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Abstract. Population based global optimization methods can be ex-
tended by properly defined networks in order to explore the structure
of the search space, to describe how the method performed on a given
problem and to inform the optimization algorithm so that it can be more
efficient. The memetic differential evolution (MDE) algorithm using lo-
cal optima network (LON) is investigated for these aspects. Firstly, we
report the performance of the classical variants of differential evolution
applied for MDE, including the structural properties of the resulting
LONs. Secondly, a new restarting rule is proposed, which aims at avoid-
ing early convergence and it uses the LON which is built-up during the
evolutionary search of MDE. Finally, we show the promising results of
this new rule, which contributes to the efforts of combining optimization
methods with network science.
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1 Introduction

Consider the global optimization problem

min
x∈D⊂IR

f(x), (1)

where f is a continuous function, which we aim to solve by the usage of memetic
differential evolution (MDE) [10]. Recent benchmarking results [1, 5] show the
promising efficiency of MDE over challenging optimization problems. Differential
evolution (DE) is a well known iterative, population based algorithm [12] using
only the function value of f as information. Memetic approaches use local opti-
mization method in each and every iteration, hence the population members are
always local optima of the objective function [7, 9]. MDE is a simple extension
of DE, the formal description of the algorithm is the following.

1. Start with a random population {p1, . . . ,pm} (pi ∈ Rn).
2. For each pi iterate until the stopping conditions hold:



(a) Select three pairwise different elements from the population: pj ,pk,pl,
all different from pi.

(b) Let c = pj + F · (pk − pl) be a candidate solution.
(c) Modify vector c applying a CR-crossover using vector pi.
(d) Execute a local search from vector c.
(e) Replace vector pi with vector c if f(c) ≤ f(pi) holds.

As it can be seen, MDE has some parameters: m is the population size, F ∈ (0, 2)
is the differential weight and CR ∈ (0, 1) is the crossover probability. In Step 2(c)
the CR-crossover for the candidate solution c ∈ Rn means that for all dimensions
of c a number r is generated uniform at random in (0, 1). If r > CR then the
dimension of c is made equal to the same dimension of pi. To guarantee getting
a new vector c, the CR-crossover is skipped for a randomly selected dimension,
so the linear combination of the three other vectors in this dimension is kept.

Our contributions can be summarized as follows. First, we numerically in-
vestigate the classical x/y/z variants in the context of MDE. Then the MDE
algorithm gets extended by the concept of local optima network (LON). In gen-
eral, LONs are graphs, in which the nodes correspond to local optima of the
optimization problem and the edges represent useful information either related
to the problem (e.g. critical points of f) or to the optimization method in use.
Similarly to our earlier work [4], the directed edges of MDE LONs are formed
in such a way that they represent parent-child relation. Thus at the end of the
MDE run, we obtain a graph representation of how the method discovered the
landscape of the optimization problem. Apart from the standard performance
metrics, we also report and compare certain characteristics of the resulting LONs
using some global metrics. One of the detailed analysis is to show the relation be-
tween the function values of nodes and the function values of their out-neighbors.
Based on this and some graph properties we propose an extension to the MDE
which can lead to better performance on the test functions used in this paper.

2 Definitions

2.1 Strategies

The most popular DE variants which apply different strategies are distinguished
by the notation DE/x/y/z, where

– x specifies the solution to be perturbed, and it can be either rand or best,
i.e., a random one or the current best solution.
In the above algorithm description it defines the way to choose pj in Step
2(a).

– y specifies the number of difference vectors (i.e. the difference between two
randomly selected and distinct population members) to be used in the per-
turbation done in Step 2(b), and its typical values are either 1 or 2.
The choice y = 1 is considered as default and hence Step 2(a) and 2(b) are
as already given in the description. In case of y = 2, then besides pk and pl,
further two vectors, pm and pn are also selected in order to create another
differential vector.



