
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where E ⊆ M×N is a set of directed edges. The activation probability p j ∈ [0,1]
of every j ∈ N item is given. Let 1−∏ j∈S(1− qi j) be the probability that a set of
items S ⊆ N activates a target i ∈ M, where qi j = p j if (i, j) is a directed edge in
E, otherwise qi j = 0 holds. The definition of the number of targets activated by the
element set S⊆ N is the following:

f (S) = ∑
i∈M

(
1−∏

j∈S

(
1−qi j

))
. (5)

Note that the INF problem as a submodular function given in formula (5) contains
a product involving elements from the set S, which, in case of formulating it using
binary variables corresponding to set element selections would result in a polynomial
type non-linear program. That might be possibly converted into MILP using, e.g.,
McCormick formalism, but it is neither straightforward nor promising with respect
to its solvability.

4 Algorithms
In this section, first we describe the so-called improved constraint generation (ICG)
solution method which was introduced recently by [1]. We propose three modifi-
cations of ICG in which either certain characteristics of the graph describing the
problem is used or the submodularity property of the function to be maximized is
exploited.

4.1 Improved constraint generation (ICG)
An improved constraint generation (ICG) algorithm was proposed in [1] and is shown
in Algorithms 1 and 2. What follows is that we give a quick overview and summary
of the most important concepts and notations of ICG, the reader is referred to the
paper of [1] for the full details. Note that we changed Step 5 in Algorithm 1 to expand
the set Q with S(t) only after executing Algorithm 2 (SUB-ICG) since for the inputs
it is assumed that S(t) /∈ Q.

The ICG algorithm refers to a reduced problem of (2) as MIP(Q), where Q is a
set of feasible solutions, and it is defined as follows1:

max z
s.t. z≤ f (S)+ ∑

i∈N\S
f ({i} | S) · yi, S ∈ Q,

∑
i∈N

yi ≤ k,

yi ∈ {0,1}, i ∈ N,

(6)

Using the CG algorithm of [21] as baseline, in the t-th iteration let the optimal solu-
tion be y(t) = (y(t)1 , . . . ,y(t)n ) and let the optimal value of the problem MIP(Q) be z(t).
In this case z(t) is an upper bound for problem (2), and that is what we aim to decrease

1Note that problem (6) is referred as BIP(Q) in [1]
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Algorithm 1 ICG(S(0),λ )

Input The initial feasible solution S(0) and the number of feasible solution to be
generated at each iteration λ .
Output The optimal solution S∗.
Step 1: Set Q← S(0), Q+←{S(0)

[0] , . . . ,S
(0)
[k] }, S∗← S(0) and t← 1.

Step 2: Solve MIP(Q+). Let S(t) and z(t) be, respectively, an optimal solution and
the optimal value of MIP(Q+).
Step 3: If f (S(t))> f (S∗), then let S∗← S(t).
Step 4: If z(t) = f (S∗) holds, then output the solution S∗ and exit.
Step 5: Set Q+←Q+∪{S(t)}∪SUB-ICG(Q,S(t),λ ), Q←Q∪{S(t)} and t← t+1.
Step 6: For each feasible solution S ∈ SUB-ICG(Q,S(t),λ ), if f (S) > f (S∗) holds,
then set S∗← S. Return to Step 2.

Algorithm 2 SUB-ICG (Q,S(t),λ )

Input A set of feasible solutions Q⊆ F , a feasible solution S(t) /∈Q and the number
of feasible solutions to be generated λ .
Output A set of feasible solutions Q

′ ⊆ F .
Step 1: Set Q′← /0 and h← 1.
Step 2: Select a feasible solution S♮ ∈ Q satisfying the equation (8) at random,
therefore solve MIP(Q). Set a random value ri (0≤ ri ≤ pi) for i ∈ S♮∪St .
Step 3: If | S♮ |= k holds, then take the k largest elements i ∈ S♮ ∪ S(t) with respect
to ri to generate a feasible solution S

′ ∈ F . Otherwise, take the largest element i ∈
S(t) \S♮ with respect to ri to generate a feasible solution S

′
= S♮∪{i} ∈ F .

Step 4: If S
′
/∈ Q

′
, then set Q

′ ← Q
′ ∪{S′} and h← h+1.

Step 5: If h = λ holds, then the output Q
′

and exit. Otherwise, return to Step 2.

in the subsequent iterations. In order to do so, it is required to add a new feasible
solution S′ ∈ F to the set Q to fulfill the succeeding inequality:

z(t) > f (S′)+ ∑
i∈N\S′

f ({i} | S′)y(t)i . (7)

By solving MIP(Q) we obtain at least one feasible solution S♮ ∈Q which satisfies
the equation

z(t) = f (S♮)+ ∑
i∈N\S♮

f ({i} | S♮)y(t)i . (8)

For all i∈N let qi be the number of feasible solutions S ∈Q including an element
i. Using this quantity the occurrence rate pi of element i is calculated as:

pi =
qi

∑ j∈N q j
(9)
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For the heuristic part of the algorithm, meaning selecting the added nodes, we use ri
that is generated by uniformly at random from 0 and pi, i.e., 0≤ ri ≤ pi. We choose
one solution at random from S♮ ∈ Q in that case when multiple feasible solutions
exist which are satisfying the equation (8).

4.2 ICG with reduced k (ICG(k−1))
As a first variation of the ICG, we modified Step 3 of Algorithm 2 to select not the
k largest elements if S♮ = k holds, but select the k− 1 largest elements (i ∈ S♮ ∪ S(t)

with respect to ri). Considering the reduced problem’s definition in (6), with this
modification we get the k-th element’s function value when we add it to the set.

According to our empirical investigations, to be shown in Section 5, ICG(k− 1)
is more efficient in terms of average running time than ICG, thus in the following we
use this version of the algorithm as a base for further improvements.

4.3 ICG using graph structure (GCG)
Our second variant uses the structure of the input graph instances to calculate the pi
value in (9) that is needed to generate ri by random, see Step 2 in Algorithm 2. For
this we distinguish the problems defined on fully connected graphs (that is the LOC
problem in our case) and on non-fully connected graphs (those are the COV and INF
problems we consider).

In the case when the problem is fully connected bipartite graph, for every vertex
j ∈ M we calculate the median m j of the outgoing edges’ weights. Recall that M
refers to the set of nodes with outgoing edges only. To calculate the value of pi, we
add up the weights of the incoming edges at node i ∈ N normalized with the degree
of the targets node:

pi =



∑
j:( j,i)∈E(G),

w ji≥m j

w ji

d j
if G is fully connected bipartite graph,

∑
j:( j,i)∈E(G)

w ji

d j
otherwise,

(10)

where G is the input graph of the optimization problem, E(G) is the set of edges of
G, the edges have w ji weights and d j is the degree of the node j ∈M. This defines
the value of pi and based on this we set the value of ri by uniformly at random such
that 0≤ ri ≤ pi holds.

As an illustrative example, see the graph on Fig. 1, where the labels of the nodes
are indicated as black numbers. The results of equation (10) are reported in Table 1
containing the label of the node and the value of pi.

Although, we choose k nodes from N we give a selection probability pi by using
nodes in M. The weight of outgoing edges of j ∈M are divided by the degree of j,
which is used to normalize the effect of the edges. We sum this normalized edges
weights for each node i ∈ N, which expresses the average impact of selecting node
i ∈ N relative to the other N nodes.
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0.74

0.69

0.01

0.03

0.43

0.55

0.64

Fig. 1 Example graph to calculate the pi values

Table 1 The calculated pi values of the i ∈ N nodes for the graph in Figure 1

node pi value

5 0.36
6 0.53
7 0.97

Let’s revisit the example in Figure 1. There is only one edge from node 4 to node
7 so node 7 is important: node 4 can be served only if node 7 is selected. For this
reason, we add to the selection probability value (pi) an edge weight divided by 1
(i.e., it remains itself), so that the probability of selection of node 7 becomes high. In
contrast, node 1 is connected to three nodes, indicating that it can be reached from
nodes 5,6 and 7. These nodes are interchangeable for reaching node 1 and therefore
less important. If we investigate the pi value of the nodes for the graph in Table 1, we
can see that those values are corresponding to the number and the weight of edges
from nodes in set N. Accordingly, node 7 has the highest value because node 3 and 4
have one and two edges, respectively. Node 5 has the smallest pi value because node
2 and 1 which are connected to it have edges to all vertices in N.

4.4 ICG using enumeration (ECG)
The formal description of our third approach is shown in Algorithm 3. The first four
steps, namely Step 1 - 4 are similar to those used in the previous variants. Step 5
selects a feasible solution S♮ ∈ Q uniformly at random which satisfies the equation
(8). Then, in Step 6 the set Σ is initialized as the union of the sets S♮ and S(t). The size
of Σ is controlled by the parameter κ . In the subsequent steps the algorithm deals with
the subsets of Σ (this is the enumeration part), where we need to balance between
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Algorithm 3 ECG (S(0),λ ,κ)

Input The initial feasible solution S(0), the number of feasible solution λ and κ is
the number of the elements of Σ.
Output The optimal solution S∗.
Step 1: Set Q← S(0), Q+←{S(0)

[0] , . . . ,S
(0)
[k] }, S∗← S(0) and t← 1.

Step 2: Solve MIP(Q+). Let S(t) and z(t) be an optimal solution and the optimal
value of MIP(Q+).
Step 3: If f (S(t))> f (S∗), then set S∗← S(t).
Step 4: If z(t) = f (S∗) holds, then output the solution S∗ and exit.
Step 5: Select a feasible solution S♮ ∈ Q satisfying the equation (8) at random.
Step 6: Set Σ = S♮∪S(t). If | Σ |> κ then let Σ be the first κ elements with the largest
pi values from S♮∪S(t), where pi is defined in (10).
Step 7: Let Pk−1 be the set of all the subsets of the power set of Σ which have at
most k−1 elements and assign the corresponding function values to these subsets.
Step 8: Keep at most λ elements in Pk−1. So at this point |Pk−1 |≤ λ .
Step 9: Set Q← Q∪{S(t)}, Q+← Q+∪{S(t)}∪Pk−1 and t← t +1.
Step 10: For each feasible solution S∈Pk−1, if f (S)> f (S∗) holds, then set S∗← S.
Return to Step 2.