– z identifies which probability distribution function to be used by the crossover
operator: either bin (as binomial) or exp (as exponential).
In bin choose randomly a dimension index d. In Step 2(c) the vector c mod-
ified as for every e 6= d index let ce := pie with CR probability.
In exp choose randomly a dimension index d. Starting from d, step over ev-
ery e dimension and modify ce to pie . In every step with 1−CR probability
finish the modification.

2.2 Local optima network

As it was already briefly described in the Introduction, given problem (1) a
local optima network (LON) is a graph in which the vertices are local optima
of function f and the edges are defined between vertices separated by a critical
point [13]. It is important to note that other kind of LONs can also be introduced
which then specifically depend on the optimization method in use as well. In our
work two vertices (local optimizers) are connected if they are in parent-child
relation, i.e., the parent vertex is the target vector, the base vector or a member
from the differential vector(s) and the child vertex is the result of the MDE
iteration with the mentioned vectors. The edges are directed to the children.
Loops are allowed, and the LON can be weighted to represent multi-edges.

Another possibility has been developed and analyzed in [11] for DE in which
the nodes are the population members and the weighted edges also represent
parent-child relation. However, the resulting network captures the evolution of
the population members, rather than the detection of the local optima.

2.3 Network measures

It is expected that different MDE variants lead to different LONs at the end of
their runs. In order to characterize these differences we can use global measures
to characterize the entire graph, which are the followings.

– The number of nodes (N) and edges (M);
– the diameter (D) is the length of the longest of all directed shortest paths;
– and the average degree (d) (the average in-degree is equal to the average

out-degree).

Larger N value means more local optima found. The diameter corresponds to
the maximal number of times when Step 2(e) gets fulfilled for a given population
member. Finally, for the average degree, for the y = 1 and y = 2 variants d < 3.5
and respectively d < 5 is an indication of early convergence.

3 Benchmarking the classic variants

The MDE and the LON creator and analyzer was implemented in Python with
Pyomo [3] and NetworkX [2] packages. The local solver in MDE was MINOS [8].



3.1 Test functions

Following the numerical experiments done in [1, 5] we tested the MDE variants
on two test functions:

– Rastrigin:

fR(x) = 10n+

n∑
i=1

(x2i − 10 cos(2πxi)), x ∈ [−5.12, 5.12]n,

which is a single-funnel function with 10n local minimizers, and its global
minimum value is 0.

– Schwefel:

fS(x) =
n∑

i=1

−xi sin(
√
|xi|), x ∈ [−500, 500]n,

which is a highly multi-funnel function with 2n funnel bottom, and its global
minimum value is −418.98129n.

In fact, we used modified versions of these functions, namely we applied
shifting and rotation of Rastrigin: fR(W(x − x)), and rotation on Schwefel:
fS(W(x)), where W is an n-dimensional orthogonal matrix, and x is an n-
dimensional shift vector. These transformations result in even more challenging
test functions, as they are non-separable and their global minimizer points do
not lie in the center of their search space (as in the original versions).

3.2 Performance Metrics

After fixing the shift vectors and the rotation matrices for the test functions we
executed K = 50 independent runs for all MDE variations. The performance
metrics used to compare their efficiency are the followings.

– S is the percentage of success, i.e. how many times we reached the global
minimizer;

– ’Best’ is the best function value found out of K runs;

– ’Avg’ is the average of function values;

– ’Adf’ is the average distance between the found function value and the global
optimum value in those runs where a failure occurred [5];

– ’LS’ is the average number of local searches per successful run;

– ’SP’ is the success performance [1], which is calculated as

mean(# local searches over successful runs)× K

# successful runs
.

Note that for all metrics, but for S, lower number indicates better performance.



3.3 Stop Conditions

The following stopping conditions were used:

– the sum of pairwise differences of the current population members’ values
less than 10−4;

– the population members had not replaced over the last 100 iterations;
– the best founded value did not changed during the last 20,000 local searches

(# iterations × m, where m is the population size).