computational cost and the benefit of obtaining lower bounds of high quality. Thus,
if | Σ |> κ , then we keep at most κ elements with the largest pi values which is given
by equation (10). Step 7 defines the set Pk−1 ⊆ 2Σ. From all elements in Pk−1 we
keep only those with cardinality at most k−1 and calculate their function values. In
Step 8, based on their function values we keep at most λ elements in Pk−1, where λ

is another control parameter of the algorithm.
The motivation behind Steps 5 - 8 is based on the following facts. Firstly, in

contrast to ICG and GCG, we do not iterate any sub-algorithm inside the main algo-
rithm, which could lead to less computational time. Secondly, in order to select the
elements (i.e., nodes of the input graph) for Σ we use the pi values, which are based
on the degree properties of the input graph. Finally, the algorithm generates a good
amount of promising feasible solutions, and, similarly to ICG, these solutions can
help decreasing the upper bound of problem (2), see (7). This depends on the strategy
to be used for keeping the elements in Pk−1 in Step 8. Note that in our experiments
we used the strategy of keeping the elements with the smallest function values, as
this turned out to be numerically efficient, see Section 5.

5 Numerical experiments

5.1 Computational environment
The implementation of all the investigated algorithms and models were done in
AMPL [28]. For the numerical experiments the solver CPLEX 20.1.0.0 was used
with the default options. The computer used had Intel Core CPU i5-6500 at 3.20GHz
with 64G memory running Ubuntu Linux 22.04.
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5.2 Test graphs
The authors of [1] made the graphs they used in their paper available online, thus for
benchmarking the proposed methods we used those instances for the LOC and the
COV problems. For the INF problems we generated new random graphs because the
original graphs become rather easy to solve, all of the algorithms attain the optimal
solutions. Our bipartite INF graphs were generated using Erdős-Rényi model with
probability p = 0.3 probability. Note that [26] also used p = 0.3 in their experiments,
whereas in [1] the parameter p = 0.1 was used resulting sparser graphs.

Following the approach in [1] we had:

• N = 20,30,40,50,60 for LOC instances and N = 20,40,60,80,100 for COV and
INF instances;

• M = N +1 and k = 5,8 for LOC, COV and INF.
• For LOC instances, gi j is a random value taken from interval [0,1];
• for COV instances, a sensor j ∈ N randomly covers an item i ∈M with probability

0.15, and wi is a random value taken from interval [0,1]; and
• for INF instances, p j is a random value taken from the interval [0,1].
• We had λ = 10 · k.
• Finally, for controlling the cardinality of set Σ in ECG we had κ = 12 based on

computational results of prior experiments.
• Note that all the random parameters were generated with uniform distribution.

Regarding the analysis of the parameters λ and κ we have created a Supplemen-
tary Information file which is available online [29].

5.3 Benchmarking results
The results are summarized in Tables 2 - 9. For each class 5 problem instances were
tested, indicated in the last digit of the name of the instance. For every instance all the
algorithms were run 5 times using different random seeds for the heuristics choices.
The time limit was set to two hours (7 200 seconds). The solution of the greedy
algorithm was the the input initial feasible solution S(0) for every algorithm.

Tables 2 - 7 report the average running times (in seconds) and the mean values
of the number of iterations (in brackets). The cases when an algorithm was running
out of the time limit is indicated by the� symbol. Note that in these cases the num-
ber of iterations is not reported. Those cases when an algorithm was able to solve
the problem for less than 5 different runs are indicated with a star (⋆) next to the
reported running time. Only those instances are reported for which we had at least
one algorithm solving the problem at least one of the cases.

Tables 8 and 9 report the mean relative gap2 and that how many times the algo-
rithm was not able to solve the instance out of the 5 independent runs (in brackets).
Note that only those instances are reported for which we had at least one algorithm
which was running out of time at least once.

In the following we give detailed analysis of the reported results. The perfor-
mance metrics of the proposed algorithms are discussed for the benchmark problems.

2(zUB− zLB)/zLB×100, where zUB and zLB are the upper and lower bounds reported by the algorithms, respectively
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Table 2 Results for LOC k = 5. Mean running time in seconds (avg. nr. of iterations in brackets)

graphs ICG ICG(k−1) GCG ECG

L.20.5.1 0.96 (9.4) 0.75 (8.6) 0.50 (5.6) 0.49 (5.0)
L.20.5.2 0.34 (5.8) 0.29 (5.0) 0.27 (3.8) 0.21 (3.0)
L.20.5.3 0.34 (5.8) 0.23 (4.4) 0.25 (4.0) 0.15 (2.0)
L.20.5.4 0.16 (3.4) 0.19 (4.0) 0.18 (3.0) 0.12 (2.0)
L.20.5.5 0.36 (5.6) 0.33 (5.0) 0.29 (4.2) 0.24 (3.0)