3.4 Results

As it was already mentioned, we executed K = 50 independent runs for every
variants. Both the dimension and the population size was fixed to 20. The MDE
parameters were set up as F = 0.5 and CR = 0.1 in all experiments.

For the Rastrigin function the tested strategies resulted in different perfor-
mance metrics as it can be seen in Table 1. The most successful is the rand/2/bin
variant as it was able to find the global optimum in all cases. Overall the rand/y/z
strategies did quite well, except the rand/1/exp which resulted in the highest SP
value. Among the best/x/y ones the best/2/bin got the highest success rate and
the lowest SP value, whereas the best/1/exp did not succeed at all. Regarding the
LONs we can notice that the x/2/z strategies led to larger graphs, as expected.
This is a clear indication that these versions discover wider regions during the
optimization runs. Note that larger LONs, such as rand/2/z have not resulted
in larger diameters. The small size LONs of the best/1/z strategies and their low
average degree are evidences of early convergence to local optima.

Table 1. Performance and graph metrics for rotated and shifted Rastrigin-20

rule S Best Avg Adf LS SP N M D d

best/1/bin 4 0 6.10 6.35 490 12250 358.5 1345.7 10.8 3.74
best/1/exp 0 1.98 10.51 10.5 ∞ ∞ 224.3 837.3 9.24 3.72
best/2/bin 44 0 0.73 1.31 1462.7 3324 1370.5 7809.7 12.52 5.69
best/2/exp 14 0 1.48 1.72 1042.8 7449 879.6 5002 12.02 5.68
rand/1/bin 54 0 0.69 1.51 1938.5 3590 1721.8 6954.0 14.38 4.03
rand/1/exp 12 0 2.54 2.88 1393 11611 1106.1 4504.6 14.22 4.07
rand/2/bin 100 0 0 0 6325 6325 6203.7 37212.3 14 5.99
rand/2/exp 92 0 0.09 1.24 3964.3 4309 3817.6 22901.3 13.38 5.99

As it was expected the Schwefel problem turned out to be much more chal-
lenging for the MDE versions, see Table 2. Only three out of eight strategies were
able to find the global optimum at least once. For this function rand/2/bin has
the largest success rate and the lowest Adf and SP values, being essentially better
than any other variants. However, the relative good performance of rand/2/bin
is related to the highest number of nodes and edges in its LONs, hence it spends
considerably more computational time than the others. An overall observation



Table 2. Performance and graph metrics for rotated Schwefel-20

rule S Best Avg Adf LS SP N M D d

best/1/bin 0 -7905.9 -7371.6 1007.9 ∞ ∞ 176.1 633.3 7.1 3.57
best/1/exp 0 -8142.7 -7204.9 1174.6 ∞ ∞ 100 341.7 5.9 3.39
best/2/bin 0 -8261.2 -7886.8 492.8 ∞ ∞ 1857.5 10573.4 7.5 5.64
best/2/exp 0 -8024.3 -7629.7 749.9 ∞ ∞ 821.7 4658.6 7.1 5.62
rand/1/bin 2 -8379.6 -7875.2 514.6 3520 176000 2186.8 8676.4 10.8 3.97
rand/1/exp 0 -8024.3 -7639.5 740.1 ∞ ∞ 931.7 3754.9 10.1 4.03
rand/2/bin 20 -8379.6 -8202.2 221.7 15408 77040 14946.1 88927.2 9.8 5.94
rand/2/exp 4 -8379.6 -8114.2 276.4 5530 138250 8763.3 52254.4 9.6 5.96

is that the diameters are certainly lower for the Schwefel problem than for the
Rastrigin. On the other hand, the average degree values are very similar for the
two problems.

4 MDE supported by Network Analysis

Apart from reporting the LONs and analyzing their basic characteristics, we
aim at extending the MDE algorithm with rules exploiting network properties
which provide us with rich amount of information about how the execution of
the optimization method was done. There are lots of possibilities to do so, here
we report on one of them, which turns out to be useful to guide MDE towards
better performance. Based on the analysis reported below we can propose a
modified version of MDE.