L.30.5.1 8.24 (17.8) 3.75 (12.8) 3.42 (10.4) 2.31 (8.0)
L.30.5.2 5.33 (16.6) 1.89 (10.8) 1.76 (8.6) 1.15 (6.0)
L.30.5.3 4.16 (14.4) 1.85 (10.4) 1.78 (8.2) 1.35 (6.0)
L.30.5.4 6.94 (18.4) 3.26 (13.2) 2.24 (9.6) 2.59 (10.0)
L.30.5.5 2.34 (12.2) 1.39 (10.0) 1.21 (7.0) 1.48 (7.0)

L.40.5.1 50.97 (27.6) 22.63 (22.0) 15.39 (16.2) 13.77 (15.0)
L.40.5.2 267.48 (49.0) 54.18 (30.0) 43.23 (25.6) 26.36 (21.0)
L.40.5.3 531.63 (54.4) 79.39 (32.4) 66.00 (27.4) 30.49 (19.0)
L.40.5.4 95.76 (38.2) 28.15 (24.8) 19.96 (19.0) 12.44 (15.0)
L.40.5.5 469.13 (58.4) 57.55 (31.2) 50.59 (26.6) 39.25 (24.0)

L.50.5.1 836.00 (57.2) 180.02 (35.2) 109.65 (28.2) 107.15 (25.0)
L.50.5.2 2 502.17 (81.8) 423.52 (47.0) 300.89 (37.0) 185.98 (29.0)
L.50.5.3 4 206.50 (89.8) 511.73 (46.4) 413.37 (38.0) 396.25 (37.0)
L.50.5.4 183.40 (35.8) 51.46 (25.2) 31.78 (18.6) 26.12 (16.0)
L.50.5.5 6 621.33 (22.4) 1079.33 (64.4) 776.84 (52.0) 490.68 (42.4)

L.60.5.1 � (−) 6 016.81 (84.6) 4 988.19 (96.6) 3 217.13 (75.0)
L.60.5.2 � (−) 1 643.06 (69.4) 1 351.41 (60.8) 1 030.39 (52.0)
L.60.5.3 485.37 (40.8) 184.59 (30.4) 128.39 (24.0) 143.99 (27.0)
L.60.5.4 � (−) 4 394.68 (92.4) 3 075.40 (75.4) 1 968.20 (62.0)
L.60.5.5 170.65 (30.4) 66.25 (22) 49.76 (16.6) 51.67 (19.0)

For the different k values we compare our methods with ICG. The result of the fastest
algorithm is indicated with boldface.

LOC, k = 5. The results are reported in Table 2. The ICG(k−1) algorithm reduced
the running time for almost all the cases (except once). To be precise, it was 3.46
times faster on average than ICG and it reduced the number of iterations to 82.62%.
Furthermore, GCG was 4.49 times faster on average and reduced the number of iter-
ations to 64.77%, while ECG was 6.10 times faster than ICG and the number of
iterations were almost halved (53.71%). There are three cases where GCG was faster
than ECG.

The relative gap values for those three graphs for which the ICG did not get the
results are reported in Table 8. We can see that the gaps were below 1%.

LOC, k = 8. The results are reported in Table 3. Generally, the ICG(k−1) obtained
the result 1.79 times faster while the number of iteration was 94.76% of the ICG’s
iterations. GCG was 2.58 times faster and the number of iterations was reduced to
76.83%. Note that while ECG reduced the iterations to a similar extent (76.21%), it
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Table 3 Results for LOC k = 8. Mean running time in seconds (avg. nr. of iterations in brackets)

graphs ICG ICG(k−1) GCG ECG

L.20.8.1 0.34 (3.6) 0.31 (4.0) 0.26 (3.2) 0.78 (2.0)
L.20.8.2 0.27 (3.2) 0.30 (4.0) 0.27 (3.0) 1.75 (4.0)
L.20.8.3 0.20 (2.2) 0.19 (3.0) 0.15 (2.0) 0.81 (2.0)
L.20.8.4 0.24 (3.0) 0.25 (4.0) 0.25 (3.0) 1.43 (3.0)
L.20.8.5 0.23 (3.0) 0.20 (3.0) 0.26 (3.0) 0.97 (3.0)

L.30.8.1 35.93 (25.6) 14.65 (17.0) 10.04 (13.8) 17.15 (12.0)
L.30.8.2 2.30 (7.0) 1.65 (6.8) 1.44 (5.4) 6.69 (6.0)
L.30.8.3 2.62 (7.8) 2.05 (7.8) 1.81 (6.4) 6.65 (7.0)
L.30.8.4 8.56 (12.6) 7.08 (12.4) 5.18 (10.2) 14.48 (10.0)
L.30.8.5 1.45 (6.2) 1.45 (6.6) 1.15 (5.2) 5.24 (5.0)

L.40.8.1 1 502.32 (48.0) 563.23 (34.2) 323.94 (29.8) 568.86 (35.4)
L.40.8.2 3 831.26 (71.8) 1 108.92 (46.4) 598.51 (35.8) 429.17 (35.0)
L.40.8.3 76.76 (18.4) 35.70 (15.8) 19.96 (13.0) 38.46 (13.0)
L.40.8.4 229.16 (30.0) 78.09 (23.0) 47.64 (19.2) 76.09 (20.0)
L.40.8.5 147.42 (28.2) 56.17 (20.8) 47.54 (18.4) 55.27 (14.0)

L.50.8.1 � (−) � (−) 6 357.27 (47.2) 6 186.57 (62.0)
L.50.8.2 3 483.92 (50.0) 1 359.93 (37.6) 1 010.56 (33.8) 946.79 (31.0)
L.50.8.3 556.33 (24.2) 360.34 (21.6) 218.02 (18.2) 149.28 (17.0)
L.50.8.5 � (−) � (−) 6 936.66⋆ (64.5) � (−)

was faster only by 1.86 times compared to ICG. This confirms the fact that the tech-
nical time for generating the set of sets in the ECG increases when k = 8 (compared
to k = 5), since GCG is faster with almost the same number of iterations.

For those instances which were not solved by any of the tested algorithms we
can compare the relative gap values, as reported in Table 8. Note that none of the
algorithms were able to solve the N = 60 problems. Most of the cases all of our algo-
rithms achieved a smaller gap than ICG. Overall, the relative gaps remained below
1% for all reported problems.

COV, k = 5. The results are reported in Table 4. All of our proposed algorithms
were able to solve the instances within the time limit, whereas ICG was running out
of time for 7 cases, mostly for the largest dimensional problems (for these problems
the relative gaps are reported in Table 8). For the successful instances, GCG was able
to speed-up the running time the most, it was 5.10 times faster, while the iterations
were decreased to 48.39% compared to ICG. Next was ICG(k− 1) with 3.79 times
speed-up and 70.82% reduction in the number of iterations. ECG was 3.23 times
faster and solved the problems in less than half (49.46%) iterations.

COV, k = 8. The results are reported in Table 5. In this scenario GCG is the only
one which is overall faster than ICG. Namely, GCG was 1.06 faster and reduced the
number of iterations to 93.56%. ICG(k−1) was 0.87 slower whereas ECG was 0.49
slower than ICG. Even the number of iterations increased. Note that this is the only
group of problems where the baseline ICG algorithm showed better performance
metrics in some of the cases.
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Table 4 Results for COV k = 5. Mean running time in seconds (avg. nr. of iterations in brackets)

graphs ICG ICG(k−1) GCG ECG

C.20.5.1 0.11 (3.0) 0.11 (3.0) 0.08 (2.0) 0.10 (2.0)
C.20.5.2 0.10 (3.0) 0.10 (3.0) 0.07 (2.0) 0.11 (2.0)
C.20.5.3 0.15 (4.4) 0.09 (3.0) 0.09 (2.0) 0.09 (2.0)
C.20.5.4 0.14 (4.0) 0.10 (3.0) 0.08 (2.0) 0.08 (2.0)
C.20.5.5 0.10 (2.4) 0.10 (3.0) 0.08 (2.0) 0.10 (2.0)

C.40.5.1 1.49 (8.4) 0.77 (6.0) 0.68 (4.4) 1.33 (5.0)
C.40.5.2 2.04 (9.0) 0.95 (7.2) 1.02 (5.2) 1.32 (5.0)
C.40.5.3 1.48 (9.0) 0.73 (6.0) 0.52 (3.8) 0.93 (4.0)
C.40.5.4 4.07 (13.0) 1.16 (7.4) 1.23 (6.0) 1.29 (5.0)
C.40.5.5 3.11 (11.8) 0.79 (6.4) 0.81 (4.6) 1.01 (4.0)

C.60.5.1 36.29 (20.6) 9.39 (13.0) 8.11 (9.2) 11.02 (9.0)
C.60.5.1 29.78 (18.6) 11.54 (14.2) 8.23 (9.4) 8.79 (8.0)
C.60.5.1 22.26 (16.2) 8.37 (11.4) 4.19 (6.8) 8.43 (8.0)
C.60.5.1 34.15 (20.6) 8.43 (12.2) 6.21 (8.6) 10.73 (9.0)
C.60.5.1 95.97 (29.0) 18.70 (16.8) 11.08 (10.6) 24.61 (14)

C.80.5.1 5 296.05 (85.6) 339.04 (34.8) 273.19 (29.0) 398.06 (29.0)
C.80.5.2 � (−) 666.73 (48.8) 489.90 (39.4) 941.31 (44.0)
C.80.5.3 168.03 (26.4) 26.40 (15.4) 19.08 (10.4) 43.37 (12.0)
C.80.5.4 � (−) 718.39 (46.2) 523.22 (35.4) 780.66 (38.0)
C.80.5.5 534.24 (38.6) 63.66 (19.8) 37.34 (12.6) 69.62 (15.0)

C.100.5.1 � (−) 676.98 (41.2) 377.66 (28.2) 756.57 (35.0)
C.100.5.2 � (−) 904.86 (44.0) 452.01 (28.2) 1 018.30 (35.4)
C.100.5.3 � (−) 498.38 (36.8) 405.62 (28.6) 555.21 (29.0)
C.100.5.4 � (−) 1 331.61 (49.0) 973.07 (37.0) 2 906.53 (49.0)
C.100.5.5 � (−) 1 446.34 (52.8) 997.95 (39.0) 1 781.81 (43.0)

The same phenomenon can be seen when examining the relative gap values, see
Table 8. Compared to ICG, the ICG(k−1) and ECG resulted in larger average gaps,
only GCG ended up with smaller gaps on average.