-8000 -7000 -6000 -5000 -4000 -3000-8
00

0
-7

00
0

-6
00

0
-5

00
0

-4
00

0

function value

fu
nc

tio
n 

va
lu

e 
of

 n
ei

gh
bo

ur
s

-8000 -7000 -6000 -5000 -4000

-8
00

0
-6

00
0

-4
00

0

function value

fu
nc

tio
n 

va
lu

e 
of

 n
ei

gh
bo

ur
s

Fig. 1. Function values of out-neighbors for fS with n = 20; the most successful runs
for: best/1/bin (left) and rand/1/bin (right)

During the MDE run the corresponding LON gets built-up and it is possible
to store the function values of the nodes. We can investigate the out-neighbors
of node u and compare their function values against u. Figure 1 contains two
plots of this kind, showing two different runs of two MDE variants. The x-axis



contains the function values of LON nodes with positive out-degree. Each dot
shows the function values of the out-neighbors. The straight line helps us to
notice the amount of neighbors with higher and lower function values for each
node. Having more dots above the line indicates that the MDE variant created
more children with worse function value from a given node. The side effect of this
behavior is the wider discovery of the search space, which can be quite beneficial
especially on multi-funnel functions such as Schwefel.

Although the rand/1/bin variant resulted in much larger LONs than the
best/1/bin ones, Figure 1 clearly shows that rand/1/bin has relatively much
more dots above the line than below. For the other rand/y/z variants we obtained
similar figures, and we know from Table 2 that some of these variants were able
to find the global minimizer. On the other hand, best/1/bin got stuck in a local
minimizer point and from the plot we can see the sign of greedy behavior.

The fact that more successful variants can show similar behavior for the
single-funnel Rastrigin function is shown on Figure 2. Greedy behavior for this
function could lead to better performance, nevertheless, even the most successful
run (in terms of best function value reached) of best/1/exp converged to a local
minimizer (left hand side on Figure 2).
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Fig. 2. Function values of out-neighbors for fR with n = 20; the most successful runs
for: best/1/exp (left) and rand/1/exp (right)

Based on these observations we are ready to propose an extension to MDE
using LON.

4.1 Above-Below Rule

To avoid the early converge we propose a restart-rule to be applied some mem-
bers of the population. Only the ones which generated the convergence are the
problems while the MDE did not explore enough parts of the search space, so
the nodes which have more neighbors below the line. Remove these members
from the population and add new random ones. Permanent restarting would
prevent the convergence, so the restart is applied only in every α-th iteration



of the MDE. We noticed that when the diameter of the LON is high enough,
the population visited fairly large part of the space, so it has good chances to
converge to the global optimum if we use the MDE without this modification.

We propose to extend the MDE algorithm in its Step 2 with the following
rule, which has three integer parameters, δ > 0, α > 0 and θ ≤ 0. If the diameter
of the current LON is lower than δ then in every α-th iteration for all pi do the
followings:

– collect the out-neighbors of pi into the set Ni,
– calculate the function values of the elements of Ni,
– let Na

i := {q : f(q) > f(pi)}, and N b
i := {q : f(q) < f(pi)}

– if |Na
i | − |N b

i | < θ then replace pi by a newly generated random vector.

Note that function values of the nodes are stored directly in the LON, so prac-
tically they need to be calculated only once.

4.2 Numerical experiment

Using the above introduced rule we have done extensive benchmarking in order
to see the performance indicators. Our aim was to find a combination of the three
parameters which leads to improved efficiency. Hence we did a parameter sweep:
δ ∈ [6, 9], α ∈ [3, 6], and θ ∈ [−2, 0]. The choice for the interval from which
the values of δ are taken is motivated by the fact that, according to Tables 2
and 1 the diameters of the LONs for a given MDE variant are much larger for
Rastrigin than for Schwefel, and it never goes beyond 10 for fS . On the other
hand, when population members for fR are already having function values close
to 0, then it is unwise to make MDE exploring the search space.