INF, k = 5. The results are shown in Table 6. The ICG algorithm could not solve
the cases where N = 60,80,100 (except one of them). Notably, the most efficient
algorithm on these problems were ECG in terms of overall running time and success
rate, as it was able to solve all the instances. Compared to the baseline (where ICG
was able to finish within the time limit) the average running time of ECG was 296.24
times faster, and the iteration number decreased to 24.09%. The other two variants,
ICG(k−1) and GCG also had nice results: ICG(k−1) was 14.94 times faster and the
number of iteration decreased to 39.23%, while the speed up of GCG was 20.26 with
iteration’s ratio of 27.30%.

Investigating the gap values, as reported in Table 9, we can see that the results of
ICG show the biggest gaps, for the larger dimensional instances it even goes above
10%. The ICG(k−1) variant resulted much smaller relative gaps, and GCG also had
tighter final results than ICG.
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Table 5 Results for COV k = 8. Mean running time in seconds (avg. nr. of iterations in brackets)

graphs ICG ICG(k−1) GCG ECG

C.20.8.1 0.14 (2.2) 0.08 (2.0) 0.11 (2.0) 0.62 (2.0)
C.20.8.2 0.05 (1.0) 0.05 (1.0) 0.05 (1.0) 0.05 (1.0)
C.20.8.3 0.05 (1.0) 0.05 (1.0) 0.05 (1.0) 0.05 (1.0)
C.20.8.4 0.10 (2.0) 0.07 (2.0) 0.10 (2.0) 0.21 (2.0)
C.20.8.5 0.09 (2.0) 0.08 (2.0) 0.13 (2.0) 0.20 (2.0)

C.40.8.1 1.23 (4.6) 1.24 (4.8) 0.80 (3.2) 9.20 (4.8)
C.40.8.2 0.42 (3.0) 0.39 (3.2) 0.35 (2.4) 5.15 (3.4)
C.40.8.3 1.24 (4.4) 8.76 (6.8) 4.23 (4.2) 14.97 (5.6)
C.40.8.4 0.88 (4.0) 1.12 (4.6) 0.81 (3.2) 7.41 (4.2)
C.40.8.5 0.06 (1.0) 0.06 (1.0) 0.06 (1.0) 0.07 (1.0)

C.60.8.1 21.25 (7.0) 44.72 (8.4) 32.16 (6.6) 136.43 (10.8)
C.60.8.2 0.09 (1.0) 0.08 (1.0) 0.08 (1.0) 0.09 (1.0)
C.60.8.3 0.08 (1.0) 0.08 (1.0) 0.08 (1.0) 0.09 (1.0)
C.60.8.4 7.63 (6.6) 12.43 (7.2) 10.94 (5.4) 52.95 (8.0)
C.60.8.5 11.78 (6.8) 11.16 (7.6) 7.09 (5.6) 51.11 (8.4)

C.80.8.1 284.70 (10.4) 621.12 (14.2) 276.53 (9.6) 705.20 (13.4)
C.80.8.2 470.94 (14.0) 579.62 (16.2) 380.11 (13.8) 721.66 (17.4)
C.80.8.3 199.77 (11.4) 362.43 (14.4) 221.57 (11.4) 546.51 (15.2)
C.80.8.4 1 529.46 (18.4) 2 067.69 (22.2) 1 010.48 (17.8) 2 382.21 (22.6)
C.80.8.5 188.68 (11.4) 361.91 (15.0) 194.43 (11.0) 473.23 (14.6)

C.100.8.1 2 797.19 (19.0) 4 166.53 (22.8) 2 054.98 (17.8) 5 078.67 (24.6)
C.100.8.2 5 483.76 (22.4) � (−) 4 686.29 (23.8) 6 596.13⋆ (27.0)
C.100.8.3 � (−) � (−) � (−) � (−)
C.100.8.4 � (−) � (−) � (−) � (−)
C.100.8.5 � (−) � (−) 6 113.83⋆ (−) � (−)

INF, k = 8. These are the problem instances which were the most difficult ones for
the tested algorithms. As it can be seen in Table 7, the algorithms could solve only the
smallest graphs (N = 20) and some of the graphs with N = 40. ECG is the only one
which could solve all the problems where N ≤ 40. However, examining the relative
gap values in Table 9 we can see that the results of the ECG were not the smallest
ones and even ICG obtained tighter gaps in some instances. Overall, GCG achieved
the best gap values.

6 Conclusions
We proposed three different algorithm variants for the non-decreasing submodular
function maximization problem based on a MIP formulation using constraint gener-
ation approach. The work was inspired by a recent paper by [1], named as ICG as it
is an improved version of the standard constraint generation method. We presented
an algorithm, ICG(k−1), which uses sets of cardinality k−1, where we calculate the
case when adding the k-th element to the set with (8). Another idea was to exploit
the structural properties of the input graph to select nodes, we called the algorithm as
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Table 6 Results for INF k = 5. Mean running time in seconds (avg. nr. of iterations in brackets)

graphs ICG ICG(k−1) GCG ECG

I.20.5.1 0.35 (7.2) 0.14 (4.0) 0.06 (2.0) 0.16 (4.0)
I.20.5.2 2.71 (16.0) 0.65 (7.8) 0.45 (5.4) 0.23 (5.0)
I.20.5.3 0.83 (9.6) 0.27 (5.0) 0.14 (3.0) 0.17 (4.0)
I.20.5.4 1.12 (13.4) 0.21 (5.0) 0.17 (3.2) 0.10 (3.0)
I.20.5.5 0.63 (9.8) 0.12 (3.4) 0.10 (2.6) 0.09 (3.0)

I.40.5.1 � (−) 211.64 (57.4) 155.88 (45.4) 5.91 (17.0)
I.40.5.2 1 230.13 (101.0) 68.32 (35.4) 51.35 (29.2) 5.91 (16.0)
I.40.5.3 2 517.61 (114.6) 77.88 (35.4) 62.79 (29.4) 2.57 (11.0)
I.40.5.4 2 036.73 (131.2) 62.04 (37.2) 42.11 (27.8) 3.51 (13.0)
I.40.5.5 2 420.70 (121.6) 84.12 (38.8) 71.94 (33.0) 3.84 (13.0)

I.60.5.1 � (−) 1 872.07 (87.4) 1 447.89 (71.6) 14.06 (19.0)
I.60.5.2 � (−) � (−) � (−) 99.67 (41.0)
I.60.5.3 � (−) � (−) 7 122.45⋆ (138.0) 46.91 (31.0)
I.60.5.4 4 115.66 (112.0) 239.77 (42.2) 158.94 (30.2) 7.81 (15.0)
I.60.5.5 � (−) 5 101.47 (132.2) 4 346.57 (117.2) 38.17 (30.0)

I.80.5.1 � (−) � (−) � (−) 63.90 (29.0)
I.80.5.2 � (−) � (−) � (−) 631.07 (73.0)
I.80.5.3 � (−) � (−) � (−) 137.34 (42.0)
I.80.5.4 � (−) � (−) � (−) 543.79 (70.0)
I.80.5.5 � (−) � (−) � (−) 137.87 (43.0)

I.100.5.1 � (−) � (−) � (−) 693.71 (66.0)
I.100.5.2 � (−) � (−) � (−) 1 674.73 (99.0)
I.100.5.3 � (−) � (−) � (−) 655.78 (65.0)
I.100.5.4 � (−) � (−) � (−) 1 715.59 (98.0)
I.100.5.5 � (−) � (−) � (−) 636.56 (64.0)

Table 7 Results for INF k = 8. Mean running time in seconds (avg. nr. of iterations in brackets)

graphs ICG ICG(k−1) GCG ECG

I.20.8.1 4.44 (12.6) 1.97 (8.6) 2.10 (8.0) 1.87 (8.0)
I.20.8.2 1.58 (8.0) 0.95 (6.4) 0.64 (4.6) 2.80 (11.0)
I.20.8.3 1.28 (7.4) 0.71 (5.6) 0.97 (6.0) 1.34 (7.0)
I.20.8.4 2.61 (10.6) 1.27 (7.6) 1.01 (5.8) 0.93 (6.0)
I.20.8.5 13.37 (21.6) 3.91 (11.8) 2.67 (9.0) 3.28 (11.0)

I.40.8.1 � (−) � (−) � (−) 4 111.21 (60.0)
I.40.8.2 � (−) � (−) 6 658.51 (78.0) 2 538.11 (55.0)
I.40.8.3 � (−) � (−) � (−) 6 242.53 (78.0)
I.40.8.4 � (−) � (−) � (−) 2 256.41 (56.0)
I.40.8.5 � (−) 6 871.58 (81.0) 5 548.98 (73.0) 1 369.95 (50.0)
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Table 8 Relative gaps for LOC and COV problems (number of unsuccessful runs in brackets)

graph ICG ICG(k−1) GCG ECG

L.60.5.1 0.58 (5) 0.00 (0) 0.00 (0) 0.00 (0)
L.60.5.2 0.12 (5) 0.00 (0) 0.00 (0) 0.00 (0)
L.60.5.4 0.46 (5) 0.00 (0) 0.00 (0) 0.00 (0)

L.50.8.1 0.27 (5) 0.10 (5) 0.00 (0) 0.00 (0)
L.50.8.4 0.26 (5) 0.22 (5) 0.11 (5) 0.20 (5)
L.50.8.5 0.22 (5) 0.02 (5) 0.02 (2) 0.09 (5)

L.60.8.1 0.39 (5) 0.33 (5) 0.17 (5) 0.29 (5)
L.60.8.2 0.33 (5) 0.38 (5) 0.16 (5) 0.18 (5)
L.60.8.3 0.26 (5) 0.25 (5) 0.21 (5) 0.34 (5)
L.60.8.4 0.77 (5) 0.93 (5) 0.50 (5) 0.70 (5)
L.60.8.5 0.77 (5) 0.71 (5) 0.62 (5) 0.57 (5)