We report the results of the experiments for n = 20 only. According to our
findings, the combination δ = 7, α = 3, θ = −1 led to the best performance
improvements for the tested functions. The indicators are reported in Tables 3
and 4, where improved metrics are highlighted by underline.

Table 3. Performance and graph metrics for rotated and shifted Rastrigin-20 using
the new rule

rule S Best Avg Adf LS SP N M D d

best/1/bin 0 0.99 5.56 5.56 ∞ ∞ 378.1 1424.3 11.52 3.76
best/1/exp 0 1.99 17.38 17.38 ∞ ∞ 226.4 843.5 9.52 3.71
best/2/bin 60 0 0.61 1.54 1449.3 2415 1349.8 7677.1 12.88 5.68
best/2/exp 18 0 2.39 2.92 993.3 5519 879.8 4989.7 12.16 5.66
rand/1/bin 60 0 0.55 1.39 1996.0 3327 1794.4 7244.1 14.96 4.03
rand/1/exp 14 0 2.21 2.57 1411.4 10082 1110.1 4521.1 14.1 4.07
rand/2/bin 100 0 0 0 6341.6 6342 6225.1 37318.3 14.64 5.99
rand/2/exp 98 0 0.03 1.78 3897.1 3977 3776.1 22641.9 14.04 5.99

We can see that our rule improved the percentage of success (S) for the
single-funnel Rastrigin function in up to 16%, and resulted in lower average



Table 4. Performance and graph metrics for rotated and shifted Schwefel-20 using the
new rule

rule S Best Avg Adf LS SP N M D d

best/1/bin 0 -8142.7 -7685.6 693.9 ∞ ∞ 278.1 1014.3 7.3 3.63
best/1/exp 0 -8024.3 -7464.8 914.8 ∞ ∞ 149.8 532.8 6.3 3.51
best/2/bin 0 -8261.2 -7993.3 386.2 ∞ ∞ 1991.5 11323.6 7.4 5.66
best/2/exp 0 -8261.2 -7834.0 545.6 ∞ ∞ 1731.6 9869.2 7.5 5.67
rand/1/bin 0 -8142.7 -7899.7 479.8 ∞ ∞ 2370.9 9408.0 11.2 3.97
rand/1/exp 0 -8261.2 -7639.2 740.4 ∞ ∞ 1065.6 4270.5 10.2 4.01
rand/2/bin 26 -8379.6 -8188.6 258.1 13524 52017 16304.1 96986.8 9.9 5.94
rand/2/exp 4 -8379.6 -8111.9 278.8 5850 146250 8384.2 50048.2 9.8 5.96

function values for six out of eight variants. We obtained 7% improvement in
success performance with best/2/bin.

For the multi-funnel Schwefel function the new rule does not help for the
variants which were unsuccessful in the original versions to find the global opti-
mum. However, it made them finding local optimum with lower function value
on average and hence decreased their ’average difference failure’ measure. The
most efficient rand/2/bin variant got better in its SP measure by 32%.

5 Conclusions

To the best of our knowledge our paper is the first one reporting benchmarking
results on MDE variants. According to the numerical experiments, the rand/2/bin
strategy provides overall the best percentage of success metric, especially when
it is applied on multi-funnel problem. This is somewhat in line with the results
reported in [6] for DE. For a single-funnel function the best/2/bin variant can be
advantageous if one needs good success performance, i.e. lower computational
time.

We have shown that incorporating certain knowledge on the local optima
network of the MDE to the evolutionary procedure can lead us to formalize
restarting rules to enhance the diversification of the population. Our numerical
tests indicates that the proposed restarting rule is beneficial on average for most
of the MDE variants.

In this work we have developed a computational tool in Python using Py-
omo and NetworkX packages which provide us with a general framework to
discover further possibilities on the field of (evolutionary) global optimization
and network science. We plan to extend our codebase with further MDE rules,
in particular with those involve network centrality measures as selection [4].
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