C.80.5.2 0.76 (5) 0.00 (0) 0.00 (0) 0.00 (0)
C.80.5.4 0.55 (5) 0.00 (0) 0.00 (0) 0.00 (0)

C.100.5.1 0.43 (5) 0.00 (0) 0.00 (0) 0.00 (0)
C.100.5.2 0.42 (5) 0.00 (0) 0.00 (0) 0.00 (0)
C.100.5.3 0.28 (5) 0.00 (0) 0.00 (0) 0.00 (0)
C.100.5.4 1.33 (5) 0.00 (0) 0.00 (0) 0.00 (0)
C.100.5.5 1.69 (5) 0.00 (0) 0.00 (0) 0.00 (0)

C.100.8.2 0.00 (0) 0.13 (5) 0.00 (0) 0.15 (3)
C.100.8.3 1.49 (5) 1.79 (5) 1.41 (5) 1.29 (5)
C.100.8.4 1.84 (5) 2.94 (5) 1.96 (5) 2.55 (5)
C.100.8.5 0.54 (5) 0.93 (5) 0.45 (4) 0.95 (5)

GCG. Finally, we proposed ECG which generates the subsets of sets instead of use
an iterative sub-algorithm.

According to our benchmarking results, we cannot declare a winner among
the algorithms and this is not surprising as the investigated problem is NP-hard.
However, for every instances there exists at least one of our algorithms which is
computationally more efficient than the ICG algorithm.
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Table 9 Relative gaps for INF problems (number of unsuccessful runs in brackets)

graph ICG ICG(k−1) GCG ECG

I.40.5.1 0.29 (5) 0.00 (0) 0.00 (0) 0.00 (0)

I.60.5.1 2.94 (5) 0.00 (0) 0.00 (0) 0.00 (0)
I.60.5.2 6.39 (5) 1.35 (5) 1.02 (5) 0.00 (0)
I.60.5.3 5.92 (5) 1.17 (5) 0.82 (4) 0.00 (0)
I.60.5.5 4.71 (5) 0.00 (0) 0.00 (0) 0.00 (0)

I.80.5.1 5.38 (5) 1.27 (5) 0.71 (5) 0.00 (0)
I.80.5.2 9.91 (5) 5.39 (5) 4.83 (5) 0.00 (0)
I.80.5.3 8.26 (5) 3.74 (5) 3.16 (5) 0.00 (0)
I.80.5.4 10.89 (5) 6.19 (5) 5.46 (5) 0.00 (0)
I.80.5.5 7.83 (5) 3.26 (5) 2.67 (5) 0.00 (0)

I.100.5.1 11.48 (5) 1.42 (5) 6.16 (5) 0.00 (0)
I.100.5.2 11.44 (5) 1.58 (5) 6.72 (5) 0.00 (0)
I.100.5.3 10.79 (5) 1.60 (5) 7.43 (5) 0.00 (0)
I.100.5.4 13.31 (5) 1.79 (5) 8.43 (5) 0.00 (0)
I.100.5.5 10.98 (5) 1.36 (5) 6.00 (5) 0.00 (0)

I.40.8.1 2.33 (5) 1.07 (5) 0.89 (5) 0.00 (0)
I.40.8.2 1.10 (5) 0.19 (5) 0.07 (3) 0.00 (0)
I.40.8.3 1.83 (5) 1.04 (5) 0.80 (5) 0.00 (0)
I.40.8.4 1.03 (5) 1.02 (5) 0.00 (0) 0.00 (0)
I.40.8.5 0.91 (5) 0.62 (3) 0.00 (0) 0.00 (0)

I.60.8.1 7.36 (5) 6.79 (5) 6.23 (5) 6.50 (5)
I.60.8.2 7.98 (5) 7.68 (5) 7.31 (5) 8.95 (5)
I.60.8.3 8.57 (5) 8.16 (5) 7.50 (5) 8.43 (5)
I.60.8.4 3.35 (5) 2.96 (5) 2.66 (5) 3.51 (5)
I.60.8.5 6.21 (5) 5.65 (5) 5.36 (5) 6.59 (5)

I.80.8.1 9.12 (5) 8.57 (5) 8.15 (5) 9.23 (5)
I.80.8.2 10.21 (5) 9.91 (5) 9.35 (5) 11.06 (5)
I.80.8.3 9.33 (5) 9.19 (5) 8.72 (5) 10.22 (5)
I.80.8.4 8.58 (5) 8.23 (5) 7.79 (5) 9.56 (5)
I.80.8.5 10.24 (5) 10.18 (5) 9.49 (5) 10.45 (5)

I.100.8.1 14.12 (5) 14.11 (5) 13.40 (5) 15.29 (5)
I.100.8.2 12.59 (5) 13.01 (5) 12.56 (5) 14.49 (5)
I.100.8.3 13.87 (5) 13.78 (5) 13.17 (5) 15.78 (5)
I.100.8.4 13.06 (5) 13.01 (5) 12.51 (5) 14.65 (5)
I.100.8.5 13.50 (5) 13.41 (5) 13.08 (5) 15.24 (5)
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